一种正极活性材料的制备方法、正极片及锂离子电池与流程

文档序号:12474663阅读:195来源:国知局
本发明涉及锂离子二次电池领域,尤其涉及一种正极活性材料的制备方法、正极片及锂离子电池。
背景技术
:当今日常生活中,锂离子二次电池已被广泛应用于移动电话、笔记本电脑及其他数码产品中,是不可缺少的储能器件。目前,应用于锂离子电池的正极材料主要采用锂离子插嵌过渡金属层状氧化物,如LiCoO2、LiMn2O4等。该类材料的充放电过程依赖于锂离子在其晶格结构中的有序插入与脱嵌,这些材料的容量与循环稳定性主要由其晶体结构的稳定性决定。在充放电过程中,一旦晶体构造被破坏或失去可恢复性,电池的容量将衰减且循环性能恶化。另外,这些传统的锂离子插嵌正极材料在充放电过程中大多只能进行单电子氧化还原反应,导致其可获得的比容量通常低于200mAhg-1,使得锂离子电池的能量密度较低。当前基于这些传统正极材料的锂离子电池对那些能量密度需求更高的应用领域,如混合动力车、纯电动车等,表现出不足之处。技术实现要素:本发明所要解决的技术问题是针对现有技术中锂离子电池能量密度低的问题,提供一种正极片。本发明解决上述技术问题所采用的技术方案如下:提供一种正极活性材料的制备方法,包括如下步骤:S1、获取分子式为Na3[CoMo6O24H6]的前体材料,所述前体材料的平均粒径为10μm以上;S2、将所述前体材料溶解于水中,在搅拌条件下加入水溶性醇类有机溶剂,进行再结晶,过滤后得到所述正极活性材料;所述水溶性醇类有机溶剂与水的体积比为1-5:1。同时,本发明还提供了一种正极片,包括正极集流体和位于正极集流体上的正极材料,所述正极材料包括正极活性材料;所述正极活性材料通过上述方法制备得到。另外,本发明还提供了采用上述正极片的锂离子电池,包括电池壳体以及设置于电池壳体内的电芯,所述电芯包括卷绕或层叠的正极片、隔膜和负极片;所述正极片为如前所述的正极片。本发明中,通过水与水溶性醇类有机溶剂的混合溶液对分子式为Na3[CoMo6O24H6]的前体材料进行重结晶,得到的产物平均粒径得到了明显降低,达到600nm以下,作为正极活性材料使用时,可有效提高离子电导率,使其高理论克容量的优点得到充分利用,从而利于大大提高锂离子电池能量密度。同时,上述方法中,进行重结晶时添加的有机溶剂为水溶性醇类有机溶剂,其所需的添加量非常少,利于降低成本,减小污染。具体实施方式为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明提供的正极活性材料的制备方法,包括如下步骤:S1、获取分子式为Na3[CoMo6O24H6]的前体材料,所述前体材料的平均粒径为10μm以上;S2、将所述前体材料溶解于水中,在搅拌条件下加入水溶性醇类有机溶剂,进行再结晶,过滤后得到所述正极活性材料;所述水溶性醇类有机溶剂与水的体积比为1-5:1。本发明中,分子式为Na3[CoMo6O24H6]的材料为现有技术中所已知的材料,可通过常规的方法制备得到,例如将7.23g(29.88mmol)的Na2MoO4·2H2O溶于100ml去离子水中,待其全部溶解后,加入2.256g(8.58mmol)的CoSO4·6H2O固体、0.977g(4.102mmol)的Na2S2O8固体,然后逐滴加入浓硫酸,调整溶液pH值为3.5,再将溶液温度调到60-80℃,蒸发溶液,直到溶液中出现沉淀,停止加热,让溶液自然冷却。现有技术中的分子式为Na3[CoMo6O24H6]的前体材料粒子尺寸均较大,通常为10μm以上。发明人在实验中发现,分子式为Na3[CoMo6O24H6]的前体材料具有非常高的理论克容量,将其用作锂离子电池的正极活性材料时,利于提高锂离子电池的能量密度。