一种低温烧结氧化物热电材料的制备方法与流程

文档序号:14395524阅读:300来源:国知局
本发明公开了一种低温烧结氧化物热电材料的制备方法,属于热电材料制备
技术领域

背景技术
:热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无需照看的电源系统,热电发电对这些应用尤其合适。对于遥远的太空探测器来说,放射性同位素供热的热电发电器是唯一的供电系统。已被成功的应用于美国宇航局发射的“旅行者一号”和“伽利略火星探测器”等宇航器上。利用自然界温差和工业废热均可用于热电发电,它能利用自然界存在的非污染能源,具有良好的综合社会效益。利用帕尔帖效应制成的热电制冷机具有机械压缩制冷机难以媲美的优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因此不存在污染环境的问题,可实现精确控温,响应速度快,器件使用寿命长。还可为超导材料的使用提供低温环境。另外利用热电材料制备的微型元件用于制备微型电源、微区冷却、光通信激光二极管和红外线传感器的调温系统,大大拓展了热电材料的应用领域。随着工业化进程的加快以及可再生能源的锐减,迫切需要寻找新型绿色能源。热电材料作为一种能将热能和电能进行直接转化的新型能源材料,由其制成的热电器件具有体积小、无噪声、无运动部件、可靠性高等优点,在温差发电和热电制冷等领域引起广泛关注。热电转换效率主要取决于材料的无量纲性能指数,即zt值,zt值越高,表示材料的热电性能越好,热电发电效率也越高。到目前为止,虽然热电材料有着诸多的优点,但是从传统的热电材料看来,大多都是一些含有重金属或者稀缺金属等化合物构成,成本相对较高,对工业化的要求比较严格,目前热电材料烧结温度较高,生产热电器件时,不利于热电材料与廉价的低熔点铜、银电极材料低温共烧。因此,发明一种可低温烧结的氧化物热电材料对热电材料制备
技术领域
具有积极意义。技术实现要素:本发明主要解决的技术问题,针对目前热电材料烧结温度较高,生产热电器件时,不利于热电材料与廉价的低熔点铜、银电极材料低温共烧的缺陷,提供了一种低温烧结氧化物热电材料的制备方法。为了解决上述技术问题,本发明所采用的技术方案是:一种低温烧结氧化物热电材料的制备方法,其特征在于具体制备步骤为:(1)取40~45g硝酸钙、30~35g硝酸镁、120~150ml正硅酸乙酯分散于装有200~250ml无水乙醇的烧杯中,继续加入15~20ml聚乙烯醇,用磁力搅拌器搅拌分散,得到分散液,向烧杯中继续加入硝酸溶液调节ph,得到混合溶液;(2)将上述混合溶液置于水浴锅中,加热升温,保温陈化,得到凝胶,将凝胶置于烘箱中,干燥,得到干凝胶,将干凝胶置于高温煅烧炉中,加热升温,保温烧结,得到硅酸钙镁粉体;(3)将40~50ml钛酸丁酯加入装有180~200ml乙二醇溶液的烧杯中,加热升温,向烧杯中加入30~35g柠檬酸,启动搅拌器,搅拌混合,直至柠檬酸完全溶解,得到淡黄色的透明溶液;(4)将20~25g氧化钕和30~35g氧化镧溶于200~250ml硝酸溶液中,得到硝酸稀土金属盐溶液,按重量份数计,将70~80份上述淡黄色的透明溶液、40~50份硝酸稀土金属盐溶液、4~5份碳酸钙、6~7份碳酸锂混合置于水浴锅中,加热升温,保温,继续加热升温,保温,得到粘稠胶液;(5)按重量份数计,取40~50份氧化锌、20~30份氧化锡、10~15份氧化铝、30~40份无水乙醇混合放入球磨机中球磨,得到球磨浆料,将球磨浆料与上述粘稠胶液混合,放入高速离心机中离心处理,去除上层液,得到铝锡掺杂氧化锌颗粒;(6)将硅酸钙镁粉体与铝锡掺杂氧化锌颗粒混合,放入真空干燥箱中,预热干燥,得到陶瓷粉料,将陶瓷粉料放入圆柱形模具中,再将圆柱形模具转移至rps烧结设备中,加热升温,烧结,自然冷却至室温后得到所述低温烧结氧化物热电材料。