胞苷脱氨酶及其编码基因和它们的应用的制作方法

文档序号:399582阅读:348来源:国知局
专利名称:胞苷脱氨酶及其编码基因和它们的应用的制作方法
技术领域
本发明涉及一种胞苷脱氨酶,还涉及胞苷脱氨酶的编码基因,以及含有胞苷脱氨酶基因的重组载体和细胞,以及胞苷脱氨酶及其编码基因含有该基因的重组载体及细胞在培育具有耐盐性和耐碱性转基因生物中的应用。
背景技术
胞苷脱氨酶(cytidine deaminase, cdd)是卩密唳解救途径中的一种酶,催化胞苷和脱氧胞苷不可逆水解脱氨形成相应的尿嘧啶衍生物,广泛的存在于细菌、人和高等植物。目前关于胞苷脱氨酶的研究集中在临床医学方面,主要应用于类风湿性关节炎的诊断,肝胆疾病的诊断以及参与提高某些抗 肿瘤药物的疗效。而关于胞苷脱氨酶在提高生物的耐盐碱性方面的研究报道几乎没有,胞苷脱氨酶在催化胞苷和脱氧胞苷脱氨时,会产生氢离子降低细胞内的PH来维持细胞的酸碱平衡。尤其是当细胞处于高碱的环境时,胞苷脱氨酶的活性会增强,通过脱氨产氢离子来维持细胞内的相对较低的PH值,是生物细胞耐受盐碱的关键因子之一。在我国盐碱地,大约占全国可耕地的7%,如何提高我国低产可耕盐碱地的单位面积产量是当前农业发展的重要任务之一。通过转基因技术,提高农作物的抗盐碱性,培育品质优良的耐盐作物品种,是新时期盐碱区域农业发展的有效途径。对于植物耐盐基因工程来讲,获得关键耐盐基因尤为重要。嗜盐碱微生物的耐受盐碱的能力要远远高于大多数抗盐碱的植物,它们也具有更加完善的适应盐碱环境的机制。因此,从嗜盐碱微生物资源中大规模克隆相关的抗盐碱基因,并进行功能分析和转基因育种价值验证,以筛选具有重要育种价值的嗜盐碱微生物功能基因,为我国转基因生物产业快速发展提供资源基础。

发明内容
本发明基于对胞苷脱氨酶的分子生物学研究,从嗜碱芽孢杆菌N16-5 (CGMCCN0.0369)中得到了一种胞苷脱氨酶及其编码基因,另一方面还提供了含有胞苷脱氨酶基因的重组载体和细胞,以及胞苷脱氨酶及其编码基因含有该基因的重组载体及细胞在培育具有耐盐性和耐碱性转基因生物中的应用。本发明提供了一种胞苷脱氨酶,其中,该胞苷脱氨酶具有SEQ ID No:2所示的氨基酸序列,或者该胞苷脱氨酶具有将SEQ ID No:2所示的氨基酸序列经过一个或几个氨基酸残基的取代、缺失或添加后仍具有胞苷脱氨酶活性的氨基酸序列。本发明还提供了一种胞苷脱氨酶基因,其中,该基因具有SEQ ID No:1所示的核苷酸序列,或者该基因具有编码SEQ ID No:2所示的氨基酸序列的核苷酸序列。另外,本发明还提供了一种重组载体,其中,该重组载体含有本发明提供的胞苷脱氨酶基因。
本发明还提供了一种转基因细胞,其中,该转基因细胞含有本发明提供的胞苷脱氨酶基因。本发明还提供了得到的胞苷脱氨酶及其编码基因、含有该基因的重组载体及转基因细胞在培育具有耐盐性和耐碱性转基因生物中的应用。胞苷脱氨酶的广泛分布以及能够降低细胞内pH值的特性使其在耐盐碱植物培育等方面具有重要的应用潜力。通过克隆得到胞苷脱氨酶基因,并通过转基因的操作将微生物来源的胞苷脱氨酶导入到植物细胞中,获得耐盐碱性提高的转基因植株成为可能。


图1 为重组载 体 pUC18-Bspnl65_cdd 导入的大肠杆菌 K12 (pUC18-Bspnl65_cdd)的耐盐性的测定结果,其中,将重组载体pUC18-Bspnl65_cdd导入的大肠杆菌K12(pUC18-Bspnl65-cdd)分别接种到含有0、2%、4%、6%和8%的NaCl的LB液体培养基中(100 μ g/ml氨苄青霉素),培养12小时后测定0D_,以导入pUC18空载体的大肠杆菌K12为对照(每组三个平行);图2 为重组载体 pUC18-Bspnl65_cdd 导入的大肠杆菌 K12 (pUC18-Bspnl65_cdd)的耐盐性的测定结果,其中,将重组载体pUC18-Bspnl65_cdd导入的大肠杆菌K12 (pUC18-Bspnl65-cdd)分别接种到 pH 8.0,8.5,9.0 和 9.5 (含有 50mM CAPS, HEPES 和TRICINE, 5N NaOH调节)的LB液体培养基中(100 μ g/ml氨苄青霉素),培养12小时后测定0D_,以导入pUC18空载体的大肠杆菌K12为对照(每组三个平行);图3为重组载体pUC18-Bspnl65_cdd导入的大肠杆菌K12 (Acdd)(pUC18-Bspnl65-cdd)的耐盐性的测定结果,其中,将导入重组载体pUC18-Bspnl65_cdd的K12 (Acdd) (pUC18-Bspnl65-cdd)和胞苷脱氨酶缺失的大肠杆菌K12 ( Λ cdd)分别接种到含有O、2 %、4 %、6 %和8 %的NaCl的LB液体培养基中,培养12小时后测定0D_,以大肠杆菌K12为对照(每组三个平行);图4 为重组载体 pUC18-Bspnl65_cdd 导入的大肠杆菌 K12 (pUC18-Bspnl65_cdd)的耐盐性的测定结果,其中,将导入重组载体pUC18-Bspnl65-cdd的K12 ( Δ cdd)(pUC18-Bspnl65-cdd)和胞苷脱氨酶缺失的大肠杆菌K12 ( Λ cdd)分别接种到pH 8.0,8.5,
9.0和9.5 (含有50mM CAPS, HEPES和TRICINE,5N NaOH调节)的LB液体培养基中,培养12小时后测定0D_,以大肠杆菌K12为对照(每组三个平行)。
具体实施例方式以下本发明的具体实施方式
进行详细说明。应当理解的是,此处所描述的具体实施方式
仅用于说明和解释本发明,并不用于限制本发明。本发明提供了一种胞苷脱氨酶,其中,该胞苷脱氨酶具有SEQ ID No:2所示的氨基酸序列,或者该胞苷脱氨酶具有将SEQ ID No:2所示的氨基酸序列经过一个或几个氨基酸残基的取代、缺失或添加后仍具有胞苷脱氨酶活性的氨基酸序列。优选地,所述胞苷脱氨酶具有SEQ ID No:2所不的氣基酸序列。相应地,本发明还提供了一种胞苷脱氨酶基因,其中,该基因具有SEQID No:l所示的核苷酸序列,或者该基因具有编码SEQ ID No:2所示的氨基酸序列的核苷酸序列。优选地,所述基因具有SEQ ID No:1所示的核苷酸序列。本发明提供的胞苷脱氨酶基因是从嗜碱芽孢杆菌N16-5 (CGMCCN0.0369)中克隆得到的。此外,本发明还提供了一种重组载体,其中,该重组载体含有本发明提供的胞苷脱氨酶基因。在本发明中,所述“载体”可选用本领域已知的各种载体,如市售的各种质粒,粘粒,曬菌体及反转录病毒等。本发明优选大肠杆菌pUC18质粒。本发明还提供了一种转基因细胞,其中,该转基因细胞含有本发明提供的胞苷脱氨酶基因。所述转基因细胞为原核细胞或真核细胞,优选可以是大肠杆菌、枯草杆菌或烟草BY2细胞,最优选大肠杆菌。此外,本发明还提供了本发明提供的胞苷脱氨酶及其编码基因、及含有胞苷脱氨酶基因的重组载体和转基因细胞在培育具有耐盐性和耐碱性转基因生物中的应用。所述生物为植物或微生物。实施例1编码胞苷脱氨酶的核苷酸序列的克隆(I)嗜碱芽孢杆菌 Bacillus sp.N16-5 (CGMCC N0.0369)总 DNA 的提取和纯化取嗜碱芽孢杆菌Bacillus sp.N16-5的新鲜湿菌体20克,悬于10毫升50毫摩尔/升Tris缓冲液中(pH 8.0) ,加入少量溶菌酶和8毫升0.25毫摩尔/升乙二胺四乙酸(EDTA) (pH 8.0),混匀后于37°C放置20分钟,然后加入2毫升10%十二烷基硫酸钠(SDS),55°C放置5分钟,分别用等体积酚、氯仿各抽提一次,取最后一次抽提的上清溶液,加入2倍体积乙醇,沉淀DNA。将沉淀回收的DNA先后用70体积%乙醇溶液和无水乙醇洗涤后,将所得DNA溶于0.5毫升TE缓冲液(pH 8.0,10毫摩尔/升Tris,I毫摩尔/升EDTA),加入10毫克/毫升RNA酶(RNase) 3微升,37°C保温I小时,分别用等体积酚、氯仿各抽提一次,取上清液加入2倍体积乙醇,沉淀回收DNA,先后用70体积%乙醇溶液和无水乙醇洗涤后,真空干燥DNA沉淀,用去离子水溶解,得总DNA溶液。DNA溶液的紫外分光光度计测定结果为八26。/八280 — I.818,A260/A230 — 2.052。