高迁移率块体硅p沟道场效应晶体管的制作方法

文档序号:6867596阅读:324来源:国知局
专利名称:高迁移率块体硅p沟道场效应晶体管的制作方法
技术领域
本发明涉及场效应晶体管(FET)领域;更具体地,涉及高迁移率p沟道场效应晶体管(PFET)以及制造高迁移率PFET的方法。
背景技术
现有的金属氧化硅(CMOS)技术用在许多集成电路中。CMOS技术采用通常简化为NFET的n沟道金属氧化硅场效应晶体管(n-MOSFET)和通常简化为PFET的p沟道金属氧化硅场效应晶体管(p-MOSFET)。传统的NFET和PFET在该领域中已为人们所熟知,其包括在形成在单晶硅中的沟道区的相对侧的源极区和漏极区,和形成在栅电介质层上面的栅电极,所述栅电介质层本身形成在沟道区上面。
在高性能电路中使用NFET和PFET时,PFET需要比NFET大,以克服在NFET和PFET之间载体迁移率的差异,从而不让PFET限制整个电路切换速度。PFET中的空穴迁移率大约是NFET中电子迁移率的25%。在非常多的应用中当前集成电路需要更小型化和消耗更少的能量,而较大的PFET却需要更大的硅面积和更多的能量。
因此,既需要相比较于传统的PFET以缩小的硅面积和能量损耗具有高切换速度的改进的PFET,也需要可以与改进的PFET同时制造出来的NFET。

发明内容
本发明既提供一种通过在PFET沟道中引入应力的改进的PFET,相比较于传统的PFET它以缩小的硅面积和能量损耗具有高切换速度,又提供一种可以与改进的PFET同时制造出来的NFET。
本发明的第一个方面是一种场效应晶体管,包括在栅电介质层上表面上形成的栅电极,所述栅电介质层位于单晶硅沟道区的上表面上,所述单晶硅沟道区位于锗包含层的上表面上,所述锗包含层位于单晶硅衬底的上表面上,所述锗包含层位于单晶硅衬底的上表面上的第一电介质层和第二电介质层之间。
本发明的第二个方面是一种制造场效应晶体管的方法,包括(a)提供具有形成在其上表面上的单晶锗包含层的单晶硅衬底和形成在所述单晶锗包含层的上表面上的单晶硅层;(b)在单晶硅层的上表面上形成栅电介质层;(c)在该电介质层的上表面上形成栅电极;(d)除去所述单晶硅层以形成单晶硅岛,并除去比整个单晶锗包含层小的部分单晶锗包含层,以在位于单晶硅层和单晶锗包含层不由栅电极保护之处的栅电极的下面形成单晶硅岛;(e)氧化不由栅电极保护的所有其余部分单晶锗包含层和栅电极的下面的比整个单晶锗包含层小的部分单晶锗包含层,以在单晶硅岛的下面形成单晶锗包含岛,其在单晶锗包含岛的第一侧上具有第一电介质层并且在单晶锗包含岛的第二侧即相对侧上具有第二电介质层,所述第一电介质层和第二电介质层都在栅电极的下面延伸;和(f)在所述第一电介质层上形成多晶硅源极区,在所述第二电介质层上形成多晶硅漏极区,所述多晶硅源极区和多晶硅漏极区邻接单晶硅沟道岛的相对侧。


本发明的特征在附上的权利要求中列出。然而通过参考下列对于说明实施例的详细描述并结合附图可以最好地理解本发明本身,附图中图1是根据本发明的PFET 100的横截面图;图2A至2P是说明制造图1中的PFET 100的横截面图;图3A至3D是说明制造图4中的可以单独地或者和图1中的PFET100同时制造的NFET 300的横截面图;图4是根据本发明的可以单独地或者和图1中的PFET 100同时制造的NFET 300的横截面图。
具体实施例方式
