加碳化合物制备富锂固溶体正极材料的方法

文档序号:7109991阅读:363来源:国知局
专利名称:加碳化合物制备富锂固溶体正极材料的方法
技术领域
本发明属于电池电极材料制备的技术领域,具体涉及一种可用于锂电池、锂离子电池、聚合物电池和超级电容器的掺杂富锂固溶体正极材料的制备方法。
背景技术
尖晶石型LiMn2O4具有工作电压高、价格低廉、环境友好等特点,但是该正极材料的可逆容量较低,在IC倍率充放电时放点容量只有90-100mAh/g ;在高温下该正极材料的放电容量会随着充放电循环的进行快速衰减。富锂固溶体正极材料Li2MnO3-Li [Nil73Col73Mnl73]O2展现出比容量高、热稳定性好、循环性能良好等优点,从而吸引了国内外专家学者的高度兴趣。目前制备富锂固溶体正极 材料采用的方法包括共沉淀方法、溶胶方法、固相烧结方法等。在这几种制备方法中,为了进一步改善制备样品的电化学性能,如提高第I循环的电流效率,改善不同倍率电流的放电性能等,也有一些掺杂制备方法的研究报道。在共沉淀制备方法中,依据生成的沉淀的不同又分为氢氧化物共沉淀法和碳酸盐共沉淀法。在氢氧化物共沉淀法中,依据采用沉淀剂的不同又可分为氢氧化锂共沉淀方法、氢氧化钠(钾)与氨水共沉淀方法,以下分别讨论
氢氧化锂共沉淀方法是采用LiOH为沉淀剂,将LiOH溶液加入锰盐、镍盐和钴盐的溶液中,制得锰、镍和钴的氢氧化物沉淀的复合物。将氢氧化物沉淀的复合物洗涤、干燥后,与过量LiOH混合,经过一段或两段或两次烧结制得富锂锰酸锂材料[Guo X. et al. J.Power Sources,2008,184 414 - 419. ; Denis Y. et al, J. Electrochem. Soc.,2010,157 A1177-A1182. ;Li J.,et al, J. Power Sources, 2011,196 4821 - 4825·]。为了改善氢氧化锂共沉淀方法制备的样品的倍率放电性能,吴晓彪等将氢氧化锂共沉淀方法制备的Li [Li0.2Mn0.54Ni0.13Co0.13] O2进行包覆碳处理;Shi等将制备的Li1.C48Mn0.381Ni0.286Co0.28602进行磁控溅射处理,制备包覆碳的正极材料。结果表明,碳包覆材料具有高倍率放电性能(5C,145 mAh/g)[吴晓彪等,厦门大学学报(自然科学版),2008,47: 224-227; Shi S. J. et al, Electrochim. Acta, 2012, 63: 112 - 117]。为了改善氢氧化锂共沉淀方法制备的样品的倍率放电性能,Croy等将制备的Li2MnO3 前驱物或 Li1.2Mn0.54Co0.13Ni0.1302 和 LiL 13Mn0.47Co0.20Ni0.2002 富锂固溶体材料用酸或酸式盐处理,以改善性能[Croy J. R. et al, Electrochem. Commun. , 2011, 13: 1063 -1066. ;Denis Y. et al, J. Electrochem. Soc. , 2010, 157 : A1177-A1182.]。研究表明,经过(NH4) 2S04处理的材料具有较高的容量和良好的倍率放电性能。为了进一步改善氢氧化锂共沉淀方法制备的样品的倍率放电性能,Rodrigues等在制备时加入尿素,利用尿素分解产物进一步促进共沉淀的发生。Rodrigues等[Rodrigues
I.,Solid State Electrochem. , 2012,16: 1121 - 1132.]先配制 Co (NO3)2 · 6H20、Ni (NO3)2 · 6H20、Mn (NO3)2 · 6H20、NH2CONH2 和 LiOH · H2O 的混合溶液,加入 NH2CONH2 溶液,用水热法、微波水热合成法或100°c加热法确定了尿素分解的最佳温度。研究表明,随着反应溶液PH值的增大,沉淀物从溶液中析出。在空气气氛中干燥后,将干燥的氢氧化物和过量3%的LiOH合成LiNixMnxCoa _2x)O2前驱物。前驱物造粒后,在空气气氛中分别于500°C和900°C烧结,最后淬火冷却。氢氧化钠(钾)与氨水共沉淀方法是采用氨水与NaOH或KOH溶液的混合溶液作为沉淀剂,将氨水和NaOH溶液或氨水和KOH溶液加入锰盐、镍盐和钴盐溶液中,制得锰、镍和钴的氢氧化物的沉淀。洗涤、干燥氢氧化物沉淀后,与化学计量稍过量的LiOH或Li2CO3混合,经过两段烧结制得富锂层状正极材料。[钟盛文等,电源技术,2012,36 :59-62.;催立峰等专利 ZL200910264411. O]
为了进一步改善氢氧化钠(钾)与氨水共沉淀法制备的样品的性能,Arunkumar等将制备的富锂固溶体材料用氧化剂NO2BF4的乙腈溶液进行化学脱锂。[Arunkumar T. A. et al,Chem. Mater. 2007,19,3067-3073. ; Wu Y. et al, J. Power Sources, 2008,183 749 - 754.]