步骤(1)所述的磁力搅拌器转速为400~450r/min,搅拌分散时间为30~35min,硝酸溶液的质量分数为15%,硝酸溶液调节ph为2.0~2.3。步骤(2)所述的加热升温后温度为60~70℃,保温陈化时间为15~20h,烘箱设定温度为90~100℃,干燥时间为20~24h,升温速率为8~10℃/min,加热升温后温度为1000~1100℃,保温烧结时间为2~3h。步骤(3)所述的乙二醇溶液的质量分数为25%,加热升温后温度为80~90℃,搅拌转速为300~350r/min。步骤(4)所述的硝酸溶液的质量分数为30%,加热升温后温度为80~85℃,保温时间为2~3h,继续加热升温后温度为130~150℃,保温时间为1~2h。步骤(5)所述的球磨时球料质量比为15︰1球磨时间为3~4h,球磨浆料与上述粘稠胶液混合的体积比为5︰1,高速离心机转速为3000~4000r/min,离心处理时间为15~20min。步骤(6)所述的硅酸钙镁粉体与铝锡掺杂氧化锌颗粒混合的质量比为1︰3,真空干燥箱设定温度为150~200℃,预热干燥时间为30~35min,圆柱形模具的尺寸为φ20mm×10mm,加热升温后温度为950~1000℃,控制烧结压力为38~40mpa,烧结时间为20~25min。本发明的有益效果是:(1)本发明将硝酸钙、硝酸镁、正硅酸乙酯分散于无水乙醇中水解,加入聚乙烯醇后搅拌分散,调节ph后得到混合溶液,经加热陈化得到凝胶,再经过干燥、烧结得到硅酸钙镁粉体,以钛酸丁酯、乙二醇溶液、柠檬酸为原料,经搅拌分散得到淡黄色透明溶液,向其中加入硝酸稀土金属盐溶液、碳酸钙、碳酸锂,经过保温络合反应得到粘稠胶液,将氧化锌、氧化锡、氧化铝、无水乙醇混合球磨,得到球磨浆料,将球磨浆料与粘稠胶液混合,经过高速离心处理得到铝锡掺杂氧化锌颗粒,最后将硅酸钙镁粉体与铝锡掺杂氧化锌颗粒的混合粉料预热干燥,装入模具后通电加压烧结得到低温烧结氧化物热电材料,本发明中通过溶胶–凝胶法合成硅酸钙镁粉体,粉体反应活性高,比表面大,可增大烧结动力,促进活性烧结,在一定程度上可以降低热电材料的烧结温度,另外应用rps烧结设备热压烧结时,在烧结过程中施加的压力可增加陶瓷的烧结推动力,有利于气孔或空位从晶界扩散到陶瓷体外,可以提高瓷坯密度,从而降低热电材料烧结温度;(2)本发明中所制备的淡黄色透明溶液中柠檬酸与稀土金属阳离子、钙离子、镁离子可以发生络合反应,形成粘稠胶液,粘稠胶液作为粘合剂将陶瓷粉体粘结,当在低温下烧结陶瓷粉料时,粘稠胶液中钛酸丁酯的烷基链开始断裂,断开的有机物键具有较高的活性,致使部分饱和有机物和氧气结合燃烧分解,另一部分具有不饱和键的有机物与氧原子以及冻结在粘稠胶液中的钙离子结合形成碳酸钙,钛酸丁酯中高分子链断裂后形成的不饱和钛氧键具有较高的活性,与冻结在粘稠胶液中的钙离子结合形成钛酸钙相,由于有机物相对于无机陶瓷粉料,熔点很低,烧结时有机物相先熔融,对陶瓷颗粒进行粘结,然后炭化使氧化锌基陶瓷致密化,从而使热电材料的烧结成型温度降低,应用前景广阔。