含有固体分散体的固体制剂及其制备方法

文档序号:822155阅读:635来源:国知局
专利名称:含有固体分散体的固体制剂及其制备方法
技术领域
本发明涉及一种含有固体分散体的固体制剂,这种制剂用于改善溶解性差的药物的溶解度,还涉及其制备方法。具体而言,本发明涉及一种含有固体分散体的固体制剂,该制剂能快速崩解并使得药物溶解,还涉及其制备方法。
背景技术
溶解性差的药物的结晶度高并且在水中的溶解度极低。因此,由这些药物制备的制剂其生物利用度或体内吸收很低,使得药物作用不充分而成为问题。作为解决这种问题的技术,人们开发了固体分散体,其中溶解性差的药物分子以无定形状态分散于高分子量的载体如纤维素衍生物中。常规固体分散体以胶囊的制剂形式使用,该胶囊含有通过将溶解有溶解性差的药物和载体的助溶剂进行喷雾干燥得到的固体,或者以本身的细颗粒或颗粒形式使用。然而,最优选为作为常规固体制剂的片剂形式,因为片剂容易开处方,容易以固定剂量使用,并且患者在使用时也易于处理和使用。已知的是,在由固体分散体粉末制备的片剂的情况下,经常使片剂的孔隙度降低,这不仅是由于降低的比表面积,而且还由于在压缩过程中无定形药物分子的塑性变形以及高分子量载体颗粒之间的强的可压缩性。该低孔隙度使得在服药过程中水分子缓慢渗入片齐U,且片剂的崩解也很慢,因此固体分散体不能发挥其改善溶解度的本来作用。此外,在水合或溶出过程中,用作载体的水溶性高分子量物质或肠溶性高分子量物质的粘度增大,从而在溶出过程中,在片剂的表面上形`成一种水凝胶层,使得水的渗透进一步受到阻止。作为针对这些问题的解决方案,PCT申请日本国家阶段公开N0.2005-517690提出一种片剂,其含有通过喷雾干燥得到的固体分散体粉末、崩解剂以及含有成孔剂的赋形剂。此外,日本专利申请未审查公开N0.5-262642/1993提出一种粉末,其中将水溶性高分子量基质加入溶解性差的药物中,并可根据需要加入赋形剂和崩解剂。然而,均用作载体的浓度增强聚合物和水溶性高分子量基质的加入量很大,因此药物从制剂的释放较差,使得药物的溶出速率趋于降低。另外,如PCT申请日本国家阶段公开N0.2005-517690中记载的那样,在通过喷雾干燥得到的固体分散体粉末的情况下,在固体分散体粉末与其他组分混合后,必须压缩并粉碎该混合物,形成用于压片的颗粒状粉末。以此方式通过喷雾干燥制备的固体分散体粉末的粒径很小,因此当与赋形剂简单混合时,引起离析而使得组分没有均匀分布在用于压片的粉末中。此外,这种方法使得操作复杂,并且固体分散体可能在压缩中重结晶。此外,在制备固体分散体后加入崩解剂,由于载体的高结合强度而使固体分散体在片剂中聚集并结合时,崩解过程中会形成聚集体并分散在水中,从而降低了药物的溶解度。日本专利申请未审查公开N0.2004-67606提出一种使用细颗粒的片剂,这种细颗粒通过将含有伊曲康唑(一种溶解性差的药物)、水溶性聚合物和肠溶聚合物的溶液喷射在赋形剂和崩解剂的混合粉末上,进行造粒并干燥溶剂而获得。然而,由于其崩解性较差,需要360分钟才使得药物从片剂中溶出。因此,这种片剂的崩解性没有得到改善。Hirasawa 等人(Journal of the Pharmaceutical Society of Japan, 124 (I),19 23(2004)提出从一种产物制备的片剂,这种产物通过将含有尼伐地平(一种溶解性差的药物)、交联聚维酮和甲基纤维素的乙醇分散液作为结合液加入诸如乳糖、甲基纤维素和低取代羟丙基纤维素等物质的混合粉末中,并将生成物搅拌和造粒而获得。然而,在含有尼伐地平、均用作载体的交联聚维酮和甲基纤维素的乙醇溶液中,各成分均不溶解。因此,由于没有达到共溶解状态,所以溶液的作用似乎只是作为用于分散和稀释无定形尼伐地平的试剂。为了将无定形的药物分子分散于作为载体的聚合物中,有必要在各成分均溶解于助溶剂中达到共溶解状态。因此,在Journal of the Pharmaceutical Society ofJapan(124(1),19 23(2004)中记载的无定形尼伐地平的固体分散体似乎不具有足够的溶解度。此外,由于水溶性聚合物的影响,崩解受到抑制,所以难于得到可快速溶出的制剂。