为了改善氢氧化钠(钾)与氨水共沉淀法制备的样品的性能,Wu等制备包覆或掺杂的富锂固溶体材料。通过共沉淀法先制备未包覆的样品,然后通过溶液途径制备表面由Al2O3' Ce02、ZrO2, Si02、Zn。、AlPO4 和 F_ 离子修饰的富锂固溶体材料(1-z) Li [Li1/3Mn2/3]O2· (z) Li [Mn0 5 yNia5 yCo2y]O2 [ffu Y. , Manthiram A. , Solid State Ionics, 2009, 180 50 - 56.]。碳酸盐共沉淀法是先制备镍、钴、锰的碳酸盐沉淀,然后再与碳酸锂或氢氧化锂混合,经过两段烧结法或一段烧结法或分步制备方法,制得富锂正极材料。例如,在氩气气氛中,Liun等将NH4HCO3、(NH4)2CO3或Na2CO3溶液加入NiSO4、CoSO4和MnSO4的混合溶液中,经过滤、洗涤、干燥后得Niα2Coa!Mn0.533 (CO3)x前驱物。前驱物在500°C下烧结后再与Li2CO3混合,在空气气氛于900°C烧结得到球形粉末Lihl67Nia2CoaiMna 533O2。在2. O - 4. 8
V电压区间放电容量可达 340mAh/g。[Liun X. et al. , Materials International,
2012,22 126 - 129. ;ffang J. et al, Electrochim. Acta, 2012, 66 : 61 - 66.;专利ZL201110300604. 4]。为了进一步改善碳酸盐共沉淀法制备的样品的库仑效率和放电性能,进行了掺杂改性研究。例如,Deng等将硫酸镍、硫酸钴、硫酸锰溶液和碳酸钠溶液合成碳酸盐前躯体(Ni。.腸Co0.125Mn0.6875) CO3。将前躯体悬浮于Al (NO3) 3 · 9H20水溶液中,滴加NH4F悬浮液,经过搅拌,过滤后和100°C干燥后,在400°C下烧结,制备得到2wt% AlF3包覆的LiuNiai5CoaiMna55On该材料在55°C的可逆容量达304 mAh/g,首次循环的库仑效率达84%ο [Belharouak Deng H. et al, J. Electrochem. Soc. , 2010,157 :Α1035_Α1039·]
为了进一步改善碳酸盐共沉淀法制备的样品的放电性能,进行了分步骤制备研究。Shin等将硫酸钴、硫酸锰与碳酸氢铵溶液反应,制得Coa5Mna5CO3前躯体。该前躯体干燥后与Li2CO3机械混合。在空气气氛中,分别于550°C和850°C烧结制得0. 5Li2Mn03 ·0. 5LiCo02前驱物。将该前驱物与磷酸二氢铵、乙醇酸、硝酸镍、硝酸锂混合,在空气气氛中干燥,再在550°C下烧结,制得0. 5Li2Mn03 ·0· SLiNia44Coa25Mna31O2 [Shin, C. et al, J. Electrochem.Soc., 2012, 159 :Α121_Α127·]。在上述制备过程中,由于通过共沉淀制备方法中,无论是形成氢氧化物的共沉淀法还是通过形成碳酸盐的共沉淀法进行制备都要经过一个沉淀、洗涤沉淀及干燥的过程。该制备工艺制备步骤多,制备过程需要使用大量洗涤水,增加了水污染。通过共沉淀法制备碳酸盐沉淀时存在镍、锰、钴离子的沉淀溶度积较大;通过共沉淀法制备氢氧化物沉淀时。存在部分溶解而造成镍、锰、钴离子的沉淀不完全(氢氧化物沉淀物容易与Off或氨形成络合物增大了氢氧化物的溶解度),引起最终制备的产物的组成的化学计量比难以准确控制,造成样品的电化学性能和大电流放电性能的不稳定(武汉大学主编,分析化学(第2版),高等教育出版社,1982年10月,北京第14页至第17页)。由于目前制备的富锂固溶体正极材料的大电流放电性能均不理想,本发明试图通过在制备过程中加入碳化合物。碳化合物在烧结过程中产生的二氧化碳或一氧化碳使得部分氧化物被还原金属颗粒,改善了样品的大电流放电性能。

