用于基板的自组装的方法和依此获得的设备的制作方法

文档序号:7263011阅读:132来源:国知局
用于基板的自组装的方法和依此获得的设备的制作方法
【专利摘要】本申请公开了用于基板的自组装的方法和依此获得的设备。公开了一种在基板上定义具有不同表面液体张力属性的区域的方法,所述方法包括:提供基板,该基板带有具有第一表面液体张力属性的主表面,该主表面至少部分地覆盖有籽晶层,且还包括形成于所述籽晶层上的至少一个微凸块,藉此将部分籽晶层暴露在外;图案化所暴露的籽晶层,藉此暴露出部分主表面,用于形成封围主表面的区域的至少一个闭环结构;以及化学处理晶片的主表面,藉此在所述至少一个闭环结构和至少一个凸块的表面上生成第二表面液体张力属性,该第二表面液体张力属性显著不同于所述主表面的第一表面液体张力属性。
【专利说明】用于基板的自组装的方法和依此获得的设备
【技术领域】
[0001]本发明涉及半导体光电子和MEMS封装领域,更具体地,涉及用于将半导体、光电子和MEMS设备自组装成功能性系统的方法。
【背景技术】
[0002]将微米级别和纳米级别的半导体设备集成为多功能系统是半导体封装领域的主要挑战之一。挑战来自于制造不同的半导体设备所需的制造步骤的不兼容性。作为这种不兼容性的结果,不能采用单片集成方案(其中诸设备在共同的基板上制造)。因此,在多样化功能性系统中,半导体设备被分开制造,且在随后的阶段被组装,以形成多功能系统。
[0003]机器人拾-放是用于将分立的半导体设备组装和封装成功能性系统的常用方法。该技术已经被用于大规模半导体设备的集成,且已被证明是准确且可靠的。然而,随着半导体设备尺寸继续缩小,该组装技术变得不那么可取。机器人拾-放方法的主要劣势在于,其没有提供用于组装小型半导体设备(包括数以百计甚至千计的精细间距的微凸块)的所需准确度。此外,鉴于机器人拾-放技术的顺序性特点,产量相当地低,由此导致形成多功能系统的整体工艺变得昂贵。
[0004]一种替代机器人拾-放的可选封装方案是半导体设备的自组装(SA)。自组装(SA)的使用允许元件自发组织成有序的图案和结构而不需人工干预。结果,SA具有并行的特点,且可应用于宽的半导体设备尺度范围。
[0005]Fukushima 等人(Fukushima, T.;0hara, Y.;Murugesan, M.;Bea, J.-C.;Lee, K.-ff.;Tanaka, T.;Koyanagi,M.) 著述有 ^Self-assembly technologies withhigh-precision chip ali`gnment and fine—pitch microbump bonding for advanceddie-to-wafer3D integration (用于先进的管芯到晶片3D集成的,采用高精度芯片对准和精细间距微凸块接合的自组装技术)〃,电子组件和技术会议(ECTC) (ElectronicComponents and Technology Conference),2011IEEE61st, vol., n0., pp.2050-2055, 2011年5月31日-2011年6月3日,描述了利用形成在接合表面上的铟/金微凸块阵列的半导体基板SA方法。然而,半导体基板的精确对准依然是个问题。这是因为半导体基板的精确对准高度依赖于相对于精细间距的微凸块的疏水区域的形成。结果,疏水区域形成期间的误差可导致小滴限制区(小滴限制区受疏水区的控制)和微凸块之间的偏移。该偏移对于具有精细间距的微凸块的半导体设备的组装而言事关重大。这种偏移可导致精细间距的微凸块之间的短路或是弱连接,藉此危害功能性系统的产率。此外,所给出的方法并未提供用于保护包括氧化材料的微凸块(其在半导体制造中是常用的)免于氧化的任何预防措施。所提议的SA方法的又一缺点是使用热压缩来持久接合半导体基板,此举可损害某些包含对该步骤期间施加的高温以及力敏感的设备的半导体基板。另外,在高温下的最终热压缩可引起归因于CTE失配的某种偏移。