但是,分子式为Na3[CoMo6O24H6]的前体材料村子电导率低的缺点,极大的制约了其电化学性能的发挥。本发明中,先将上述平均粒径为10μm以上的分子式为Na3[CoMo6O24H6]的前体材料溶解于水中,然后在搅拌条件下加入水溶性醇类有机溶剂,进行再结晶。最终过滤后即可得到所需的正极活性材料。通过上述方法制备得到的正极活性材料的平均粒径为纳米级,达到600nm以下,优选情况下,所述正极活性材料的平均粒径为100-600nm,更优选为100-500nm,并且粒径均匀。纳米级的上述正极活性材料可以缩短锂离子在电极中的传输距离,从而在一定程度上提高离子电导率。根据本发明,上述步骤S2中,水的量可将前体材料溶解即可,优选情况下,所述前体材料与所述水的质量比为0.01-0.05:1,更优选为所述前体材料与所述水的质量比为0.025-0.05:1。对溶解于水中的前体材料进行再结晶时,添加的水溶性醇类有机溶剂与水的体积比为1-5:1,优选为1-2:1。采用上述方法进行重结晶时,添加少量的水溶性醇类有机溶剂即可达到重结晶析出纳米级的正极活性材料的目的。上述步骤中所采用的水溶性醇类有机溶剂可采用常规的水溶性醇类有机溶剂,例如具体可以选自甲醇、乙醇、丙醇、丁醇或异丙醇中的一种或多种。同时,本发明还提供了一种正极片,包括正极集流体和位于正极集流体上的正极材料,所述正极材料包括如前所述的方法制备得到的正极活性材料。与现有正极片类似的,本发明中,所述正极集流体的种类已为本领域技术人员所公知,例如可以选自铝箔、铜箔、冲孔钢带。根据本发明,正极材料内,正极活性材料的含量为20-99wt%,优选为20-90wt%,更优选为30-60wt%。本发明中,优选情况下,正极材料中,正极活性材料的平均粒径为600nm以下,进一步优选情况下,所述正极活性材料的平均粒径为100-600nm,更优选为100-500nm。此时,利于进一步提高正极活性材料的导电性,提高其充放电容量,利于提高由该正极活性材料制备得到的锂离子电池的能量密度。所述正极材料中除上述正极活性材料外,通常还包括正极粘结剂和选择性含有的正极导电剂。本发明所述的正极材料对正极粘结剂没有特别的限制,可以采用本领域已知的各种可用于锂离子二次电池的正极粘结剂,例如,可以为聚偏氟乙烯、聚四氟乙烯或LA132中的一种或几种。所述正极材料中,所述正极粘结剂的含量为0.5-10wt%,优选为3-10wt%,更优选为5-10wt%。本发明提供的正极材料还可以选择性的含有现有技术正极材料中通常所含有的正极导电剂。由于正极导电剂用于增加电极的导电性,降低电池的内阻,因此本发明优选含有正极导电剂。所述正极导电剂种类为本领域技术人员所公知,例如,所述正极导电剂可以选自导电碳黑、乙炔黑、炉黑、碳纳米管等正极导电剂中的一种或几种。发明人在试验中意外的发现,本发明中,在正极活性材料为本发明提供的正极活性材料的基础上,当正极导电剂采用导电碳黑时,可实现更好的导电效果,使正极活性材料发挥出更高的克容量,从而更明显的提高锂离子电池的能量密度。所述正极材料中,所述正极导电剂的含量为0.5-70wt%,优选为30-60wt%。此时,在采用本发明提供的方法制备的正极活性材料的基础上,在上述正极导电剂添加量的情况下,利于提高正极活性材料的克容量。根据本发明,上述正极片的制备方法为公知的,例如,正极片的制备方法包括在正极集流体上涂覆含有正极活性材料、正极粘结剂和选择性含有的正极导电剂的浆料,干燥、辊压,裁片后即得到正极片。所述干燥通常在50-160℃,优选80-150℃下进行。所述辊压和裁片为本领域技术人员公知,辊压完成后,按照所制备电池要求的正极尺寸进行裁切,得到正极片。