发明内容
鉴于上述情况完成了本发明,本发明提供了一种使得制剂中的药物快速溶出而不会削弱固体分散体溶·解度的含有固体分散体的固体制剂,以及制备该制剂的方法。为解决上述问题,本发明者进行了深入研究,发现当使用特定的低取代羟丙基纤维素作为崩解剂时,通过压缩固体分散体得到的片剂的崩解性没有降低,固体制剂可以快速崩解并使药物溶出。因此,获得了本发明。更具体而言,本发明提供一种含有固体分散体的固体制剂,所述分散体含有溶解性差的药物、水溶性聚合物和崩解剂,其中所述崩解剂是平均粒径为10 IOOym和通过BET法测量的比表面积至少为1.0m2/g的低取代羟丙基纤维素。含有固体分散体的固体制剂优选可以含有赋形剂。此外,本发明提供一种制备含有固体分散体的固体制剂的方法,所述方法包括以下步骤:在作为崩解剂的平均粒径为10 100 μ m和通过BET法测量的比表面积至少为1.0m2/g的低取代羟丙基纤维素粉末上喷射一种分散或溶解有溶解性差的药物的水溶性聚合物溶液;使生成物造粒;并干燥。根据本发明,得到具有优异溶解度的固体制剂。所述固体制剂为颗粒产品形式时,具有高溶解度,所述固体制剂为片剂形式时,在引入适宜的溶出介质后,在10分钟内可以崩解并释放至少70wt%的溶解性差的药物。
具体实施例方式下面更详细的说明本发明。本发明使用的溶解性差的药物在水中的溶解度极低,常规口服给药时的吸收很差。例如,日本药典第15版中规定的溶解性差的药物指“几乎不溶或不溶”或者“极微溶”的药物。在日本药典第15版中,药物的“溶解度”指在20±5°C的溶剂中,每隔5分钟振摇一次,每次振摇30秒,30分钟内固体的粉末化药物的溶出度。如果药物为“几乎不溶或不溶”,那么溶解Ig或Iml药物所需溶剂(在本说明书中为水)的量为10,OOOml以上。如果药物为“极微溶”,那么溶解Ig或Iml药物所需溶剂的量为1,OOOml以上,但小于10,OOOml0
本发明使用的溶解性差的药物的具体例子包括但不限于硝苯地平、非那西丁、苯妥英、洋地黄毒苷、尼伐地平、地西泮、灰黄霉素以及氯霉素。 在本发明中,溶解性差的药物分子分散成无定形状态,因此水溶性聚合物用作载体。使用水溶性聚合物作为固体分散体的载体。水溶性聚合物是一种如下的聚合物:当将该聚合物加入溶出所需的一半至全部量热水(70°C或更高)中并搅拌和分散混合物时,同时在所用的热水量小于所需的全部量的情况下,搅拌下加入剩余量的冷水或冰水,该聚合物是按日本药典第15版规定的“极易溶(溶解Ig或Iml药物所需的水量小于Iml) ”,“易溶(溶解Ig或Iml药物所需的水量为Iml或更多并小于IOml) ”,或“溶解(溶解Ig或Iml药物所需的水量为IOml或更多并小于30ml) ”。其具体例子包括烷基纤维素,如甲基纤维素;羟烷基纤维素,如羟乙基纤维素和羟丙基纤维素;羟烷基烷基纤维素,如羟乙基甲基纤维素和羟丙基甲基纤维素;聚乙烯醇;以及聚乙烯吡咯烷酮。其中,羟丙基甲基纤维素是特别优选的。相对于固体制剂的总量,水溶性聚合物的含量为I 75wt%,优选为I 50wt%,更优选为I 35wt%,特别优选为I 20wt%。如果水溶性聚合物的含量小于lwt%,那么在固体分散体中很难获得溶解性差的药物的完全的无定形状态。