图1是根据本发明的PFET 100的横截面图。图1是沿着PFET100的沟道长度方向的横截面。在图1中,PFET 100包括栅极105;栅极105的下面的N-掺杂单晶硅区110,邻接浅槽隔离(STI)115(其包围PFET 100,但技术上不属于PFET 100)的P-掺杂多晶硅区120A;延伸入单晶硅区110(由虚线界定)和在栅极105的下面延伸的单晶硅源极区125A;邻接STI 115的P掺杂多晶硅漏极区120B;以及邻接多晶硅漏极区120B并延伸入单晶硅区110(由虚线界定)和在栅极105的下面延伸的P-掺杂单晶硅漏极区125B。PFET 100还包括埋入式电介质层130A,它位于多晶硅漏极区120A和单晶硅源极区125A的下面,并从STI 115向栅极105的下面延伸;以及埋入式电介质层130B,它位于漏极区120B和单晶硅漏极区125B的下面,并从STI 115向栅极105的下面延伸。PFET 100另外还包括位于单晶硅区110的下面并在埋入式电介质层130A和130B之间延伸的单晶锗包含层135;位于埋入式电介质层130A和130B及锗包含层135的下面的N-阱145;和在位于埋入式电介质层130A和130B及锗包含层135的下面的N-阱145(在硅衬底150中)中并由STI 115界定的逆向N型离子注入峰140。
应该理解的是,所述多晶硅源极区120A和单晶硅源极区125A物理地且电力地相接触,而且结构上电力地包括PFET 100的源极。同样地,应该理解的是,所述多晶硅漏极区120B和单晶硅漏极区125B物理地且电力地相接触,而且结构上电力地包括PFET 100的漏极。
栅极105包括位于单晶硅区110的上表面160上的栅电介质层155、位于栅电介质层155的上表面170上的P-掺杂或非掺杂多晶硅栅电极165和位于栅电极165的上表面180上的盖层175。可选的侧壁绝缘层185A和185B分别形成在栅电极165的相对侧壁190A和190B上,而且电介质隔离物195A和195B分别形成在相对应的侧壁绝缘层185A和185B的外表面200A和200B上。图1中所示的栅电介质层155在隔离物195A和195B的下面延伸。或者,栅电介质层可以部分地或者根本不在隔离物195A和195B的下面延伸。
沟道区205限定在单晶硅区110中。沟道区205可以包括邻接位于单晶硅源极区125A和单晶硅漏极区125B之间的衬底150的上表面160的一部分,或者沟道区205可以包括位于单晶硅源极区125A和单晶硅漏极区125B之间的所有单晶硅区110。单晶硅区110如图1所示在隔离物195A和195B的下面延伸,或者可以在隔离物195A和195B的下面经过隔离物195A和195B向STI 115延伸。
埋入式电介质层130A包括第一区210A和第二区215A。第二区215A比第一区210A厚。第一区210A在多晶硅源极区120A的下面从STI 115延伸以与隔离物195A下面的第二区215A汇合。第二区215A从第一区210A从隔离物195A下面向棚极105下面的锗包含层135延伸。
埋入式电介质层130B包括第一区210B和第二区215B。第二区215B比第一区210B厚。第一区210B在多晶硅漏极区120B的下面从STI 115延伸以与隔离物195B下面的第二区215B汇合。第二区215B从第一区210B从隔离物195A下面向栅极105下面的锗包含层135延伸。
第二区215A的上表面220A从锗包含层135向上倾斜(朝着衬底150的表面160),以在隔离物195A下面与多晶硅源极区120A汇合。第二区215A的下表面225A从锗包含层135向下倾斜(远离衬底150的表面160),以在隔离物195A下面与第一区210A汇合。第二区215B的上表面220B从锗包含层135向上倾斜,以在隔离物195B下面与多晶硅漏极区120B汇合。第二区215B的下表面225B从锗包含层135向下倾斜,以在隔离物195B下面与第一区210B汇合。
埋入式电介质层130A的第二区215A的上表面220A的向上倾斜度和埋入式电介质层130B的第二区215B的上表面220B的向上倾斜度是从平面(相对于衬底150的上表面160)起50%的量级,其将大约50兆帕至1000兆帕的应力分给了单晶硅区110的晶格和沟道区205。PFET的硅格的硅上的应力已经表现为提高空穴迁移率,并从而提高可以有利地使用的PFET的漏极电流,以减少对于给定的PFET漏极电流额定值所需的PFET硅面积。