[0006]因此,需要提供一种SA方法,其提供具有精细间距的微凸块的设备的高组装准确度,且兼容于常规的处理流程。
【发明内容】

[0007]本发明的一个目标是提供一种方法,其实现半导体光电子和MEMS设备的高准确度的自组装(SA),藉此克服现有技术的缺陷。
[0008]本发明的又一目的是提供一种SA方法,其兼容于用于形成包括氧化材料的精细间距的微凸块的常规处理流程。
[0009]根据本发明,利用显示权利要求的技术特征的方法和系统来实现这些和其他目的。
[0010]在本发明的第一方面中,提出一种方法,用于通过在基板上定义具有不同的表面液体张力属性的区域来实现基板的SA,该方法包括以下步骤:a)提供带有主表面的基板,该主表面具有第一表面液体张力属性,该主表面至少部分地以籽晶层所覆盖,且还包括在所述籽晶层上形成的至少一个微凸块,藉此将部分籽晶层暴露在外;b)图案化所暴露的籽晶层,藉此暴露出部分主表面,并且形成至少一个闭环结构,该闭环结构封围所述主表面的一区域,以及;c)化学处理所述基板的所述主表面,藉此在所述至少一个闭环结构和所述至少一个微凸块的表面上形成第二表面液体张力属性,所述第二表面液体张力属性显著不同于所述主表面的所述第一表面液体张力属性。
[0011]在根据本发明的第一方面的实施例中,通过在基板的主表面上提供至少一个闭环结构用于限定在SA期间使用的液态小滴,可改进SA准确度。其中基板可包括半导体、光电子或MEMS设备。所述至少一个封闭结构被图形化于所暴露出的籽晶层上,其中该籽晶层包括导电材料,例如Cu、TiN、T1、Tiff,Ta、TaN、Al、Sn。所述微凸块也包括导电焊料材料,例如基于Cu的焊料、基于CuSn的焊料、基于AuSn的焊料、基于In的焊料。该实施例的优点在于所述至少一个闭环结构和所述至少一个微凸块在图案化籽晶层的同一处理步骤被加以限定。因此,缘于处理工具误差的偏移被最小化。
[0012]在根据本发明的第一方面的又一实施例中,通过化学处理来功能化基板的主表面,藉此形成不同表面液体张力属性的区域,用于限定在SA期间使用的液态小滴。该步骤包括沉积材料,该材料被选中以为所述至少一个闭环结构和所述至少一个焊料凸块的表面提供第二表面液体张力属性,其不同于主表面的液体表面张力属性。主表面的功能化对应于在SA期间所要使用的液体小滴的化学成分。例如,在使用水基液体小滴的情况下,所述至少一个闭环结构和所述至少一个微凸块的表面可提供有疏水属性,而主表面可提供有亲水属性。被选中用于沉积的材料可属于端硫基自组装单分子层(SAM)的类别,其可由在所述至少一个闭环结构和至少一个微凸块的表面上所存在的导电材料选择性吸收,从而使这些表面呈现疏水性。应理解的是,可根据被选中用于沉积的材料来调整表面液体张力区域的极性,因此本发明不限于该实施例。该实施例的一项优势在于,端硫基SAM兼容于常规处理流程,且可由气相或由液相来沉积这些端硫基SAM。此外,由于端硫基SAM被特定材料选择性吸收,可局部地执行主表面的功能化以得到不同表面液体张力属性的区域。此外,水基液体小滴可能导致所述至少一个闭环结构和所述至少一个微凸块的表面的氧化。在这种情况下,端硫基SAM防止所述至少一个闭环结构和所述至少一个微凸块的表面在SA方法期间被氧化。