发明内容
本发明可避免共沉淀法制备时锰离子、钴离子、镍离子的氢氧化物或碳酸盐沉淀发生的不完全沉淀现象,使得制备产物的化学计量比难以控制。本发明的能够克服以上问题。此外,本发明还能避免普通固相烧结法通过反应产物简单球磨混合,再进行烧结制备的工艺存在的反应物混合不均匀,反应产物的电化学性能的一致性差等问题。为实现上述目 的,本发明所采用的技术方案是制备过程由以下步骤组成
(I)按照锂离子、镍离子、锰离子、钴离子的摩尔比为(1+X) (1-x) *y (χ+ζ-χ ·ζ):(1-χ) *k分别称取锂的化合物、镍的化合物、锰的化合物和钴的化合物;按照下列摩尔比例关系量取有机弱酸(χ+ζ-χ ·ζ)(有机弱酸摩尔数彡l;x、y、z、k的取值范围同时满足以下关系0· 15 彡 X 彡 O. 50,O. 02 ^ y ^ O. 50, O. I 彡 z 彡 O. 51,O. 05 彡 k 彡 O. 30,-O. 10^(2 · (1-χ) · y + 4 · (χ+ζ-χ · ζ) + 3 · (1-χ) · k - 3 - χ) ^ O. 10。(2)将称取的镍的化合物、锰的化合物和钴的化合物混合得到混合物1,加入混合物I总重量的5%至25%的含碳的化合物,得到混合物2 ;加入混合物2总体积的1/10倍至15倍体积的湿磨介质,加入有机弱酸,湿磨混合3小时 15小时,再加入锂的化合物,湿磨混合3小时 15小时得到前驱物I ;将前驱物I用真空干燥或喷雾干燥的方法制备干燥的前驱物2 ;将前驱物2置于空气、富氧气体或纯氧气氛中,采用两段烧结法或者两次分段烧结法制备组成为XLi2MnO3* (1-x) Li [NiyMnzCok]O2的富锂固溶体正极材料。所述的两次分段烧结法如下进行将前驱物2置于空气、富氧气体或纯氧气氛中,在300°C 550°C温度区间的任一温度烧结3小时 15小时,冷却至室温制得母体预烧料;将母体预烧料粉碎及过筛,再次置于空气、富氧气体或纯氧气氛中,在800°C 1050°C温度区间的任一温度烧结3小时 24小时,制备富锂固溶体正极材料。所述的两段烧结法如下进行将前驱物2置于空气、富氧气体或纯氧气氛中,在300°C 550°C温度区间的任一温度烧结3小时 15小时,接着置于另一空气、富氧气体或纯氧气氛的烧结炉中,于800°C 1050°C温度区间的任一温度烧结3小时 24小时,制备富锂固溶体正极材料。;
所述的弱酸为氨基乙酸、一氯乙酸、甲酸或乙酸。所述的镍的化合物为碳酸镍或碱式碳酸镍,或碳酸镍与碱式碳酸镍的任意比例的混合物;所述的锰的化合物为碳酸锰或碱式碳酸锰,或碳酸锰与碱式碳酸锰的任意比例的混合物;所述的钴的化合物为碳酸钴、草酸钴或碱式碳酸钴,或碳酸钴与碱式碳酸钴的任意比例的混合物。所述的含碳的化合物为葡萄糖、蔗糖、聚丙烯、聚丙烯酰胺、柠檬酸、聚乙烯醇或淀粉的一种。所述的真空干燥是将前驱物I在80°C 280°C温度区间的任一温度,在介于IOPa 10132Pa压力的真空下干燥制备前驱物2 ;所述的喷雾干燥是在11 (TC 280°C温度区间的任一温度,采用喷雾干燥机制备干燥的前驱物2。所述的湿磨介质为去离子水、蒸馏水、乙醇、丙酮、甲醇或甲醛;所述的富氧气体是氧气的体积含量大于21%且小于100%的气体。所述的湿磨的设备包括普通球磨机、超能球磨机或湿磨机;所述的锂的化合物为碳酸锂、氢氧化锂或碱式碳酸锂,或其任意比例的混合物。
与其它发明方法相比,加入的混合物中的含碳的化合物在烧结过程中的一部分被烧成二氧化碳等气体,这部分气体从样品中脱出时能将板结为一体的样品转变为疏松的样品,有利于电池材料的后续加工过程以及改善样品的大电流放电性能;另一部分含碳的化合物在烧结过程中转变为一氧化碳,起到控制制备样品烧结过程及烧结进度的作用,因此,本发明的制备方法对改善样品的性能起到意想不到的效果。本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。