图2A至2P是说明制造图1中的PFET 100的横截面图。在图2A中,单晶硅衬底150具有形成在单晶硅衬底150的上表面230上的锗包含层135和形成在锗包含层135的上表面235上的单晶硅层240。单晶硅衬底也叫做单晶质硅衬底或块体硅衬底。在第一个例子中,锗包含层135包括Si(1-x)Gex,其中X等于大约0.15至大约0.5。在第二个例子中,锗包含层135包括Si(1-x-Y)GexCY,其中X等于大约0.15至大约0.5,Y等于大约0至大约0.1。可以通过使用SiH4和GeH4的低压化学汽相沉积(LPCVD)来外延地形成单晶SiGe层。可以通过使用SiH4、GeH4和CH3SiH3或C2H6的LPCVD来外延地形成单晶SiGeC层。在一个例子中,锗包含层135为大约10nm至大约100nm厚。可以通过使用SiH4和/或H2的LPCVD来外延地形成单晶硅层。在一个例子中,单晶硅层240为大约5nm至大约50nm厚。
在图2B中,形成STI 115。STI 115从单晶硅层240的上表面245开始、经过单晶硅层240、经过单晶锗包含层135延伸入衬底150。STI115可以这样形成通过反应离子刻蚀(RIE)经过单晶锗包含层135而进入衬底150的槽,沉积诸如SiO2或四乙氧基硅烷(TEOS)氧化物的绝缘物以填充所得的槽,并化学-机械抛光(CMP)单晶硅层240的上表面245,以便除去多余的绝缘物。
在图2C中,N-阱145通过诸如砷或磷的N-掺杂的离子注入法而形成在衬底150中。由于已经说明N-阱145在STI 115的下面延伸,因此N-阱145可以等于或浅于STI。
在图2D中,使用诸如砷的N-掺杂实现逆向离子注入。逆向离子注入被定义为在离子注入其中的材料的表面的下面具有峰集中的离子注入。逆向离子注入的峰140位于锗包含层240的上表面235的下面距离D处。
在图2E中,在单晶硅层240的上表面245上形成栅电介质层155。在一个例子中,栅电介质层155包括沉积的或热的SiO2,但也可以是本领域中已知的任何栅电介质。N-掺杂或未掺杂的多晶硅层250形成在栅电介质层155的上表面170上。可通过使用SiH4的CVD形成多晶硅(而且如果栅极在制造过程中将在此点被掺杂则可以选择地使用AsH4或PH4)。盖层175形成在多晶硅层250的上表面255上。在一个例子中,盖层175包括位于热SiO2层上的TEOS氧化层。
在图2F中,执行光刻蚀过程,盖层175被构图并用作将多晶硅层250的不希望的部分刻蚀掉的硬模(见图2E),以在余下的盖层175的下面形成栅电极165。
在图2G中,在栅电极165的侧壁190上形成可选的侧壁绝缘层185。接着,执行使用诸如硼的可选的P-掺杂扩散离子注入和/或使用诸如砷的N-掺杂光晕离子注入,以在单晶硅层240中形成扩散/光晕区260。扩散和光晕注入可以在与单晶硅层240的上表面245成非90°角处形成。当所述光晕和扩散注入在栅电极165的下面延伸时,执行所述光晕和扩散注入使得其不像各个埋入式电介质层130A和130B的厚区215A和215B在栅电极下面延伸得那么远。所述光晕和扩散注入是浅注入,并且不在锗包含层135的下面延伸。
或者,可以在形成栅电极165之后但是在形成侧壁绝缘层185之前执行所述扩散和/光晕注入。
在图2H中,在侧壁绝缘层185的外表面200上形成隔离物195。隔离物195可以包括Si3N4、SiO2或其混合物。例如,隔离物195可以包括多个层叠的隔离物,每个隔离物由SiO2和Si3N4形成。而且,可以在形成隔离物195之后可选地执行上述光晕和扩散离子注入的一个或两个。通过沉积保形材料层形成隔离物,然后执行RIE处理。不受栅电极165和隔离物195保护的栅电介质层155可以由RIE处理或其它处理而除去。