通过使用具有不和导电表面反应的化学成分(例如,轻度稀释的酸、基于酸的液体、包括有机材料(如熔剂)的低粘性液体、环氧胶、粘合剂)的液体小滴、可进一步防止氧化。[0013]在根据本发明的第一方面的又一个实施例中,化学处理主表面的步骤涉及清洁步骤,该清洁步骤在沉积端硫基SAM之前、且在图案化用于形成所述至少一个闭环结构的籽晶层之后执行。清洁步骤从所述至少一个闭环结构和所述至少一个微凸块的表面上移除了在处理基板的主表面期间所留下的任何杂质。该实施例的优势在于,通过清洁将被提供有不同表面液体张力的表面,可增强端硫基SAM的吸收率。结果,疏水的和亲水的区域之间的接触角差别将更高,藉此改进了 SA方法的准确度。
[0014]在本发明的第二方面中,用于自组装基板的方法包括以下步骤:a)提供根据本发明的第一方面的第一基板,该第一基板具有形成于主表面上的至少一个闭环结构山)在所述第一基板的主表面上供给液体小滴;c)提供至少一个根据本发明的第一方面的第二基板,该第二基板具有至少一个闭环结构,第二基板的至少一个闭环结构具有和第一基板的至少一个闭环结构的其中至少一个相同的布局;d)将所述第二基板放置在液体小滴上,藉此将所述第一基板的所述至少一个闭环结构对准于所述第二基板的对应的至少一个闭环结构,以及;e)加热所述第一基板和所述至少一个第二基板,藉此蒸发所述液体小滴,并用于回流微凸块,藉此在第一基板和第二基板之间创建持久连接。
[0015]在根据本发明的第二方面的实施例中,所述至少一个闭环结构(其表面提供有疏水属性)被用于限制在SA过程中所使用的至少一个液体小滴。设置在第一基板上的所述至少一个闭环结构具有在第二基板上的对应的至少一个闭环结构,该至少一个闭环结构在布局和尺寸方面是相同的。材料成分是可选的要求。闭环结构所拉动的元件对准受到由所述至少一个闭环结构的表面和主表面之间的表面液体张力的差别而产生的毛细作用力所驱使。该实施例的优势在于,通过在第二基板上提供对应的至少一个闭环结构,可进一步改善SA准确度。
[0016]在根据本发明的第二方面的又一个实施例中,液体小滴的汽化点等于或低于所述至少一个微凸块的其中任一个的熔点。而且,优选地,液体小滴不和表面反应而导致氧化,氧化可在如在前实施例中所述的接合过程期间引起问题。为此目的,替代水基液体小滴,可使用基于稀释的酸的液体小滴、低粘性熔剂小滴、环氧树脂。沉积端硫基SMA层和提供基于稀释的酸的液体小滴相结合,确保了所述至少一个微凸块的表面免于氧化,藉此确保了第一和第二基板的所述至少一个微凸块之间的良好电连接。防止氧化的附加手段是在回流炉中执行液体小滴的蒸发和微凸块的回流。蒸发液体小滴的替代性方法,是让液体小滴自然地变干或通过将基板放在热平板上而变干。该实施例的优势在于,在基板的接合期间,不需要热压缩来破开由于氧化形成的氧化物硬壳。因此,仅使用基板重力来进行接合步骤,藉此避免了和热压缩的使用相关的产率问题。
[0017]在本发明的第三方面中,提供基板,该基板包括:a)至少部分地覆盖基板的主表面的籽晶层,b)至少一个微凸块,其形成于籽晶层上,藉此将部分籽晶层暴露在外,c)至少一个闭环结构,其形成在籽晶层的暴露部分上,且封围主表面的一区域。
[0018]在本发明的第四方面中,提供一功能性系统,其包括至少一个根据本发明的第三方面的第一基板,和至少一个根据本发明的第三方面的第二基板,其中所述至少一个第二基板接合至第一基板,藉此将第二基板的至少一个闭环结构对准于第一基板的对应的至少一个闭环结构,该对应的至少一个闭环结构具有和第二基板的所述至少一个闭环结构相同的图案。基板可包括半导体、光电子或MEMS设备。[0019]尽管将参照使用自组装方法用于将包括半导体、光电子或MEMS设备的基板组装成功能性系统来描述本发明,但本发明不限于这些基板,其他实现方式是可能的。例如,本发明可被扩展到使用自组装方法用于创建功能性系统,其中基板可包括有机材料,3-5族化合物半导体(例如光子基板上的激光源)或任何可用自组装单分子层来功能化的材料。