图I是本发明实施例I制备的样品的XRD衍射图。图2是本发明实施例I制备的样品的第I循环的放电曲线图。
具体实施例方式下面结合实施例对本发明进行进一步的说明。实施例仅是对本发明的进一步补充和说明,而不是对发明的限制。实施例I
按照锂离子、镍离子、锰离子、钴离子、氨基乙酸的摩尔比为I. 30 : O. 175 : O. 657 :O. 105 : I分别称取碳酸锂、碳酸镍、碳酸锰、碳酸钴、氨基乙酸。将称取的碳酸镍、碳酸锰和碳酸钴混合得到混合物1,加入混合物I总重量5%的葡萄糖得到混合物2 ;加入混合物2的总体积的1/10倍体积的去离子水,加入氨基乙酸,用湿磨机湿磨混合3小时,再加入碳酸锂,用普通球磨机湿磨混合3小时,得到前驱物I ;将前驱物I在80°C下于IOPa压力的真空中干燥得到前驱物2 ;将前驱物2置于空气气氛中,在400°C烧结8小时,接着置于另一氧气体积含量99%的富氧空气气体气氛的烧结炉中,于920°C烧结12小时,制备组成为O. 30 Li2MnO3-O. 70 Li [Nia27Mna25Coa48] O2的富锂固溶体正极材料。制备样品的XRD衍射图如图I所示。制备样品在IC倍率电流下,在2. 5至4. 6V电压区间的第I循环的放电容量的为150mAh/g,样品第I循环的放电曲线如图2所示。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例2
按照锂离子、镍离子、锰离子、钴离子、一氯乙酸的摩尔比为I. 15 : O. 425 : O. 405 :O. 255 : I分别称取碱式碳酸锂、碳酸镍、碱式碳酸锰、碳酸钴与碱式碳酸钴重量比1:9的混合物、一氯乙酸。将称取的碳酸镍、碱式碳酸锰、碳酸钴与碱式碳酸钴重量比1:9的混合物混合得到混合物I,加入混合物I总重量25%的蔗糖得到混合物2 ;加入混合物2总体积的15倍体积的乙醇,加入一氯乙酸,用普通球磨机湿磨混合15小时,再加入碱式碳酸锂,用普通球磨机湿磨混合15小时得到前驱物I ;将前驱物I在11 (TC下用喷雾干燥机干燥。制得前驱物
2;将前驱物2置于氧气体积含量为99%的富氧空气气体中,在550°C烧结15小时,冷却至室温制得母体预烧料;将母体预烧料粉碎及过100目筛,再置于纯氧气氛中,于1050°C烧结24小时,制备组成为O. 15 Li2MnO3-O. 85 Li [Nia5Mna3tlCoa3JO2的富锂固溶体正极材料。制备样品在IC倍率电流下,在2. 5至4. 6V电压区间第I循环的放电容量的为162mAh/g。
与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例3
按照锂离子、镍离子、锰离子、钴离子、甲酸的摩尔比为I. 5 : O. 01 : O. 755 : O. 15 :O. 755分别称取氢氧化锂、碱式碳酸镍、碳酸锰与碱式碳酸锰重量比为1:9的混合物、碳酸钴与碱式碳酸钴重量比为9:1的混合物、甲酸。将称取的碱式碳酸镍、碳酸锰与碱式碳酸锰重量比1:9的混合物以及碳酸钴与碱式碳酸钴重量比9:1的混合物混合得到混合物I,加入混合物I总重量的15%的淀粉得到混合物2 ;加入混合物2总体积的15倍体积的甲醇,加入甲酸,用湿磨机湿磨混合3小时,再加入氢氧化锂,用湿磨机湿磨混合3小时得到前驱物I ;将前驱物I在280°C下用喷雾干燥机干燥,制备干燥的前驱物2 ;将前驱物2置于纯氧气氛中,在300°C烧结3小时,接着置于另一氧气体积含量30%的富氧空气气氛的烧结炉中,于800°C烧结24小时,制备组成为O. 15 Li2MnO3-O. 85 Li [Niaci2Mna51Coa3JO2的富锂固溶体正极材料。制备样品在IC倍率电流下,在2. 5至4. 6V电压区间第I循环的放电容量的为221mAh/g。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例4