在图2I中,除去单晶硅层240的不受栅电极165和隔离物195保护的部分。锗包含层135也被刻蚀,以使锗包含层凹进除去了单晶硅层240的区域中,使得在这些区域的锗包含层135比在栅电极165和隔离物195的下面的薄。在一个例子中,在不受栅电极165和隔离物195保护的地方,锗包含层135变薄为其原始厚度的一半。在第二个例子中,在不受栅电极165和隔离物195保护的地方,锗包含层135变薄为大约5nm至大约50nm之间。单晶硅层240和锗包含层135的刻蚀可以使用RIE处理而实现,其选择地刻蚀对应于盖层175、隔离物195和STI115的材料的Si、SiGe和SiGeC。在盖层175、隔离物195和STI 115由氧化硅形成的例子中,适当的RIE处理可以采用CF4和O2的混合物。
在图2J中,氧化锗包含层135以形成包含Si和Ge的氧化物的埋入式电介质层130。在一个例子中,在600℃或低于600℃使用H2O蒸汽和O2的混合物执行氧化。在这些条件下,单晶SiGe和单晶SiGeC比单晶硅的氧化快40倍。在氧化过程中,被氧化的SiGe或SiGeC的体积大约是位于原始表面的下面的体积的大约40%和位于原始表面上面的体积的大约60%的二倍。而且,在隔离物195和栅电极165的下面,锗包含层135水平地氧化距离等于形成在锗包含层135不受栅电极165和隔离物195保护的地方的被氧化的SiGe或SiGeC的厚度。还应当记住的是,在栅电极165和隔离物195的下面的锗包含层135比在暴露锗包含层的地方的厚。因此,埋入式电介质层130包括位于隔离物195的下面并在栅电极165的下面部分延伸的厚区215和埋入式电介质层130不在栅电极165和隔离物195的下面的薄区210。在一个例子中,埋入式电介质层130的薄区210的厚度为大约10nm至大约100nm,而且埋入式电介质层130的厚区215的厚度为大约10nm至大约200nm并在隔离物195的下面延伸大约10nm至大约200nm。
氧化之后,仅存的锗包含层135是位于栅电极165的下面的岛。也在单晶硅层240的暴露的边缘上形成SiO2的薄层265。氧化处理的效果是埋入式电介质层130的厚区215和隔离物195的下面的栅电介质层155之间的单晶硅层240的区域被拉紧,即晶格被从常态扭曲。
在图2K中,除去SiO2薄层265(见图2J)以暴露单晶硅区240的边缘270。
在图2L中,在单晶硅区240的边缘270(见图2K)上生长外延的硅区275。如上所述,外延Si可以由使用SiH4的LPCVD生长。
在图2M中,形成具有足够厚度的多晶硅层280以覆盖盖层175和隔离物195。如上所述,多晶硅层280可以是掺杂P型或非掺杂的。单晶硅层240上的外延的硅区275(见图2L)可以在尺寸上略有增长,并从而形成单晶硅区110(也见图1)。
在图2N中,执行CMP处理,使得多晶硅层280的上表面285与盖层175的上表面290共面。
在图2O中,执行RIE刻蚀反处理,以便将多晶硅层280(见图2N)从隔离物195、栅电介质155的暴露端和STI 115的上表面295除去。多晶硅层280保留在由单晶硅区110、埋入式电介质层130和STI115所限定的空间中。
在图2P中,执行可选的P型(例如硼)离子注入以在余下的多晶硅层280(见图2O)中形成P-掺杂多晶硅源极/漏极120。P型离子注入也可用于掺杂栅电极165。如果多晶硅层280是如被沉积的P-掺杂的,取决于是否希望P型离子注入栅电极165可以排除或不排除该P型离子注入。