【专利附图】

【附图说明】
[0020]为了更好地理解本发明,现在将仅以示例的方式参考附图,在附图中:
[0021]图1A至IE展示根据本发明的实施例,用于在基板上形成具有不同表面液体张力属性的结构的处理流程。
[0022]图2展示由图1A至IE中展示的处理步骤而获得的基板设备的俯视图。
[0023]图3A至3E描述根据实施例的用于将基板自组装为功能性系统的处理流程。
[0024]图4A至4C展示使用所提出的自组装方法的不同集成方案的实施例。
【具体实施方式】
[0025]将针对具体实施例且参考特定附图来描述本发明,但是本发明不限于此而仅由权利要求书限定。所描述的附图只是示意性的和非限制性的。在附图中,出于说明的目的,一些元件的尺寸可放大且不按比例地绘制。
[0026]而且,说明书和权利要求书中的术语“顶部”等等用于描述性目的,而不一定用于描述相对位置。应当理解,如此使用的这些术语在适当的环境下可互换,并且此处描述的优选的实施例能够以本文描述或示出以外的其他取向来操作。
[0027]应当注意,在权利要求书中使用的术语“包括”不应被解释为限于下文所列出的手段,它并不排除其他元件或步骤。由此,它应当被解释为指定如涉及的所述特征、数字、步骤或部件的存在,但是并不排除一个或多个其他特征、数字、步骤或部件、或者其组合的存在或添加。因此,措词“包含装置A和B的设备”的范围不应当仅限于仅由组件A和B构成的装置。这意味着相对于本发明而言,设备的相关组件是A和B。
[0028]贯穿本说明书,对“一个实施例”或“一实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。由此,在说明书的各处出现的短语“在一个实施例中”或者“在实施例中”不一定都指同一实施例,但是可能如此。此外,根据本公开对本领域技术人员而言显而易见的是,在一个或多个实施例中,特定特征、结构或特性可以任何合适的方式组合。
[0029]类似地,应当领会,在对示例性优选实施例的描述中,出于使本公开变得流畅并帮助理解各创新方面中的一个或多个方面的目的,各个特征有时被一起编组在一个实施例、附图、或其描述中。然而,该公开方法不应被解释为反映所要求保护的发明需要比每项权利要求中所明确记载的更多特征的意图。相反,如以下权利要求反映的,发明性方面在于,t匕单个以上公开的实施例的所有特征少。由此,【具体实施方式】之后的权利要求被明确地结合到该【具体实施方式】中,其中每项权利要求独立地代表本发明的一个单独的实施例。
[0030]此外,尽管此处描述的一些实施例包括其他实施例中所包括的一些特征但没有其他实施例中包括的其他特征,不同实施例的特征的组合意图落在本发明的范围内,并且形成将按本领域技术人员理解的不同实施例。例如,在下面的权利要求书中,所要求的实施例中的任何一个可以任何组合使用。
[0031]在此处提供的描述中,阐述了多个具体细节。然而,应该理解优选实施例可在没有这些特定细节的情况下实施。在其他实例中,为了不妨碍对本说明书的理解,未详细地示出公知方法、结构和技术。
[0032]现在,将通过若干优选实施例的详细描述来描述本发明。应明了的是,可根据本领域技术人员的知识、在不背离所附权利要求中定义的本发明的精神或技术教示的情况下,配置其他优选的实施例。