具体实施方式取40~45g硝酸钙、30~35g硝酸镁、120~150ml正硅酸乙酯分散于装有200~250ml无水乙醇的烧杯中,继续加入15~20ml聚乙烯醇,用磁力搅拌器以400~450r/min的转速搅拌分散30~35min,得到分散液,向烧杯中继续加入质量分数为15%的硝酸溶液调节ph为2.0~2.3,得到混合溶液;将上述混合溶液置于水浴锅中,加热升温至60~70℃,保温陈化15~20h,得到凝胶,将凝胶置于设定温度为90~100℃的烘箱中,干燥20~24h,得到干凝胶,将干凝胶置于高温煅烧炉中,以8~10℃/min的升温速率,加热升温至1000~1100℃,保温烧结2~3h,得到硅酸钙镁粉体;将40~50ml钛酸丁酯加入装有180~200ml质量分数为25%乙二醇溶液的烧杯中,加热升温至80~90℃,向烧杯中加入30~35g柠檬酸,启动搅拌器,以300~350r/min的转速搅拌混合,直至柠檬酸完全溶解,得到淡黄色透明溶液;将20~25g氧化钕和30~35g氧化镧溶于200~250ml质量分数为30%的硝酸溶液中,得到硝酸稀土金属盐溶液,按重量份数计,将70~80份上述淡黄色透明溶液、40~50份硝酸稀土金属盐溶液、4~5份碳酸钙、6~7份碳酸锂混合置于水浴锅中,加热升温至80~85℃,保温2~3h,继续加热升温至130~150℃,保温1~2h,得到粘稠胶液;按重量份数计,取40~50份氧化锌、20~30份氧化锡、10~15份氧化铝、30~40份无水乙醇混合放入球磨机中,按球料质量比为15︰1球磨3~4h,得到球磨浆料,将球磨浆料与上述粘稠胶液按体积比为5︰1混合,放入高速离心机中以3000~4000r/min的转速,离心处理15~20min,去除上层液,得到铝锡掺杂氧化锌颗粒;将硅酸钙镁粉体与铝锡掺杂氧化锌颗粒按质量比为1︰3混合,放入设定温度为150~200℃的真空干燥箱中,预热干燥30~35min,得到陶瓷粉料,将陶瓷粉料放入尺寸为φ20mm×10mm的圆柱形模具中,再将圆柱形模具转移至rps烧结设备中,加热升温至950~1000℃,控制烧结压力为38~40mpa,烧结20~25min,自然冷却至室温后得到所述低温烧结氧化物热电材料。实例1取40g硝酸钙、30g硝酸镁、120ml正硅酸乙酯分散于装有200ml无水乙醇的烧杯中,继续加入15ml聚乙烯醇,用磁力搅拌器以400r/min的转速搅拌分散30min,得到分散液,向烧杯中继续加入质量分数为15%的硝酸溶液调节ph为2.0,得到混合溶液;将上述混合溶液置于水浴锅中,加热升温至60℃,保温陈化15h,得到凝胶,将凝胶置于设定温度为90℃的烘箱中,干燥20h,得到干凝胶,将干凝胶置于高温煅烧炉中,以8℃/min的升温速率,加热升温至1000℃,保温烧结2h,得到硅酸钙镁粉体;将40ml钛酸丁酯加入装有180ml质量分数为25%乙二醇溶液的烧杯中,加热升温至80℃,向烧杯中加入30g柠檬酸,启动搅拌器,以300r/min的转速搅拌混合,直至柠檬酸完全溶解,得到淡黄色透明溶液;将20g氧化钕和30g氧化镧溶于200ml质量分数为30%的硝酸溶液中,得到硝酸稀土金属盐溶液,按重量份数计,将70份上述淡黄色透明溶液、40份硝酸稀土金属盐溶液、4份碳酸钙、6份碳酸锂混合置于水浴锅中,加热升温至80℃,保温2h,继续加热升温至130℃,保温1h,得到粘稠胶液;按重量份数计,取40份氧化锌、20份氧化锡、10份氧化铝、30份无水乙醇混合放入球磨机中,按球料质量比为15︰1球磨3h,得到球磨浆料,将球磨浆料与上述粘稠胶液按体积比为5︰1混合,放入高速离心机中以3000r/min的转速,离心处理15min,去除上层液,得到铝锡掺杂氧化锌颗粒;将硅酸钙镁粉体与铝锡掺杂氧化锌颗粒按质量比为1︰3混合,放入设定温度为150℃的真空干燥箱中,预热干燥30min,得到陶瓷粉料,将陶瓷粉料放入尺寸为φ20mm×10mm的圆柱形模具中,再将圆柱形模具转移至rps烧结设备中,加热升温至950℃,控制烧结压力为38mpa,烧结20min,自然冷却至室温后得到所述低温烧结氧化物热电材料。