如果其含量大于75wt%,那么该制型中水溶性聚合物的比例变大,由于制剂的剂量和尺寸变大,并且崩解性下降,因此并不优选这种情况。当将溶解性差的药物作为I时,加入溶解性差的药物中的水溶性聚合物的重量比优选为1 5。如果水溶性聚合物的比例小于1,那么在固体分散体中的溶解性差的药物不是完全的无定形状态。如果比例大于5,那么制剂中水溶性聚合物的比例变大,因而制剂的尺寸变大,并且其溶出速度降低,这对常用的制剂不适宜。作为用于制备含有水溶性聚合物和溶解性差的药物的固体分散体的溶剂,优选使得溶解性差的药物在其中得以很好溶解并且水溶性聚合物在其中也得以溶解的溶剂。其例子包括甲醇、乙醇、二氯甲烷和丙酮;它们的混合溶剂;以及与水混合的溶剂。可以根据溶解性差的药物和水溶性聚合物在溶剂中的溶解度对溶剂进行适当的选择。溶剂的加入量使固体浓度优选为3 18wt%,特别优选为3.5 12wt%。本发明使用的赋形剂的例子包括乳糖、玉米淀粉、蔗糖、甘露醇、无水磷酸钙、结晶纤维素以及它们的混合物。特别优选使用含有重量比7: 3的乳糖和玉米淀粉的混合粉末。应该注意到,赋形剂的含量优选为溶解性差的药物、水溶性聚合物和后述崩解剂之外的量(余量)。作为本发明的崩解剂,可以使用平均粒径为10 100 μ m和通过BET法测量的比表面积为1.0m2/g或更大的低取代羟丙基纤维素,因为其提供具有高流动性的颗粒产品,并确保压缩制备的高溶解度。本发明的低取代羟丙基纤维素粉末的平均粒径可为10 ΙΟΟμπι,更优选大约为20 60 μ m。如果平均粒径小于10 μ m,由于羟丙基纤维素为细粉状态,其聚集性提高,因此粉末的流动性会下降。如果平均粒径大于100 μ m,其与药物的均匀度会下降,则会使产物不均匀。可以使用利用激光衍射法测量粒径分布的HEL0S&R0D0S(SympateC制造)测量平均粒径。此外,本发明的低取代羟丙基纤维素的比表面积可以为1.0m2/g或更大。其原因在于,如果比表面积小于1.0m2/g,那么不能得到高的可压缩性。已知的是,通常较高的粉末比表面积使粉末具有较高的可压缩性。比表面积分析是在液氮温度下,基于吸附到粉末颗粒表面上的分子的量获得样品比表面积的方法,其中分子的吸附占有面积是已知的。对于比表面积分析,可以使用基于惰性气体在低温和低湿度条件下的物理吸附的BET法。在该测量中,例如,可以使用MICROMERITICS GEMINI2375 (SHIMADZU CORPORATION 制造)。通常,通过降低平均粒径可以增大比表面积。然而,如上所述,如果平均粒径过小,那么粉末的聚集性增大,粉末的流动性会下降。在本发明中,尽管粉末的平均粒径要足以保证其流动性,但通过压实辗碎得到一种具有高比表面积的粉末。低取代羟丙基纤维素优选其容积密度为0.30g/ml或更大。本说明书中,“容积密度”指处于疏松填装状态的容积密度;将样品从上方(23cm)通过JIS的24目筛均匀供给直径5.03cm、高度5.03cm(容积100ml)的圆柱形容器(材质:不锈钢),使样品与容器的上表面齐平后,进行称重,从而测量容积密度。使用HosokawaMicron Corporation制造的粉末测试仪(PT-D)进行这些操作。在压缩压力50MPa下进行压缩时,本发明的低取代羟丙基纤维素优选其弹性回复率为7%或更小。因此,可以形成压缩态的致密模制品。弹性回复率是反映粉末可压缩性的指标。弹性回复率可按照下列公式根据片剂厚度计算,所述片剂厚度是使用带有平面接触面的用于直径为11.3mm的片剂的平杵(压片测试仪(SANKY0 P10-TECH.C0.,Ltd.制造),在压缩压力为50MPa下,将粉末压缩成片剂重量为480mg的片剂厚度。