[0033]将诸如半导体、光电子或MEMS设备之类的设备集成为多功能(功能相异/功能相同)系统已经变得极具挑战性。这是缘于和微凸块接合准确度、组装产量和系统产率相结合的技术进步所提出的高标准要求。常规的组装方法,例如机器人拾-放工具,受制于产量和准确度之间的权衡,这最终影响了系统产率。因此,使用常规组装方法是较不可取的。自组装(SA)方法提供了引人注目的替代方案,其可满足技术进步所提出的组装要求。
[0034]将参考一种实现基板的自组装(SA)的、准确度优于I μ m的方法,以及由该方法获得的设备,来描述本发明。本发明所展示的方法克服了和现有技术相关的产量、准确度和产率问题。这是通过在基板的主表面上准确地定义具有不同的表面液体张力属性的区域来实现的。
[0035]尽管将参照使用自组装方法用于将包括半导体、光电子或MEMS设备的基板组装成功能性系统来描述本发明,但本发明不限于这些基板,其他实现方式是可能的。例如,本发明可被扩展到将自组装方法用于创建功能系统,其中基板可包括有机材料,3-5族化合物半导体(例如光子基板上的激光源)或任何可用自组装单分子层来功能化的材料。
[0036]根据本发明的一个实施例,在图1A至IE中描述了在基板的主表面上准确地定义具有不同表面液体张力属性的区域的一组处理步骤,其中基板可包括半导体、光电子或MEMS设备。方法开始于步骤1,提供具有主表面102的基板101,其中主表面至少部分地覆盖有籽晶层103。籽晶层是薄的、大约0.15nm厚的导电层,其被用于部分凸块形成工艺中,用于形成微凸块,例如Cu、TiN、T1、TiW、Ta、TaN、Al、Sn,等等。在凸块形成工艺中,通过在相应的接触垫104上电镀而形成微凸块105,藉此将微凸块105电连接至在基板上制作的设备,例如晶体管、互连层(BEOL)、MEMS设备,等等。微凸块105提供将不同基板互连以形成单个功能性系统的可能性。取决于应用需求,微凸块105可包括多种焊料材料,或焊料材料的组合,例如基于Cu的、基于Sn的、基于In的焊料,或任何其他适当的焊料材料。Cu和CuSn微凸块最为常用,因为它们成本低且产生持久互连所需的温度预算低。在形成微凸块之后,留在主表面103上的暴露的籽晶层被图案化以定义具有不同表面液体张力属性的至少一个区域。该至少一个区域的形状定义为封围着主表面区域的闭环结构。这是通过在籽晶层的特定位置上沉积光刻胶106,藉此形成至少一个闭环结构并留出暴露在外的部分籽晶层来实现的,如步骤2中所示。所暴露的籽晶层然后在步骤3中被蚀刻,藉此暴露出部分主表面。最后,在步骤4移除光刻胶,留下籽晶层暴露在外,其中籽晶层形成至少一个闭环结构。在步骤5,通过化学处理来功能化基板的主表面,从而形成不同表面液体张力属性的区域。这是通过在主表面上沉积材料107 (该材料选择性地和至少一个闭环结构和至少一个微凸块反应),藉此获得和主表面的表面液体张力属性不同的表面液体张力属性而实现的。通过使用至少籽晶层或凸块来形成所述至少一个闭环结构,并藉此定义具有和主表面的表面液体属性不同的表面液体属性的至少一个区域,可改进SA准确度。这是因为图案化步骤是在和用于形成微凸块的凸块形成工艺相同的处理步骤中进行的。结果,相同的光掩模可用于定义所述至少一个闭环结构和微凸块二者,藉此最小化由于光刻工具误差引起的偏移。