所述涂覆步骤在正极集流体上形成厚度为0.01-1mm的正极材料层。根据本发明,用于制备正极浆料的溶剂可以选自常规的溶剂,如可以选自N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、N,N-二乙基甲酰胺(DEF)、二甲亚砜(DMSO)、四氢呋喃(THF)以及醇类中的一种或几种。溶剂的用量使所述浆料能够涂覆到所述集流体上即可。同时,本发明还提供了一种采用上述正极片的锂离子电池,包括电池壳体以及设置于电池壳体内的电芯,所述电芯包括依次设置的正极片、隔膜和负极片;所述正极片为如前所述的正极片。根据本发明,上述锂离子电池中,正极片以外的其余部件,例如电池壳体、隔膜、负极片等均可采用现有的常规结构和材料。例如,与现有技术一样,所述负极的组成为本领域技术人员所公知。负极中包含的负极活性物质包括能够与锂离子反应形成含锂化合物的材料,以及锂合金。优选情况下,使用金属锂片作为负极。本发明中,如现有的,隔膜设置于正极片和负极片之间,具有电绝缘性能和液体保持性能。所述隔膜可以选自锂离子二次电池中所用的各种隔膜,优选情况下,所述隔膜选自聚乙烯隔膜、聚丙烯隔膜或聚丙烯/聚乙烯/聚丙烯复合膜。所述隔膜的位置、性质和种类为本领域技术人员所公知。将上述正极片、隔膜、负极片依次设置,并通过常规的方式制备形成电芯。将上述电芯放置于电池壳体内,并通过正极极耳将正极片与电池的正极焊接,使正极片与电池的正极电连接,通过负极极耳将负极片与电池的负极焊接,使负极片与电池的负极电连接。如本领域技术人员所公知的,将电芯置于电池外壳内之后,还需向电池外壳内注入电解液,使电芯浸没于电解液中,最后经过塑化和化成即可得到本发明提供的锂离子二次电池。本发明对电解液没有特殊限制,可采用常规的各种,例如,如本领域技术人员所公知的,所述电解液由非水溶剂以及溶解于非水溶剂的电解质组成。上述非水溶剂没有特别限定,可使用迄今为止的非水溶剂。所述非水溶剂可以使现有技术中的各种高沸点溶剂、低沸点溶剂或者他们的混合物。例如,可以选自γ-丁内酯、碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸丙烯酯、碳酸亚乙烯酯、碳酸二苯酯、乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、二甲氧基乙烷、二乙氧基乙烷、磺内酯以及其他含氟、含硫或含不饱和键的环状有机酯类、有机酸酐、N-甲基吡咯烷酮、N-甲基甲酰胺、N-甲基乙酰胺、N,N-二甲基甲酰胺、环丁砜、乙腈、二甲亚砜中的至少一种。所述非水溶剂中溶解的电解质,本发明同样没有特别的限定,可使用通常用于非水电解液锂二次电池的电解质。如六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、六氟砷酸锂(LiSbF6)、高氯酸锂(LiClO4)、氟烃基磺酸锂(LiCF3SO3)、Li(CF3SO2)2N、LiC4F9SO3、高铝酸锂(LiAlO4)、LiN(CxF2x+1SO2)(CyF2y+1SO2)(式中x和y为1-10的自然数)、氯化锂(LiCl)及碘化锂(LiI)中的一种或几种。非水电解液中电解质的浓度一般为0.1-2.0mol/L,优选为0.7-1.6mol/L。以下通过实施例对本发明进行进一步的说明。实施例1本实施例用于说明本发明公开的正极活性材料及其制备方法。1、前体材料合成将7.23g(29.88mmol)的Na2MoO4·2H2O溶于100ml去离子水中,待其全部溶解后,加入2.256g(8.58mmol)的CoSO4·6H2O固体、0.977g(4.102mmol)的Na2S2O8固体,然后逐滴加入浓硫酸,调整溶液pH值为3.5,再将溶液温度调到60-80℃,蒸发溶液,直到溶液中出现沉淀,停止加热,让溶液自然冷却。