回到图1,PFET 100的结构改进了PFET的一些操作参数。第一,栅电极165下面的相对浅的、尤其靠近栅电极的侧壁190A和190B的单晶硅区110导致改进的短沟道特性,例如降低的次阈值电压摆动(SSWING)、降低的漏极感应的阻挡载荷及更为精确的阈值电压(VT)控制。第二,相对深的多晶硅源极区和漏极区120A和120B导致较低的源极/漏极电阻。第三,埋入式电介质层130A和130B降低源极/漏极电容(与传统的块体硅PFET相比)。第四,埋入式电介质层130A的第二区215A和埋入式电介质层130B的第二区215B之间的锗包含层135(由于高锗掺杂水平)允许由电压偏置N-阱145控制VT。这些改进的操作参数都已经实验地显示出导致明显更快的PFET(当与具有和本发明的PFET相同沟道宽度和沟道长度的传统块体硅PFET相比较时),并导致在短沟道长度设备上饱和漏极电流(IDSAT)增长达大约42%。根据本发明的PFET的制作本质上可以完成。
图3A至3D是说明通过对上述PFET处理进行一些变化而可以单独地或者和PFET 100(见图1)同时制造的NFET 300(见图4)的制造的横截面图。在描述这些变化之前,应该理解,本领域中已知的是,当在相同的衬底上制造PFET和NFET时,在只是NFET所需的离子注入期间保护PFET不进行离子注入,并且在只是PFET所需的离子注入期间保护NFET不进行离子注入。通常由光阻挡层提供这种保护。因此,在下面的描述中应当理解的是,如果根据本发明正在同时制造PFET和NFET,则涉及PFET的已经发生的这些步骤和涉及NFET的也可能已经发生的这些步骤是前面的形成PFET的描述。
制造可以单独地或者和PFET 100(见图1)同时制造的NFET 300(见图4)与图2A至2M所示和上述PFET 100(见图1)的制造类似,下面即描述不同之处。
在图2C中,N-阱145由诸如硼的P-掺杂离子注入所形成的P-阱所代替。在图2D中,N-掺杂逆向离子注入由使用诸如硼的P-掺杂品种的P-掺杂逆向离子注入所代替。在图2G中,P-掺杂扩散离子注入由使用诸如砷的N-掺杂品种的N-掺杂扩散离子注入所代替,并且可选地N-掺杂光晕离子注入由使用诸如硼的P-掺杂品种的P-掺杂离子扩散离子注入所代替。
在图2I和2J所示的处理之间,执行图3A和3B所示的处理。在图3A中,执行定向RIE以除去不受隔离物195、盖层175和栅电极165保护的埋入式电介质层130的薄区210。作为替换,盖层175也可以由Si3N4或Si3N4和SiO2层形成。在图3B中,执行各向同性的硅刻蚀,以除去硅衬底的暴露部分和电介质层130的下部切除的厚区215。不切除STI 115的下部。除去在电介质层130的下部切除的厚区215的下面的硅就除去了大部分或所有前面引入单晶硅区110和沟道区205(见图4)的应力。
对于NFET,图2L由图3C代替,而图2O由图3D代替。在图3C中,外延硅区275在单晶硅区240的边缘270(见图2K)上生长,而外延层285在硅衬底215的暴露表面上生长。如上所述,外延Si可以由使用SiH4的LPCVD生长。在图3D中,执行RIE刻蚀反处理,以便将多晶硅层280(见图2N)从隔离物195、栅电介质层155的暴露端和STI 115的上表面295除去。多晶硅层290保留在由单晶硅区110、埋入式电介质层130的厚区215、外延层285和STI 115所限定的空间中。
在图2P中,可选的P型离子注入由可选的N型离子注入(例如使用砷)所代替,以形成N-掺杂的源极/漏极120。根据本发明的NFET的制作本质上完成。
图4是根据本发明的可以单独地或者和图1中的PFET 100同时制造的NFET 300的横截面图。除一些差别外,图4与图1类似。第一,单晶硅区110由P-掺杂代替N-掺杂,源极区和漏极区120A和120B由N-掺杂代替P-掺杂,单晶硅区125A由N-掺杂代替P-掺杂,N-阱145由P-阱145代替。第二,结构上,只有各个电介质层130A和130B的厚区215A和215B以及外延层285A和285B插入在各个多晶硅源极区/漏极区120A和120B与硅衬底150之间,而不是电介质层130A和130B的各个薄区210A和210B(见图1),以及外延层285A和285B在电介质层130A和130B的各个厚区215A和215B的下面延伸。从源极120A和漏极120B的源/漏掺杂品种可以或不可以延伸入各个外延层285A和285B。