[0037]根据另一个实施例,基板的主表面可以多种不同的方式来功能化,从而在主表面上实现具有不同表面液体张力属性的不同区域配置。这些区域可通过分配在其中的液体小滴的所得接触角来辨识。因此,分配在液体排斥或液体疏离区域上的液体小滴将具有比分配在液体吸收或液体亲近区域上的液体的所得接触角更高的接触角。将被提供在主表面上的表面液体张力属性的类型高度依赖于将在SA期间被使用的液体小滴的化学成分。水基液体小滴常用于SA期间。在该情况中,主表面可提供有亲水属性,而周围的至少一个闭环结构和至少一个微凸块的表面可提供有疏水属性。因此,可由形成于至少一个闭环结构上的疏水区来限制水基液体小滴。为了在所述至少一个闭环结构和所述至少一个微凸块的表面上提供疏水属性,被选中用于沉积的材料可属于端硫基自组装单分子层(SAM)的类别。使用端硫基自组装单分子层(SAM)的主要优势在于,其可由在所述至少一个闭环结构和至少一个微凸块的表面上所存在的导电材料选择性吸收,从而使这些表面呈现疏水性。端硫基自组装单分子层(SAM)的选择性吸收属性导致具有不同表面液体张力属性的诸区域的主表面的功能化。该实施例的附加优势在于,端硫基SAM兼容于常规的制造工艺流程,且可由气相或液相来沉积。此外,使用水基液体小滴可能导致所述至少一个闭环结构和至少一个微凸块的表面的氧化。使用端硫基SAM防止所述至少一个闭环结构和至少一个微凸块的表面在SA方法期间被氧化。通过使用不和导电表面反应的不同化学成分液体小滴,例如轻微稀释的酸,可进一步防止氧化。
[0038]应理解的是,主表面的表面液体张力属性的极性取决于被选中用于沉积的材料。因此,沉积非SAM的材料可导致主表面的表面液体张力属性的极性反转。
[0039]SA方法的最终准确度极大地受到不同的表面液体张力属性的区域之间的接触角对比度的影响。更高的接触角对比度将导致更高的SA准确度。为了实现这一点,可在步骤4到步骤5之后执行清洁步骤。通过执行清洁步骤,在不同处理步骤期间留在所述至少一个闭环结构和至少一个微凸块的表面上的任何杂质被移除。结果,端硫基SAM被直接沉积在导电材料上,藉此增强了在所述表面上的端硫基的吸收率。结果,疏水的和亲水的区域之间的接触角对比度将更明显,藉此改进了 SA方法的准确度。
[0040]图2示出了从图1A至IE中展示的处理步骤而获得的基板的俯视图,其中该基板可包括半导体、光电子或MEMS设备。在该实施例中,提供基板,该基板包括有通过图案化籽晶层而形成的、且位于基板101边缘周围的所述至少一个闭环结构107,藉此封围主表面的包括多个微凸块105的区域。
[0041]如前所述,在SA期间使用的液体小滴301将被所述至少一个闭环结构107所限制。该实施例仅仅展示了一种可能的配置,如随后将可显见的,形成至少一个闭环结构以支持不同集成方案的不同配置是可能的。
[0042]根据本发明的一个实施例的用于自组装基板的工艺流程被展示于附图3A至3E中,其中所述基板可包括半导体、光电子或MEMS设备。提供根据附图1A至IE中所述的步骤处理的第一基板。在该实施例中,第一基板101被用作底部基板。如图3A所示,组装工艺开始于:在第一基板101的主表面上,在所述至少一个闭环结构107的位置(多个)处提供液体小滴301。所述至少一个闭环结构的疏水表面属性将把液体小滴限制于原地。在本例中,液体小滴可如前所述为水基的或酸基的。然而,也可使用挥发点低于或等于所述至少一个微凸块焊料的熔点的其他液体。一旦液体小滴已被分配到所述至少一个闭环结构上,则提供根据附图1A至IE的步骤而处理的第二基板302,如图3B所示。第二基板302包括对应于第一基板的所示至少一个闭环结构107的至少一个闭环结构307。使用拣取工具将第二基板302定位在第一基板101上方,使得第一基板(101)和第二基板(302)的对应至少一个闭环结构(107,307)彼此相对。一旦这两个基板被大致预对准了,拣取工具释放第二基板302,且两个基板自对准(SA ),藉此形成基板堆叠。通过由设置在两个基板的主表面上的不同表面液体张力属性而产生的毛细作用力,来驱使该基板堆叠的自对准(SA)。