弹性回复率={(30秒后的片剂厚度-最小片剂厚度)/(最小片剂厚度)} X100本说明书中,“最小片剂厚度”指使用具有固定下冲头的平杵单元的上冲头压缩粉末时获得的最低点,即片剂被压缩至尽可能程度时的厚度。“30秒后的片剂厚度”指向上移去上冲头之后30秒时的片剂厚度。例如可按下述方式测量本发明的低取代羟丙基纤维素粉末的溶胀性能:在压缩压力为It下,将低取代羟丙基纤维素模压成具有直径为15_的平面的片剂;通过向其上滴水使片剂溶胀;并以此时的溶胀体积增长率和溶胀体积增长速率评价溶胀性能。当使用其中的氢氧化钠与无水纤维素的重量比为0.1: 0.3的碱性纤维素时,溶胀体积增长率优选为300%或更大,溶胀体积增长速率优选为100% /min或更大。可按下述方式得到溶胀体积增长率:在压缩压力为It下,将所述粉末模压成具有直径为15_的平面的片剂;连接带有导管的冲头代替上冲头;通过该导管将水滴到研钵中的片剂上,使片剂吸水10分钟;并得到此时的溶胀体积增长率。滴水的速率为lml/min,滴10分钟。基于片剂厚度的变化,可从以下公式计算体积增加。

溶胀体积增长率=(加水前后片剂的厚度差/加水前的片剂厚度)X 100应当注意的是上述公式中,“加水前后片剂的厚度差”是指加水10分钟后的片剂厚度减去加水前的片剂厚度得到的值。此外,在溶胀性能方面,所述低取代羟丙基纤维素粉末的溶胀体积增长率优选为300 %或更大,这是作为崩解剂的重要性能。如果溶胀体积增长率小于300 %,那么从粉末制备的制剂的崩解时间会更长。
溶胀体积增长速率是指当使用上述方法相同的条件测量溶胀体积增长率时,在开始加水后30秒时的初期溶胀率,可以按照下述公式计算:溶胀体积增长速率=(加水前与初期加水后片剂的厚度差/加水前的片剂厚度)X 100/0.5在上述公式中,“加水前与初期加水后片剂的厚度差”是指开始加水后30秒时的片剂厚度减去加水前的片剂厚度得到的值。在溶胀性能方面,本发明的低取代羟丙基纤维素粉末的溶胀体积增长速率优选为100% /min或更大,这是作为崩解剂的重要性能。如果溶胀体积增长速率小于100% /min,那么从粉末制备的制剂的崩解时间会更长。本发明的低取代羟丙基纤维素粉末是具有高流动性的粉末,优选地,其安息角为42°或更低,安息角是反映粉末流动性的指标之一。安息角是指将样品落在平面上堆积成锥体,该锥体的母线和水平面形成的夹角。例如,使用PT-D粉末测试装置(Hosokawa MicronCorporation制造),将样品从75mm的高度流到直径80mm的盘状金属台上,直到获得恒定角度,然后测量堆积的粉末与金属台形成的角度,即可得到安息角。该角度越小,粉末的流动性越好。如日本专利申请N0.2006-215401所述,本发明的低取代羟丙基纤维素可按下述方式获得:将氢氧化钠水溶液加入并与粉末状浆料混合,制备碱性纤维素,所述碱性纤维素中氢氧化钠与无水纤维素的重量比为0.1: 0.3 ;将所述碱性纤维素进行醚化反应;然后,在进行溶解或不进行溶解步骤后中和氢氧化钠;将所述生成物洗涤和干燥;然后将干燥产物在粉碎步骤中压实辗碎。更具体而言,一种制备低取代羟丙基纤维素粉末的方法,该方法包括下述步骤:(I)将氢氧化钠水溶液加到粉末状衆料中,使氢氧化钠与无水纤维素的重量比为0.1: 0.3,从而制得碱性纤维素;(2)将获得的碱性纤维素进行醚化反应,获得粗反应产物;(3)中和所述粗反应产物中含有的`氢氧化钠;(4)将所述生成物洗涤和脱水;(5)干燥所述生成物;以及(6)使用压实辗碎法进行粉碎。