因此,本发明既提供相比较于传统的PFET以缩小的硅面积和能量损耗具有高切换速度的改进的PFET,又提供可以与改进的PFET同时制造出来的NFET。
为了理解本发明上面给出了对本发明实施例的描述。可以理解的是,本发明不受限于这里所述的特殊实施例的限制,而是能够正如本领域技术人员所明了的、在不脱离本发明的范围的情况下进行各种修改、重新调整和替换。因此,附上的权利要求旨在概括所有落入本发明的真正精神和范围中的修改和变化。
权利要求
1.一种场效应晶体管,包括在栅电介质层上表面上形成的栅电极,所述栅电介质层位于单晶硅沟道区的上表面上,所述单晶硅沟道区位于锗包含层的上表面上,所述锗包含层位于单晶硅衬底的上表面上,所述锗包含层位于所述单晶硅衬底的所述上表面上的第一电介质层和第二电介质层之间。
2.如权利要求1所述的场效应晶体管,其中所述第一电介质层在所述栅电极的第一侧的下面延伸,所述第二电介质层在所述栅电极的相对第二侧的下面延伸。
3.如权利要求1所述的场效应晶体管,其中所述第一电介质层在所述单晶硅沟道区的第一侧的下面延伸,所述第二电介质层在所述单晶硅沟道区的相对第二侧的下面延伸。
4.如权利要求1所述的场效应晶体管,还包括多晶硅源极区和多晶硅漏极区,每一个都在所述单晶硅沟道区的相对侧上邻接所述单晶硅沟道区。
5.如权利要求4所述的场效应晶体管,其中所述第一电介质层在所述多晶硅源极的下面延伸,所述第二电介质层在所述多晶硅漏极的下面延伸。
6.如权利要求4所述的场效应晶体管,其中所述第一电介质层不在所述多晶硅源极的下面延伸,所述第二电介质层不在所述多晶硅漏极的下面延伸。
7.如权利要求5所述的场效应晶体管,其中位于所述单晶硅沟道区的下面的所述第一电介质层的第一区具有第一厚度,位于所述多晶硅源极区的下面的所述第一电介质层的第二区具有第二厚度,所述第一厚度大于所述第二厚度;而且位于所述单晶硅沟道区的下面的所述第二电介质层的第一区具有第一厚度,位于所述多晶硅漏极区的下面的所述第二电介质层的第二区具有第二厚度,所述第一厚度大于所述第二厚度。
8.如权利要求4所述的场效应晶体管,还包括位于所述多晶硅源极区和所述单晶硅沟道区之间的单晶硅源极区;和位于所述多晶硅漏极区和所述单晶硅沟道区之间的单晶硅漏极区。
9.如权利要求8所述的场效应晶体管,其中每个所述单晶硅源极区和所述单晶硅漏极区在所述栅电极的下面延伸。
10.如权利要求8所述的场效应晶体管,其中位于所述单晶硅沟道区的下面的所述第一电介质层的第一区具有第一厚度,位于所述多晶硅源极区的下面的所述第一电介质层的第二区具有第二厚度,所述第一厚度大于所述第二厚度;位于所述单晶硅沟道区的下面的所述第二电介质层的第一区具有第一厚度,位于所述多晶硅漏极区的下面的所述第二电介质层的第二区具有第二厚度,所述第一厚度大于所述第二厚度;所述单晶硅源极区经过所述第一电介质层的所述第一区延伸入所述多晶硅源极区;和所述单晶硅漏极区经过所述第二电介质层的所述第一区延伸入所述多晶硅漏极区。
11.如权利要求10所述的场效应晶体管,其中所述单晶硅源极区不经过所述第一电介质层的所述第一区延伸入所述单晶硅沟道区;和所述单晶硅漏极区不经过所述第二电介质层的所述第一区延伸入所述单晶硅沟道区。
12.如权利要求1所述的场效应晶体管,其中所述第一和第二电介质层的下表面经过所述锗包含层的下表面延伸入所述单晶硅衬底。
13.如权利要求1所述的场效应晶体管,其中所述锗包含层包括Si(1-X)GeX,其中X等于大约0.15至大约0.5,或包括Si(1-X-Y)GeXCY,其中X等于大约0.15至大约0.5,Y等于大约0至大约0.1。