(2)胞苷脱氨酶基因的克隆分析嗜碱芽孢杆菌Bacillus sp.N16-5的基因组信息后,设计胞苷脱氨酶基因的上下游引物,其中上游引物为5 ' -TATGACCATGATTACATGTATAAATTTATTT-3 ',下游引物为5 ' -CAGGTCGACTCTAGATTAAAATGCGCCTGAAC-3 '。通过高保真的核酸聚合酶Pyrobest (Takara),以上述提取的嗜碱芽孢杆菌Bacillus sp.N16-5基因组为模板扩增出胞苷脱氨酶基因的全长。通过I %琼脂糖凝胶电泳检测目的基因的大小,并将PCR产物送至诺赛基因公司测序,最后得到1722bp的如SED ID NO:1所示的核苷酸序列。实施例2编码胞苷脱氨酶的基因功能验证(I)重组克隆载体pUC18-Bspnl65_cdd的构建利用Cycle-pure Kit纯化上述得到的PCR产物。利用Fast clone Kit将纯化的PCR产物和pUC18连接,将构建好的重组载体pUC18-Bspnl65-cdd通过化学转化法导入到大肠杆菌K12BW25113中。通过含有100 μ g/ml氨苄青霉素的LB平板的筛选以及PCR验证得到含有重组载体pUC18-Bspnl65-cdd插入的阳性克隆大肠杆菌K12 (pUC18-Bspnl65_cdd),经测序证实pUC18-Bspnl65-cdd插入的扩增序列与胞苷脱氨酶的核苷酸序列完全一致。(2)大肠杆菌K12BW25113胞苷脱氨酶缺失体的构建通过设计含有待敲除基因的上下游同源臂的DNA片段的引物扩增打靶基因,利用大肠杆菌入噬菌体具有和宿主不同的λ Red重组系统将目的基因快速准确的敲除。通过敲除大肠杆菌K12BW2511的胞苷脱氨酶基因,得到大肠杆菌K12BW25113胞苷脱氨酶基因(Acdd)缺失的突变体E.coli Κ12( Λ-cdd),胞苷脱氨酶基因被卡那霉素基因取代。(3)重组载体pUC18-Bspnl65_cdd 导入的大肠杆菌K12 (pUC18-Bspnl65_cdd)的耐盐性的测定将重组载体pUC18-Bspnl65_cdd 导入的大肠杆菌 K12 (pUC18-Bspnl65_cdd)分别接种到含有0、2%、4%、6%和8%的似(:1的LB液体培养基中(100 μ g/ml氨苄青霉素),培养12小时后测定0D_,以导入pUC18空载体的大肠杆菌K12为对照(每组三个平行),结果如图1所示。(4)重组载体pUC18-Bspnl65_cdd 导入的大肠杆菌K12 (pUC18-Bspnl65_cdd)的耐碱性的测定将重组载体pUC18-Bspnl65_cdd 导入的大肠杆菌 K12 (pUC18-Bspnl65_cdd)分别接种至Ij pH 8.0、8.5、9.0 和 9.5 (含有 50mM CAPS, HEPES 和 TRICINE, 5N NaOH 调节)的 LB液体培养基中(100 μ g/ml氨苄青霉素),培养12小时后测定0D_,以导入pUC18空载体的大肠杆菌K12为对照(每组三个平行),结果如图2所示。(5)胞苷脱氨酶缺失的 大肠杆菌K12(Acdd)以及导入重组载体pUC18-Bspnl65-cdd 的 K12 (Acdd) (pUC18-Bspnl65_cdd)耐盐性的测定将导入重组载体pUC18-Bspnl65-cdd 的 K12 ( Δ cdd) (pUC18-Bspnl65_cdd)和胞苷脱氨酶缺失的大肠杆菌K12 ( Δ cdd)分别接种到含有0、2%、4%、6%和8%的NaCl的LB液体培养基中,培养12小时后测定0D_,以大肠杆菌K12为对照(每组三个平行),结果如图3所示。(6)胞苷脱氨酶缺失的大肠杆菌K12(Acdd)以及导入重组载体pUC18-Bspnl65_cdd 的 K12 (Acdd) (pUC18-Bspnl65_cdd)耐喊性的测定将导入重组载体pUC18-Bspnl65-cdd 的 K12 ( Δ cdd) (pUC18-Bspnl65_cdd)和胞苷脱氨酶缺失的大肠杆菌K12 ( Δ cdd)分别接种到pH 8.0、8.5、9.0和9.5 (含有50mM CAPS,HEPES和TRICINE,5N NaOH调节)的LB液体培养基中,培养12小时后测定0D_,以大肠杆菌K12为对照(每组三个平行),结果如图4所示。从图1中可以看出,导入重组载体pUC18-Bspnl65_cdd的大肠杆菌K12在0、2%、和8%的NaCl的LB液体培养基中(100 μ g/ml氨苄青霉素),12小时后测定OD6tltl