进一步地,本发明提供一种制备具有每个无水葡萄糖单元的摩尔取代值为0.05 1.0的低取代羟丙基纤维素粉末的方法,由此制备的粉末不溶于水且可吸水溶胀,该方法包括下述步骤:(I)将氢氧化钠水溶液加到粉末状浆料中,使氢氧化钠与无水纤维素的重量比为0.1: 0.3,从而制得碱性纤维素;(2)将获得的碱性纤维素进行醚化反应,获得粗反应产物;(3)不进行将部分或全部所述粗反应产物溶解的步骤,中和所述粗反应产物中含有的氢氧化钠;(4)将所述生成物洗涤和脱水;(5)干燥所述生成物;以及(6)使用压实辗碎法进行粉碎。在所述洗涤和脱水步骤中,优选将生成物洗涤并脱水,使得水含量为65wt%或更小。首先,所述粉末状浆料可以使用任意粉碎方法制成,其用作本发明的原料。所述粉末状浆料的平均粒径优选为60 300 μ m。从工业角度讲,制备平均粒径小于60 μ m的粉末状浆料是无效的。如果平均粒径大于300 μ m,那么其与氢氧化钠水溶液的均匀度会很差。在制备碱性纤维素的步骤中,优选将氢氧化钠的水溶液滴入或喷射到粉末状浆料并与生成物混合。此时,氢氧化钠在醚化反应中用作催化剂。优选地,可以在内搅拌型反应装置中混合然后接着进行醚化反应的方法制备所述碱性纤维素;也可以将另一混合装置中制备的碱性纤维素装进反应装置中,然后进行醚化反应的方法制备所述碱性纤维素。
此外,发现碱性纤维素中氢氧化钠的量不仅影响者反应效率,而且还影响最终产物的溶胀性能和可压缩性。碱性纤维素中氢氧化钠的最佳量为氢氧化钠与无水纤维素(是指浆料中除去水分后的余量)的重量比为0.1: 0.3。如果重量比小于0.1,那么当产物吸水溶胀时,溶胀性能特别是溶胀体积增长率会下降,崩解性会下降,可压缩性也会下降。此夕卜,如果重量比大于0.3,那么当吸水时(稍后详述),溶胀体积增长率和溶胀体积增长速率会下降,可压缩性也会下降。加入的氢氧化钠优选为20 40wt%的氢氧化钠水溶液。接下来的醚化步骤可将碱性纤维素装入反应装置中,氮气吹洗,然后将环氧丙烷作为醚化剂装入反应装置中引发反应。优选地,每摩尔无水葡萄糖单元装入大约0.1 1.0摩尔的环氧丙烷。反应温度大约为40 80°C,反应时间大约为1 5小时。应当注意的是:在醚化反应后,如果必要,可以进行溶解步骤。该溶解步骤是在醚化反应后,将部分或全部的粗反应产物溶解于水或热水中。所使用的水或热水的量根据待溶解的粗反应产物的量而变化,但是用于溶解全部粗反应产物的水的量与粗反应产物中低取代羟丙基纤维素的重量比通常为0.5: 10。为了进一步提高洗涤和脱水步骤(稍后详述)中的负载,改善低取代纤维素醚的可压缩性,优选不进行所述溶解步骤。在接下来的中和步骤中,由于用作催化剂的氢氧化钠残留在反应产物中,中和步骤优选将粗反应产物加入含有与氢氧化钠等量的酸的水或热水中进行。或者,中和步骤也可以将含有等量酸的水或热水加入到该反应产物中进行。本说明书中使用的酸的例子包括盐酸、硫酸和硝酸等无机酸以及甲酸和乙酸等有机酸。在接下来的洗涤和脱水步骤中,在优选使用水或热水洗涤所得的中和产物的同时,优选使用例如离心分离、抽滤和加压过滤的方法进行脱水。在所得的脱水产物的饼中的低取代羟丙基纤维素具有与原料浆料中相同的纤维形态。进行溶解步骤后得到的脱水产物其脱水率约70 90wt%,但是该比例取决于取代的摩尔数。没有进行溶解步骤得到的脱水产物其脱水率通常为65wt%或更小,从而可以减轻后续干燥步骤中的负载,并且提高了生产效率。此外,其优点在于由于没有包括溶解步骤,因而可以简化步骤。此外,考虑到产物的可压缩性,当粉碎纤维状物质时,获得的产物具有较高的比表面积,因此具有较高的可压缩性。对于干燥所得的脱水产物的干燥步骤而言,优选在60 120°C使用流化床干燥设备或转鼓式干燥设备等干燥设备进行。粉碎步骤是将上述方法获得的干燥产物压实辗碎。对于该压实辗碎,可以使用粉碎机,如辊磨机、球磨机、珠磨机或石磨机。