一旦SA完成,液体小滴需要被蒸发。这可通过让液体小滴自然地变干或使用热的平板(为了加快工艺)变干来完成。更为优选的方法,如图3C中所示,是在回流炉303中执行该步骤。通过将温度升高至所需水平来蒸发该液体小滴,如图3D中所示。一旦液体小滴蒸发,微凸块焊料熔融,藉此形成基板之间的持久连接,如图3D所示。在回流炉中执行液体小滴的蒸发的优势在于,当液体小滴蒸发时微凸块焊料不暴露于空气,藉此防止微凸块表面的氧化。结果,不需要热压缩以破开缘于氧化形成的氧化物硬壳。因此,仅使用基板的重量所产生的重力来进行接合步骤,藉此避免了和热压缩的使用相关的产率问题。
[0043]图3E展示了通过自组装工艺流程获得的所得功能性系统。该功能性系统包括第一基板101和至少一个第二基板302,其中所示至少一个第二基板被接合在第一基板上,藉此将第一基板的所示至少一个闭环结构107对准于第二基板的对应至少一个闭环结构307。
[0044]图4A — 4C展示了用于自组装基板得到功能性系统的不同集成方案的一些实施例。所展示的实施例并不表示集成方案的排他性列表,且其他集成方案是可能的。
[0045]图4A展示了第一基板101,其包括位于主表面中心的闭环结构107。该实施例可被用于组装具有和第一基板相同尺寸的第二基板302。在此情况下,在第一基板的中间定义有更小的闭环结构,可更有益于节省主表面上的面积。该实施例还可用于组装显著比第一基板小的第二基板。结果,可集成具有更小覆盖面积的设备,藉此放松了对于要集成的设备的尺寸的约束条件。
[0046]图4B展示了第一基板101,其具有位于主表面中心的两个闭环结构107。该实施例可有益于将具有更小/或类似尺寸的第二基板302组装到第一基板。采用两个闭环结构,和仅一个相比,可增强SA方法的准确度。该实施例还可用于组装基板小于第一基板的超过一个第二基板(例如两个)302,其中两个基板具有相同或不同的功能。结果,可实现更为传统的SoC方案。
[0047]图4C展示了第一基板101,其具有位于主表面102的相对边角处的两个闭环结构107。该实施例可被用于组装被相对于第一基板对角放置的第二基板302。结果,可实现更为奇异的集成方案,从而有益于诸如光电子或MEMS的应用。
【权利要求】
1.一种在基板上定义具有不同表面液体张力属性的区域的方法,该方法包括以下步骤: a.提供带有主表面(102)的基板(101),所述主表面(102)具有第一表面液体张力属性,所述主表面至少部分地以籽晶层(103)所覆盖,且还包括在所述籽晶层上形成的至少一个微凸块(105),藉此将部分籽晶层暴露在外; b.图案化所暴露的籽晶层(103),藉此暴露部分所述主表面(102),并从所述籽晶层(103)形成至少一个闭环结构(107),所述至少一个闭环结构(107)封围所述主表面(102)的区域并且还封围所述至少一个微凸块(105),以及; c.化学处理所述基板的所述主表面(102),藉此在所述至少一个封闭环状结构(107)和所述至少一个微凸块(105)的表面上形成第二表面液体张力属性,所述第二表面液体张力属性显著不同于所述主表面(102)的所述第一表面液体张力属性,其中所述第二表面液体张力属性是液体疏离性的。
2.如权利要求1所述的方法,其特征在于,所述步骤(c)还包括在所述基板的所述主表面(102)上沉积材料(107)的步骤,所沉积的材料(107)被选中以为所述至少一个闭环结构和所述至少一个微凸块的表面提供所述第二表面液体张力属性。
3.如权利要求2所述的方法,其特征在于,所沉积的材料(107)是端硫基自组装单分子层。
4.如权利要求3所述的方法,其特征在于,所述材料(107)是从液相或气相沉积的。