明显高于导入PUC18空载体的大肠杆菌K12,这也证明了该基因(Bspnl65-cdd)具有提高生物耐盐性的能力。从图2中可以看出,导入重组载体pUC18-Bspnl65_cdd的大肠杆菌K12在pH 8.0,8.5,9.0 和 9.5 (含有 50mM CAPS, HEPES 和 TRICINE,5N NaOH 调节)的 LB 液体培养基中(100 μ g/ml氨苄青霉素),12小时后测定OD6tltl明显高于导入pUC18空载体的大肠杆菌K12,这也证明了该基因(Bspnl65-cdd)具有提高生物耐碱性的能力。从图3中可以看出,导入重组载体pUC18-Bspnl65_cdd的大肠杆菌K12在含有O、2%、4%、6%和8%的NaCl的LB液体培养基中,12小时后测定OD6tltl明显高于导入pUC18空载体的大肠杆菌K12及胞苷脱氨酶缺失的大肠杆菌K12 ( Δ cdd),这也证明了该基因(Bspnl65-cdd)具有提高生物耐盐性的能力。从图4中可以看出,导入重组载体pUC18-Bspnl65_cdd的大肠杆菌K12在pH 8.0,
8.5,9.0 和 9.5 (含有 50mM CAPS, HEPES 和 TRICINE, 5N NaOH 调节)的 LB 液体培养基中,12小时后测定0D_明显高于导入pUC18空载体的大肠杆菌K12及胞苷脱氨酶缺失的大肠杆菌K12 (Acdd),这也证明了该基因(Bspnl65-cdd)具有提高生物耐碱性的能力。综上所述, 本申请提供的胞苷脱氨酶基因在耐盐碱生物的培育等方面具有重要的应用潜力。通过克隆得到胞苷脱氨酶基因,并通过转基因的操作将微生物来源的胞苷脱氨酶导入到植物细胞中,获得耐盐碱性提高的转基因植株成为可能。
权利要求
1.一种胞苷脱氨酶,其特征在于,该胞苷脱氨酶具有SEQ ID No:2所示的氨基酸序列,或者该胞苷脱氨酶具有将SEQ ID No:2所示的氨基酸序列经过一个或几个氨基酸残基的取代、缺失或添加后仍具有胞苷脱氨酶活性的氨基酸序列。
2.根据权利要求1所述的胞苷脱氨酶,其中,该蛋白具有SEQID No:2所示的氨基酸序列。
3.一种胞苷脱氨酶基因,其特征在于,该基因具有SEQ ID No:1所示的核苷酸序列,或者该基因具有编码SEQ ID No:2所示的氨基酸序列的核苷酸序列。
4.根据权利要求3所述的基因,其中,该基因具有SEQID No:1所示的核苷酸序列。
5.一种重组载体,其特征在于,该重组载体含有权利要求3所述的基因。
6.一种转基因细胞,其特征在于,该转基因细胞含有权利要求3所述的基因。
7.根据权利要求6所述的转基因细胞,其中,所述转基因细胞为原核细胞或真核细胞。
8.权利要求1所述的胞苷脱氨酶、权利要求3所述的基因、权利要求5所述的重组载体、权利要求6所述的转基因细胞在培育具有耐盐性和耐碱性转基因生物中的应用。
9.根据权利要求8所述的应用,其中,所述生物为植物或微生物。
全文摘要
本发明涉及一种胞苷脱氨酶,其中,该胞苷脱氨酶具有SEQ ID No2所示的氨基酸序列,或者该胞苷脱氨酶具有将SEQ ID No2所示的氨基酸序列经过一个或几个氨基酸残基的取代、缺失或添加后仍具有胞苷脱氨酶活性的氨基酸序列。此外,还涉及胞苷脱氨酶的编码基因,其中,该基因具有SEQ ID No1所示的核苷酸序列,或者该基因具有编码SEQ ID No2所示的氨基酸序列的核苷酸序列。还涉及含有胞苷脱氨酶基因的重组载体和细胞,以及胞苷脱氨酶及其编码基因含有该基因的重组载体及细胞在培育具有耐盐性和耐碱性转基因生物中的应用。
文档编号C12N9/78GK103088008SQ20111033792
公开日2013年5月8日 申请日期2011年10月31日 优先权日2011年10月31日
发明者马延和, 翟磊, 薛燕芬 申请人:中国科学院微生物研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1