在辊磨机中,由于旋转运动时发生的离心力或重力负载,辊子或球翻转,同时在研磨壁上压缩/剪切粉碎对象。其例子包括 Ishikawajima-Harima Heavy Industries C0.,Ltd.制造的 IS 棍磨机、Kurimoto,Ltd.制造的VX辊磨机和MASUNO SEISAKUSHO LTD.制造的MS辊磨机。球磨机使用钢球、磁球、卵石等作为研磨介质。其例子包括KURM0T0 TEKKO KK制造的球磨机、Otsuka Iron Works制造的管磨机和FRITSCH制造的行星式球磨机。珠磨机与球磨机相似,不同之处在于,所用球的直径较小,并且通过使装置内部以高速旋转可进一步增大球的加速度。其例子包括Ashizawa制造的珠磨机。石磨机可通过高速、窄间隙旋转磨石进行磨粉。其例子包括 MASUKO SANGYO C0., LTD.制造的 Serendipiter。特别优选为辊磨机,因为其可以减少金属异物的混入,安装空间小同时生产效率闻。当作为粉碎原料的纤维状粒子被反复压实辗碎时,失去源自原料浆料中的纤维状形态和中空管状形态,初级粒子会更小,因此比表面积增大。此外,由于失去源自原料浆料中的纤维状形态,可以得到具有均匀粒子形状的粉末。认为通过纤维状物质的缠结使常规冲击粉碎制备的低取代羟丙基纤维素具有可压缩性。基于这种认识,当为改善可压缩性而增加纤维状粒子时,流动性会降低。然而,本发明所述的低取代羟丙基纤维素粉末尽管由于压实辗碎失去纤维状形态,但却显示出令人惊奇的高的可压缩性。接下来,优选地,可以按照常规的方法将粉碎产物过筛,由此可以获得目标的低取代羟丙基纤维素粉末。本说明书中筛的孔径大约为38 180 μ m。由此得到的低取代羟丙基纤维素粉末具有高的流动性、优异的可压缩性和优异的溶胀性能,不论源自原料浆料的纤维状形态。此外,由于其具有优异的可压缩性和优异的崩解性,因而该粉末加入片剂的量降低,可使片剂的尺寸更小。此外,可以使片剂制备中的模压压力更低,这样具有能够在处理中降低诸如固体分散体的重结晶等物理影响的优点。本发明中,除了低取代羟丙基纤维素之外,还可以使用例如羧甲基纤维素、羧甲基纤维素钠、羧甲基纤维素钙、交联羧甲基纤维素钠、羟丙基淀粉、羧甲基淀粉钠、交联聚维酮以及它们的混合物。相对于固体制剂总 量,崩解剂的含量优选为I 98wt%,更优选为I 60wt%。如果崩解剂的含量小于lwt%,那么由于崩解剂的量很小,难于使固体制剂崩解。如果崩解剂的量大于98wt%,那么不能含有有效量的药物。本发明的固体制剂中,颗粒产品指日本药典第15版中规定的粉末和颗粒。在固体制剂是片剂形式的情况下,必要时可以加入润滑剂。润滑剂的例子包括硬脂酸镁、蔗糖脂肪酸酯、聚乙二醇、滑石以及硬脂酸。在加入润滑剂的情况下,相对于除去润滑剂后的制剂总量,润滑剂的加入量优选为0.5 2wt%。如果润滑剂的加入量小于0.5wt%,那么得不到充分的润滑性质,从而所得制剂在压片过程中粘附于研钵或冲头上。如果润滑剂的量大于2wt%,那么硬度会降低,并且崩解性也会降低。下面说明用于制备本发明的固体分散体的固体制剂和片剂的方法。在本发明的含有固体分散体的固体制剂是颗粒产品的情况下,优选通过在赋形剂和崩解剂的混合粉末上喷射一种分散或溶解有溶解性差的药物的水溶性聚合物溶液,使生成物造粒并干燥,从而获得颗粒产品。更具体而言,在赋形剂和崩解剂的混合粉末在造粒设备中流动的状态下,在混合粉末上喷射预先制备的分散或溶解有溶解性差的药物的水溶性聚合物溶液,使生成物造粒并干燥,然后进行粒径调整。造粒设备的例子包括流化床造粒设备、高速搅拌造粒设备、旋转造粒设备以及干法造粒设备。