5.如权利要求1所述的方法,其特征在于,所述至少一个闭环结构和所述至少一个微凸块的表面包括导电材料。
6.如权利要求1所述的方法,其特征在于,所述步骤(c)还包括清洁所述至少一个闭环结构和所述至少一个微凸块的表面的步骤。
7.一种自组装基板的方法,包括以下步骤: a.提供如权利要求1所述的第一基板(101),其具有形成在主表面(102)上的至少一个闭环结构(107), b.在所述第一基板(101)的主表面(102)上供给液体小滴(301); c.提供至少一个如权利要求1所述的第二基板(302),其具有至少一个闭环结构(307),所述至少一个第二基板(302)的所述至少一个闭环结构(307)中的至少一个具有和所述第一基板的所述至少一个闭环结构(107)中的至少一个相同的布局。 d.将所述至少一个第二基板(302)放置在所述液体小滴(301)上,藉此将所述至少一个第二基板(302)的所述至少一个闭环结构(307)对准所述第一基板(101)的对应的至少一个闭环结构(107),以及; e.加热所述第一基板(101)和所述至少一个第二基板(302),藉此蒸发所述液体小滴(301),并回流所述微凸块(105),藉此在所述第一基板(101)和所述至少一个第二基板(302)之间创建永久连接。
8.如权利要求7所述的方法,其特征在于,步骤(b)中,所述液体小滴(301)被限制在所述第一基板(101)的所述至少一个闭环结构(107)中。
9.如权利要求7所述的方法,其特征在于,步骤(b)中,所述液体小滴的汽化点等于或低于所述至少一个微凸块(105)中任一个的熔点。
10.如权利要求7所述的方法,其特征在于,所述闭环结构(107,307)的对准通过由分别设置在所述至少一个闭环结构的表面上和所述主表面上的不同表面液体张力属性所产生的毛细作用力来驱使。
11.一种基板,包括: a.籽晶层(103),至少部分地覆盖基板(103)的主表面(102),所述主表面具有第一表面液体张力属性, b.形成于所述籽晶层上的至少一个微凸块(105),以及; c.形成于所述籽晶层(103)上的至少一个闭环结构(107),该闭环结构封围所述主表面(102)的区域并且封围所述至少一个微凸块(105); d.所述至少一个闭环结构(107)和所述至少一个微凸块(105)的表面的表面液体张力属性显著不同于所述主表面的所述第一表面液体张力属性,所述第二表面液体张力属性是液体疏离性的。
12.—种功能性系统,包括至少一个如权利要求11所述的第一基板(101)和至少一个如权利要求11所述的第二基板(302),其中所述至少一个第二基板(302)接合到所述第一基板(101)上,藉此将所述至少一个第二基板(302)的所述至少一个闭环结构(307)对准于所述第一基板(102)的至少一个闭环结构(107),该至少一个闭环结构(107)和所述至少一个第二基板(302)的所述至少一个闭环结构(307)具有相同图案。
13.如权利要求1所述的方法,其特征在于,所述基板可包括半导体、光电子或MEMS设备。
14.如权利要求7所述的方法,其`特征在于,所述基板可包括半导体、光电子或MEMS设备。
15.如权利要求11所述的基板,其特征在于,所述基板可包括半导体、光电子或MEMS设备。
【文档编号】H01S5/343GK103762285SQ201310374241
【公开日】2014年4月30日 申请日期:2013年8月23日 优先权日:2012年8月24日
【发明者】P·索萨, 张文奇, S·阿米尼 申请人:Imec公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1