14.如权利要求1所述的场效应晶体管,其中所述第一和第二电介质层将应力引入所述沟道区的晶格中。
15.如权利要求1所述的场效应晶体管,其中所述第一电介质层和第二电介质层的每一个包括硅的氧化物和锗的氧化物。
16.如权利要求1所述的场效应晶体管,还包括P-掺杂多晶硅源极区和P-掺杂多晶硅漏极区,每一个都在所述单晶硅沟道区的相对侧上邻接所述单晶硅沟道区;邻接所述多晶硅源极和所述多晶硅漏极的电介质绝缘物,所述第一和第二电介质分别在所述多晶硅源极和所述多晶硅漏极的下面延伸并且层邻接所述电介质绝缘物。
17.如权利要求1所述的场效应晶体管,还包括N-掺杂多晶硅源极区和N-掺杂多晶硅漏极区,每一个都在所述单晶硅沟道区的相对侧上邻接所述单晶硅沟道区;和邻接所述多晶硅源极和所述多晶硅漏极的电介质绝缘物。
18.如权利要求1所述的场效应晶体管,其中所述单晶硅沟道区是N型掺杂的。
19.如权利要求1所述的场效应晶体管,其中所述单晶硅沟道区是P型掺杂的。
20.一种制造场效应晶体管的方法,包括(a)提供单晶硅衬底,其具有在所述单晶硅衬底的上表面上形成的单晶锗包含层和在所述单晶锗包含层的上表面上形成的单晶硅层;(b)在所述单晶硅层的上表面上形成栅电介质层;(c)在所述电介质层的上表面上形成栅电极;(d)除去所述单晶硅层,以形成单晶硅岛,并除去比整个单晶锗包含层小的部分单晶锗包含层,以在位于单晶硅层和所述单晶锗包含层不由所述栅电极保护之处的所述栅电极的下面形成单晶硅岛;(e)氧化不由所述栅电极保护的所有其余部分的所述单晶锗包含层和所述栅电极的下面的比整个所述单晶锗包含层小的部分单晶锗包含层,以在所述单晶硅岛的下面形成单晶锗包含岛,其具有在第一侧上的第一电介质层和在单晶锗包含岛的相对第二侧上的第二电介质层,所述第一电介质层和第二电介质层都在所述栅电极的下面延伸;和(f)在所述第一电介质层上形成多晶硅源极区,在所述第二电介质层上形成多晶硅漏极区,所述多晶硅源极区和多晶硅漏极区邻接所述单晶硅沟道岛的相对侧。
21.如权利要求20所述的方法,还包括在步骤(e)和(f)之间,在所述单晶硅岛的暴露侧壁上生长单晶硅层。
22.如权利要求20所述的方法,其中所述第一电介质层在所述栅电极的第一侧的下面延伸,所述第二电介质层在所述栅电极的相对第二侧的下面延伸。
23.如权利要求20所述的方法,其中所述第一电介质层在所述单晶硅岛的第一侧的下面延伸,所述第二电介质层在所述单晶硅岛的相对第二侧的下面延伸。
24.如权利要求20所述的方法,其中所述第一电介质层在所述多晶硅源极的下面延伸,所述第二电介质层在所述多晶硅漏极的下面延伸。
25.如权利要求20所述的方法,其中所述第一电介质层的所述单晶硅岛下面的第一区比所述多晶硅源极区下面的所述第一电介质层的第二区厚;而且所述第二电介质层的所述单晶硅岛下面的第一区比所述多晶硅漏极区下面的所述第二电介质层的第二区厚。
26.如权利要求20所述的方法,还包括在所述单晶硅岛中形成单晶硅源极区,所述单晶硅源极区邻接所述多晶硅源极区,所述单晶硅源极区在所述栅电极的下面延伸;和在所述单晶硅岛中形成单晶硅漏极区,所述单晶硅漏极区邻接所述多晶硅漏极区,所述单晶硅漏极区在所述栅电极的下面延伸。
27.如权利要求26所述的方法,其中位于所述单晶硅沟道区的下面的所述第一电介质层的第一区具有第一厚度,位于所述多晶硅源极区的下面的所述第一电介质层的第二区具有第二厚度,所述第一厚度大于所述第二厚度;位于所述单晶硅沟道区的下面的所述第二电介质层的第一区具有第一厚度,位于所述多晶硅漏极区的下面的所述第二电介质层的第二区具有第二厚度,所述第一厚度大于所述第二厚度;所述单晶硅源极区经过所述第一电介质层的所述第一区延伸入所述多晶硅源极区;和所述单晶硅漏极区经过所述第二电介质层的所述第一区延伸入所述多晶硅漏极区。