特别优选流化床造粒设备,因为它不会对颗粒产品施加机械剪切。除了平均粒径为10 100 μ m和通过BET法测量的比表面积为1.0m2/g或更大的低取代羟丙基纤维素用作崩解剂,对用于制备本发明的固体分散体的固体制剂的方法没有特别限制。例如,可以使用以下的方法。将水溶性聚合物完全溶解于上述溶剂如乙醇或水中,然后向其中加入溶解性差的药物,从而得到固体分散体溶液。本说明书中,可以将构成固体分散体溶液的组分一次性加入溶剂中,但优选的是首先溶解水溶性聚合物,以使药物在最终得到的固体制剂中具有稳定性,并且缩短溶解性差的药物的溶解时间。对固体分散体溶液的浓度没有特别限制,但因为溶液要被喷射,优选为400mPa.s或更小,特别优选为IOOmPa.s或更小。当使诸如崩解剂等各组分的混合物例如在流化床造粒设备中流动时,在其上喷射固体分散体溶液,使生成物造粒,并干燥,从而可以得到颗粒产品。在喷射/造粒步骤中,考虑到使用有机溶剂的情况,进风温度优选为150°C或更低,特别优选为100°C或更低。排风温度优选为30°C或更高,特别优选为40°C或更高。喷射速率优选为50g/min或更小,特别优选30g/min或更小。喷射空气压力优选为250kPa或更小,特别优选200kPa或更小。此外,在喷射后,为了使所得颗粒产品中不残留溶剂而进行的干燥步骤中,进风温度优选为150°C或更低,特别优选为100°C或更低,干燥时间优选为10 60分钟。所得颗粒产品可以原样使用。然而,所得颗粒产品可被例如过筛或粉碎,以得到具有更均匀粒径分布的固体制剂。例如,可以使用例如孔径为500 μ m的筛进行粒径调整。另一方面,在固体分散体的固体制剂是片剂的情况下,使用按上述方法得到的颗粒产品作为用于压片的粉末,并在必要时向其中加入赋形剂、崩解剂或润滑剂,通过在压片机中压缩,可以得到片剂。

为进行压片,例如可以使用旋转式压片机或单冲压片机。然而,对压片机没有限制,也可以使用特别定制的压片机。压片过程中的模压压力为I 130kg/cm2,特别优选为10 100kg/cm2。当根据日本药典第15版中的“溶出试验”,使用pH6.8的日本药典第二流体(人造肠液)评价由此得到的固体分散体的颗粒产品时,相对于给药量,给药后5分钟内溶解的药物浓度为70%以上,即显示高溶解度。当根据日本药典第15版中的“崩解试验”,使用pH6.8的日本药典第二流体(人造肠液)评价得到的固体分散体的片剂时,该片剂可在给药后10分钟内崩解。当根据日本药典第15版中的“溶出试验,方法2”,相对于给药量,给药后10分钟内溶解的药物浓度为70%以上,即显示高崩解性和高溶解度。为了遮掩味道或遮掩气味,或者使得制剂为肠溶性制剂,或者实现制剂的缓释,可使用已知的方法对本发明得到的固体制剂进行包衣。这里所用的包衣剂的例子包括:肠溶聚合物,如乙酸邻苯二甲酸纤维素、甲基丙烯酸共聚物L、甲基丙烯酸共聚物LD、甲基丙烯酸共聚物S、邻苯二甲酸羟丙基甲基纤维素、乙酸琥珀酸羟丙基甲基纤维素和羧甲基乙基纤维素;胃溶性聚合物,如聚乙烯缩乙醛二乙氨基乙酸酯(polyvinylacetaldiethylaminoacetate)和甲基丙烯酸氨烧基酯共聚物;以及上述水溶性聚合物。实施例下面通过实施例和比较例具体说明本发明,然而,本发明并不限于这些例子。合成例I 3合成低取代羟丙基纤维素粉末首先,将806g粉末状浆料(换算为无水状态为750g)加入IOL内搅拌型反应装置中,将303g氢氧化钠水溶液(26wt% )加入该反应装置中,然后在45°C下混合30分钟生成碱性纤维素,其中氢氧化钠和无水纤维素的重量比为0.105。