按照锂离子、镍离子、锰离子、钴离子、乙酸的摩尔比为I. 5 : O. 25 : O. 613 : O. 15 :O. 613分别称取氢氧化锂与碱式碳酸锂重量比1:9的混合物、碳酸镍与碱式碳酸镍重量比1:5的混合物、碱式碳酸锰、草酸钴、乙酸。将称取的碳酸镍与碱式碳酸镍重量比1:5的混合物、碱式碳酸锰、草酸钴混合得到混合物1,加入混合物I总重量的15%的聚丙烯酰胺得到混合物2 ;加入混合物2总体积的10倍体积的蒸馏水,再加入乙酸,采用超能球磨机湿磨混合10小时,再加入氢氧化锂与碱式碳酸锂重量比1:9的混合物,采用超能球磨机湿磨混合7小时得到前驱物I ;将前驱物I在280°C下,于101325Pa压力的真空中干燥,制备得到干燥的前驱物2 ;将前驱物2置于空气气氛中,在300°C烧结3小时,冷却至室温制得母体预烧料;将母体预烧料粉碎及过50目筛,置于空气气氛中,在800°C烧结3小时,制备组成为O. 50 Li2MnO3-O. 50Li [Nia^lMna 225Coa JO2的富锂固溶体正极材料。制备样品在55°C下充放电时,在IC倍率电流下于2. 5至4. 6V电压区间第I循环的放电容量的为200mAh/g。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例5
按照锂离子、镍离子、锰离子、钴离子、甲酸的摩尔比为I. 47 : O. 265 : O. 74 : O. 0265O. 80分别称取碳酸锂与氢氧化锂重量比9:1的混合物、碳酸镍、碱式碳酸锰、碳酸钴与碱式碳酸钴重量比I: I的混合物、甲酸。 将称取的碳酸镍、碱式碳酸锰、碳酸钴与碱式碳酸钴重量比I: I的混合物混合得到混合物I,加入混合物I总重量20%的淀粉得到混合物2 ;加入混合物2的总体积的1/10倍体积的甲醛,加入甲酸,采用湿磨机湿磨混合7小时,加入碳酸锂与氢氧化锂重量比9:1的混合物,采用湿磨机湿磨混合3小时得到前驱物I ;将前驱物I在170°C下用喷雾干燥机干燥,制备前驱物2 ;将前驱物2置于氧气体积含量30%的富氧空气气体气氛中,在550°C烧结3小时,接着置于另一纯氧气氛的烧结炉中,于1050°C烧结3小时,制得组成为O. 47Li2MnO3-O. 53 Li [Nia5tlMna51Coatl5] O2的富锂固溶体正极材料。制备样品在55°C下充放电时,在IC倍率电流下于2. 5至4. 6V电压区间第I循环的放电容量的为205Ah/g。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例6
按照锂离子、镍离子、锰离子、钴离子、乙酸的摩尔比为I. 30 : O. 07 : 0.615 : O. 21 :
O. 70分别称取氢氧化锂、碱式碳酸镍、碱式碳酸锰、草酸钴、乙酸。将称取的碱式碳酸镍、碱式碳酸锰、草酸钴混合得到混合物1,加入混合物I总重量10%的聚丙烯酰胺得到混合物2 ;加入混合物2总体积的5倍体积的丙酮,加入乙酸,用普通球磨机湿磨混合8小时,再加入氢氧化锂,用普通球磨机湿磨混合9小时得到前驱物
I;将前驱物I在280°C下于IOOPa压力的真空中干燥,制备前驱物2 ;将前驱物2置于纯氧气氛中,在300°C烧结15小时,接着置于另一空气气氛的烧结炉中,于800°C烧结24小时,制备组成为O. 30 Li2MnO3-O. 70 Li [Ni。. 1(lMnQ.45C0(l. J O2的富锂固溶体正极材料。制备样品在55°C下充放电时,在IC倍率电流下于2. 5至4. 6V电压区间第I循环的放电容量的为 230mAh/g。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例7按照锂离子、镍离子、锰离子、钴离子、乙酸的摩尔比为I. 30 : O. 07 : 0.615 : O. 21 :