28.如权利要求26所述的方法,其中所述单晶硅源极区不经过所述第一电介质层的所述第一区延伸入所述单晶硅岛;和所述单晶硅漏极区不经过所述第二电介质层的所述第一区延伸入所述单晶硅岛。
29.如权利要求20所述的方法,其中所述第一和第二电介质层的下表面经过所述锗包含层的下表面延伸入所述单晶硅衬底。
30.如权利要求20所述的方法,其中锗包含层包括Si(1-X)GeX,其中X等于大约0.15至大约0.5,或包括Si(1-X-Y)GeXCY,其中X等于大约0.15至大约0.5,Y等于大约0至大约0.1。
31.如权利要求20所述的方法,其中所述第一和第二电介质层将应力引入所述单晶硅岛的晶格中。
32.如权利要求20所述的方法,还包括掺杂所述单晶硅层N型;和掺杂所述多晶硅源极区和所述多晶硅漏极区P型。
33.如权利要求20所述的方法,还包括在步骤(e)和(f)之间,从所述单晶硅衬底上除去不在所述栅电极下面或不在所述栅电极的侧壁上所形成的隔离物下面延伸的所述第一和第二电介质层;从余下的第一和第二电介质层下面除去所述单晶硅衬底的一层;和在所述单晶硅岛的暴露侧壁上生长第一单晶硅层,并在所述单晶硅衬底的暴露表面上生长第二单晶硅层。
34.如权利要求33所述的方法,其中所述第一电介质层在所述栅电极的第一侧的下面延伸,所述第二电介质层在所述栅电极的相对第二侧的下面延伸。
35.如权利要求33所述的方法,其中所述第一电介质层在所述单晶硅岛的第一侧的下面延伸,所述第二电介质层在所述单晶硅岛的相对第二侧的下面延伸。
36.如权利要求33所述的方法,其中所述第一电介质层不在所述多晶硅源极的下面延伸,所述第二电介质层不在所述多晶硅漏极的下面延伸。
37.如权利要求33所述的方法,还包括在所述单晶硅岛中形成单晶硅源极区,所述单晶硅源极区邻接所述多晶硅源极区,所述单晶硅源极区在所述栅电极的下面延伸;和在所述单晶硅岛中形成单晶硅漏极区,所述单晶硅漏极区邻接所述多晶硅漏极区,所述单晶硅漏极区在所述栅电极的下面延伸。
38.如权利要求37所述的方法,其中所述单晶硅源极区经过所述第一电介质层延伸入所述多晶硅源极区;和所述单晶硅漏极区经过所述第二电介质层延伸入所述多晶硅漏极区。
39.如权利要求37所述的方法,其中所述单晶硅源极区不经过所述第一电介质层的所述第一区延伸入所述单晶硅岛;和所述单晶硅漏极区不经过所述第二电介质层的所述第一区延伸入所述单晶硅岛。
40.如权利要求33所述的方法,其中所述第一和第二电介质层的下表面经过所述锗包含层的下表面延伸入所述单晶硅衬底。
41.如权利要求33所述的方法,其中所述锗包含层包括Si(1-X)GeX,其中X等于大约0.15至大约0.5,或包括Si(1-X-Y)GeXCY,其中X等于大约0.15至大约0.5,Y等于大约0至大约0.1。
42.如权利要求33所述的方法,其中所述第一和第二电介质层不将应力引入所述单晶硅岛的晶格中。
43.如权利要求33所述的方法,还包括掺杂所述单晶硅层P型;和掺杂所述多晶硅源极区和所述多晶硅漏极区N型。
全文摘要
本发明公开一种场效应晶体管(100)和制造该场效应晶体管的方法。所述场效应晶体管包括在栅电介质层(155)上表面(170)上形成的栅电极(165),所述栅电介质层位于单晶硅沟道区(110)的上表面(160)上,所述单晶硅沟道区位于锗包含层(135)的上表面上,所述锗包含层位于单晶硅衬底(150)的上表面上,所述锗包含层位于单晶硅衬底的上表面上的第一电介质层(215A)和第二电介质层(215B)之间。
文档编号H01L21/32GK101023530SQ200580031434
公开日2007年8月22日 申请日期2005年9月19日 优先权日2004年9月20日
发明者布伦特·A.·安德森, 路易斯·D.·兰泽罗蒂, 爱德华·J.·诺瓦克 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1