然后进行氮气吹洗,将123g环氧丙烷(相对于纤维素为0.164重量份)加入生成物中,然后在温度为60°C的夹套内使混合物反应1.5小时,由此获得1232g羟丙基纤维素的粗反应产物,其中每个无水葡萄糖单元的轻丙氧基的摩尔取代值为0.28。醚化反应率为61.4%。然后,将236g的乙酸(50wt%)加入到上述IOL内搅拌型反应装置中并混合,进行中和反应。中和产物在90°C的热水中洗涤,并使用间歇式离心机在转速为3000rpm下进行脱水。脱水产物的含水量为58.2wt%。80°C下,将脱水产物在盘架干燥器中干燥一昼夜。使用FRITSH制造的间歇式行星式球磨机P_5以255rpm的转速将干燥的产品粉碎60分钟。粉碎后的产品通过孔径为38、75和180 μ m的筛,由此得到羟丙氧基含量为10.9wt%的低取代羟丙基纤维素粉末(分别为样品I 3)。通过上述方法基于平均粒径、比表面积、容积密度、安息角、弹性同复率、可压缩性、溶胀体积增长率和溶胀体积增长速率评价这些粉末。评价结果示于表1。表权利要求
1.一种含有固体分散体的固体制剂,所述分散体含有溶解性差的药物、水溶性聚合物和崩解剂,其中所述崩解剂是低取代羟丙基纤维素,所述低取代羟丙基纤维素的平均粒径为1(Γ 00μπι ;通过BET法测量的比表面积至少为1.0m2/g ;安息角不大于42° ;当吸水时,溶胀体积增长率至少为300%,溶胀体积增长速率至少为100%/min。
2.如权利要求1所述的含有固体分散体的固体制剂,其中所述固体分散体还含有赋形剂。
3.如权利要求1或2所述的含有固体分散体的固体制剂,其中所述崩解剂为具有5^16wt%的羟丙氧基的低取代羟丙基纤维素。
4.如权利要求Γ3任一项所述的含有固体分散体的固体制剂,其中所述崩解剂为容积密度至少0.30g/ml的低取代羟丙基纤维素。
5.如权利要求Γ4任一项所述的含有固体分散体的固体制剂,其中所述崩解剂为在压缩压力50MPa下进行压缩时,弹性回复率不大于7%的低取代羟丙基纤维素。
6.如权利要求Γ5任一项所述的含有固体分散体的固体制剂,其中所述水溶性聚合物选自烷基纤维素、羟烷基纤维素、羟烷基烷基纤维素、聚乙烯醇和聚乙烯吡咯烷酮。
7.一种制备含有固体分散体的固体制剂的方法,所述方法包括以下步骤:在崩解剂粉末上喷射一种分散或溶解有溶解性差的药物的水溶性聚合物溶液;使生成物造粒;并干燥,其中所述崩解剂是低取代羟丙基纤维素,所述低取代羟丙基纤维素的平均粒径为1(Γ 00μπι;通过BET法测量的比表面积至少为1.0m2/g ;安息角不大于42° ;当吸水时,溶胀体积增长率至少为300% ,溶胀体积增长速率至少为100%/min。
全文摘要
本发明提供一种使得制剂中的药物快速溶出而不会削弱固体分散体溶解度的含有固体分散体的固体制剂,以及制备该制剂的方法。更具体而言,本发明提供一种含有固体分散体的固体制剂,所述分散体含有溶解性差的药物、水溶性聚合物和崩解剂,其中所述崩解剂是平均粒径为10~100μm和通过BET法测量的比表面积至少为1.0m2/g的低取代羟丙基纤维素。此外,本发明提供了一种制备含有固体分散体的固体制剂的方法,所述方法包括以下步骤在作为崩解剂的平均粒径为10~100μm和通过BET法测量的比表面积至少为1.0m2/g的低取代羟丙基纤维素粉末上喷射一种分散或溶解有溶解性差的药物的水溶性聚合物溶液;使生成物造粒;并干燥。
文档编号A61K45/00GK103070838SQ20121054451
公开日2013年5月1日 申请日期2007年8月8日 优先权日2006年8月8日
发明者星野贵史, 草木史枝, 丸山直亮, 西山裕一, 福井育生, 梅泽宏 申请人:信越化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1