O. 70分别称取氢氧化锂、碱式碳酸镍、碱式碳酸锰、草酸钴、乙酸。将称取的碱式碳酸镍、碱式碳酸锰、草酸钴混合得到混合物1,加入混合物I总重量7%的聚丙烯酰胺得到混合物2 ;加入混合物2总体积的7倍体积的丙酮,加入乙酸,用普通球磨机湿磨混合8小时,再加入氢氧化锂,用普通球磨机湿磨混合9小时得到前驱物I ;将前驱物I在280°C下于IOOPa压力的真空中干燥,制备前驱物2 ;将前驱物2置于氧气体积含量80%的富氧空气气体气氛中,在300°C烧结15小时,接着置于另一氧气体积含量30%的富氧空气气体气氛的烧结炉中,于800°C烧结24小时,制备组成为O. 30 Li2MnO3-O. 70Li [Nia ^lMna45Coa JO2的富锂固溶体正极材料。制备样品在55°C下充放电时,在IC倍率电流下于2. 5至4. 6V电压区间第I循环的放电容量的为170mAh/g。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。实施例8
按照锂离子、镍离子、锰离子、钴离子、甲酸的摩尔比为I. 47 : O. 265 : O. 74 : O. 0265O. 80分别称取碳酸锂与氢氧化锂重量比9:1的混合物、碳酸镍、碱式碳酸锰、碳酸钴与碱式碳酸钴重量比I: I的混合物、甲酸。将称取的碳酸镍、碱式碳酸锰、碳酸钴与碱式碳酸钴重量比I: I的混合物混合得到混合物I,加入混合物I总重量10%的淀粉得到混合物2 ;加入混合物2的总体积的I倍体积的甲醛,加入甲酸,采用湿磨机湿磨混合7小时,加入碳酸锂与氢氧化锂重量比1:1的混合物,采用湿磨机湿磨混合3小时得到前驱物I ;将前驱物I在170°C下用喷雾干燥机干燥,制备前驱物2 ;将前驱物2置于氧气体积含量30%的富氧空气气体气氛中,在450°C烧 结3小时,接着置于另一氧气体积含量99%的富氧空气气体气氛的烧结炉中,于1050°C烧结3小时,制得组成为O. 47 Li2MnO3-O. 53 Li [Ni0.50Mn0.51Co0.05]02的富锂固溶体正极材料。制备样品在55°C下充放电时,在IC倍率电流下于2. 5至4. 6V电压区间第I循环的放电容量的为157mAh/g。与其它发明方法相比,本发明的原料成本较低,原料来源广泛,制备过程简单,耗时少,制备的电极材料组成均匀,具有优秀的放电性能,特别是在大电流条件下放电的循环性能佳,为产业化打下良好的基础。
权利要求
1.一种加碳化合物制备富锂固溶体正极材料的方法,其特征在于 (1)按照锂离子、镍离子、锰离子、钴离子的摩尔比为(1+X) (1-x) *y (χ+ζ-χ ·ζ):(1-χ) *k分别称取锂的化合物、镍的化合物、锰的化合物和钴的化合物;按照下列摩尔比例关系量取有机弱酸(χ+ζ-χ ·ζ)(有机弱酸摩尔数≤l;x、y、z、k的取值范围同时满足以下关系0· 15 ≤ X ≤ O. 50,O. 02≤O. 50, O. I ≤ z ≤ O. 51, O. 05 ≤ k ≤ O. 30,-O. 10 ≤(2 · (1-χ) · y+4 · (χ+ζ-χ · ζ)+3 · (1-χ) · k_3_x) ≤ O. 10 ; (2)将称取的镍的化合物、锰的化合物和钴的化合物混合得到混合物1,加入混合物I总重量的5%至25%的碳的化合物,得到混合物2 ;加入混合物2的总体积的1/10倍至15倍体积的湿磨介质,加入有机弱酸,湿磨混合3小时 15小时,再加入锂的化合物,湿磨混合3小时 15小时得到前驱物I ;将前驱物I用真空干燥或喷雾干燥的方法制备干燥的前驱物2 ;将前驱物2置于空气、富氧气体或纯氧气氛中,采用两段烧结法或者两次分段烧结法制备组成为XLi2MnO3* (1-x) Li [NiyMnzCok] O2的富锂固溶体正极材料; 