得到平均粒径为12μm的前体材料。2、正极活性材料制备常温下,将2g上述前体材料溶于50ml蒸馏水中,搅拌溶解,在搅拌条件下加入50ml乙醇,待析出产物后,过滤,获得正极活性材料,其平均粒径为480nm。3、正极片的制备将正极活性材料:导电碳黑:正极粘结剂(PVDF)按30%:60%:10%的质量百分比进行浆料制备、涂布、烘干、辊压、裁片,得到正极片。4、锂离子电池的制备采用上述正极片(直径14mm),金属锂片为负极片,EC:DEC=3:7(体积比)(含1mol/L的LiPF6)为电解液,制成2032型扣式电池S1。实施例2本实施例用于说明本发明公开的正极活性材料的制备方法、正极片及锂离子电池。1、正极活性材料制备常温下,将0.5g实施例1中合成的前体材料溶于50ml蒸馏水中,搅拌溶解,在搅拌条件下加入150ml乙醇,待析出产物后,过滤,获得正极活性材料,其平均粒径为460nm。2、正极片的制备将正极活性材料:导电碳黑:正极粘结剂(PVDF)按40%:55%:5%的质量百分比进行浆料制备、涂布、烘干、辊压、裁片,得到正极片。3、锂离子电池的制备采用上述正极片(直径14mm),金属锂片为负极片,EC:DEC=3:7(体积比)(含1mol/L的LiPF6)为电解液,制成2032型扣式电池S2。实施例3本实施例用于说明本发明公开的正极活性材料的制备方法、正极片及锂离子电池。1、正极活性材料制备常温下,将1.25g实施例1中合成的前体材料溶于50ml蒸馏水中,搅拌溶解,在搅拌条件下加入250ml乙醇,待析出产物后,过滤,获得正极活性材料,其平均粒径为450nm。2、正极片的制备将正极活性材料:导电碳黑:正极粘结剂(PVDF)按55%:42%:3%的质量百分比进行浆料制备、涂布、烘干、辊压、裁片,得到正极片。3、锂离子电池的制备采用上述正极片(直径14mm),金属锂片为负极片,EC:DEC=3:7(体积比)(含1mol/L的LiPF6)为电解液,制成2032型扣式电池S3。实施例4本实施例用于说明本发明公开的正极活性材料的制备方法、正极片及锂离子电池。正极片的制备方法与实施例1基本相同,区别在于采用乙炔黑替换导电碳黑,制成正极片。采用上述正极片,按照实施例1的方法制备得到2032型扣式电池S4。对比例1本对比例用于对比说明本发明公开的正极活性材料的制备方法、正极片及锂离子电池。采用实施例1的方法制备锂离子电池,不同的是,直接采用实施例1中的前体材料作为正极活性材料制备正极片以及锂离子电池。得到锂离子电池D1。对比例2本对比例用于对比说明本发明公开的正极活性材料的制备方法、正极片及锂离子电池。采用实施例1的方法制备锂离子电池,不同的是,直接采用实施例1中的前体材料作为正极活性材料,并采用乙炔黑替换导电碳黑制备正极片以及锂离子电池。得到锂离子电池D2。性能测试对上述制备得到的锂离子电池S1-S4以及D1、D2进行如下测试:25℃环境下,对电池在电压范围为1.5-4.2V、电流密度为17mA/g的条件下进行恒流充放电循环。得到的测试结果见表1。表1样品首次放电容量(mAh/g)S1400S2381S3360S4283D1240D2200从表1的测试结果可以看出,采用本发明提供的方法制备得到的正极活性物质的粒径小,用于正极片上时,利于提高其导电性能。对比实施例1和实施例4的测试结果可知,采用导电碳黑与本发明方法制备的正极活性材料共同使用时,可更好的提高电池的导电性能和比容量。以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1