所述的两次分段烧结法如下进行将前驱物2置于空气、富氧气体或纯氧气氛中,在300°C 550°C温度区间的任一温度烧结3小时 15小时,冷却至室温制得母体预烧料;将母体预烧料粉碎及过筛,再次置于空气、富氧气体或纯氧气氛中,在800°C 1050°C温度区间的任一温度烧结3小时 24小时,制备富锂固溶体正极材料; 所述的两段烧结法如下进行将前驱物2置于空气、富氧气体或纯氧气氛中,在300°C 550°C温度区间的任一温度烧结3小时 15小时,接着置于另一空气、富氧气体或纯氧气氛的烧结炉中,于800°C 1050°C温度区间的任一温度烧结3小时 24小时,制备富锂固溶体正极材料。
2.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的弱酸为氨基乙酸、一氯乙酸、甲酸或乙酸。
3.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的镍的化合物为碳酸镍或碱式碳酸镍,或碳酸镍与碱式碳酸镍的任意比例的混合物。
4.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的锰的化合物为碳酸锰或碱式碳酸锰,或碳酸锰与碱式碳酸锰的任意比例的混合物。
5.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的钴的化合物为碳酸钴、草酸钴或碱式碳酸钴,或碳酸钴与碱式碳酸钴的任意比例的混合物。
6.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的含碳的化合物为葡萄糖、蔗糖、聚丙烯、聚丙烯酰胺、柠檬酸、聚乙烯醇或淀粉的一种。
7.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的真空干燥是将前驱物I在80°C 280°C温度区间的任一温度,在介于IOPa 10132Pa压力的真空下干燥制备前驱物2。
8.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的喷雾干燥是在110°C 280°C温度区间的任一温度,采用喷雾干燥机制备干燥的前驱物2。
9.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的湿磨介质为去离子水、蒸馏水、乙醇、丙酮、甲醇或甲醛;所述的富氧气体是氧气体积含量大于21%且小于100%的空气。
10.根据权利要求I所述的加碳化合物制备富锂固溶体正极材料的方法,其特征在于所述的湿磨的设备包括普通球磨机、超能球磨机或湿磨机;所述的锂的化合物为碳酸锂、氢氧化锂或碱式碳酸锂,或其任意比例的混合物。
全文摘要
本发明涉及加碳化合物制备富锂固溶体正极材料的方法,特征在于:按锂、镍、锰、钴、M的离子摩尔比(1+x):(1-x)·y:(x+z-x·z):(1-x)·k : (1-x)·q分别称取其化合物;x、y、z、k和q同时满足0.25≤x≤0.50,0.05≤y≤0.50,0.1≤z≤0.51,0.02≤q≤0.15,0.05≤k≤0.30,-0.10≤(2·(1-x)·y+4·(x+z-x·z)+3·(1-x)·k+2·(1-x)·q–3-x)≤0.10。将镍、锰、钴、M的化合物混合,加入碳化合物、湿磨介质、氨水及锂的化合物,经过处理及烧结得富锂固溶体正极材料。制备材料组成均匀,具有优秀放电性能。
文档编号H01G11/30GK102881877SQ20121039161
公开日2013年1月16日 申请日期2012年10月15日 优先权日2012年10月15日
发明者童庆松, 周惠, 蔡斌, 肖斌, 黄娟, 姜祥祥, 韩铭, 潘樱, 王浪 申请人:福建师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1