实例2取42g硝酸钙、32g硝酸镁、135ml正硅酸乙酯分散于装有220ml无水乙醇的烧杯中,继续加入17ml聚乙烯醇,用磁力搅拌器以420r/min的转速搅拌分散32min,得到分散液,向烧杯中继续加入质量分数为15%的硝酸溶液调节ph为2.2,得到混合溶液;将上述混合溶液置于水浴锅中,加热升温至65℃,保温陈化17h,得到凝胶,将凝胶置于设定温度为95℃的烘箱中,干燥22h,得到干凝胶,将干凝胶置于高温煅烧炉中,以9℃/min的升温速率,加热升温至1050℃,保温烧结2.5h,得到硅酸钙镁粉体;将45ml钛酸丁酯加入装有190ml质量分数为25%乙二醇溶液的烧杯中,加热升温至85℃,向烧杯中加入32g柠檬酸,启动搅拌器,以320r/min的转速搅拌混合,直至柠檬酸完全溶解,得到淡黄色透明溶液;将22g氧化钕和32g氧化镧溶于220ml质量分数为30%的硝酸溶液中,得到硝酸稀土金属盐溶液,按重量份数计,将75份上述淡黄色透明溶液、45份硝酸稀土金属盐溶液、4份碳酸钙、6份碳酸锂混合置于水浴锅中,加热升温至82℃,保温2.5h,继续加热升温至140℃,保温1.5h,得到粘稠胶液;按重量份数计,取45份氧化锌、25份氧化锡、12份氧化铝、35份无水乙醇混合放入球磨机中,按球料质量比为15︰1球磨3.5h,得到球磨浆料,将球磨浆料与上述粘稠胶液按体积比为5︰1混合,放入高速离心机中以3500r/min的转速,离心处理17min,去除上层液,得到铝锡掺杂氧化锌颗粒;将硅酸钙镁粉体与铝锡掺杂氧化锌颗粒按质量比为1︰3混合,放入设定温度为175℃的真空干燥箱中,预热干燥32min,得到陶瓷粉料,将陶瓷粉料放入尺寸为φ20mm×10mm的圆柱形模具中,再将圆柱形模具转移至rps烧结设备中,加热升温至970℃,控制烧结压力为39mpa,烧结22min,自然冷却至室温后得到所述低温烧结氧化物热电材料。实例3取45g硝酸钙、35g硝酸镁、150ml正硅酸乙酯分散于装有250ml无水乙醇的烧杯中,继续加入20ml聚乙烯醇,用磁力搅拌器以450r/min的转速搅拌分散35min,得到分散液,向烧杯中继续加入质量分数为15%的硝酸溶液调节ph为2.3,得到混合溶液;将上述混合溶液置于水浴锅中,加热升温至70℃,保温陈化20h,得到凝胶,将凝胶置于设定温度为100℃的烘箱中,干燥24h,得到干凝胶,将干凝胶置于高温煅烧炉中,以10℃/min的升温速率,加热升温至1100℃,保温烧结3h,得到硅酸钙镁粉体;将50ml钛酸丁酯加入装有200ml质量分数为25%乙二醇溶液的烧杯中,加热升温至90℃,向烧杯中加入35g柠檬酸,启动搅拌器,以350r/min的转速搅拌混合,直至柠檬酸完全溶解,得到淡黄色透明溶液;将25g氧化钕和35g氧化镧溶于250ml质量分数为30%的硝酸溶液中,得到硝酸稀土金属盐溶液,按重量份数计,将80份上述淡黄色透明溶液、50份硝酸稀土金属盐溶液、5份碳酸钙、7份碳酸锂混合置于水浴锅中,加热升温至85℃,保温3h,继续加热升温至150℃,保温2h,得到粘稠胶液;按重量份数计,取50份氧化锌、30份氧化锡、15份氧化铝、40份无水乙醇混合放入球磨机中,按球料质量比为15︰1球磨4h,得到球磨浆料,将球磨浆料与上述粘稠胶液按体积比为5︰1混合,放入高速离心机中以4000r/min的转速,离心处理20min,去除上层液,得到铝锡掺杂氧化锌颗粒;将硅酸钙镁粉体与铝锡掺杂氧化锌颗粒按质量比为1︰3混合,放入设定温度为200℃的真空干燥箱中,预热干燥35min,得到陶瓷粉料,将陶瓷粉料放入尺寸为φ20mm×10mm的圆柱形模具中,再将圆柱形模具转移至rps烧结设备中,加热升温至1000℃,控制烧结压力为40mpa,烧结25min,自然冷却至室温后得到所述低温烧结氧化物热电材料。对比例以上海某公司生产的低温烧结氧化物热电材料作为对比例对本发明制得的低温烧结氧化物热电材料和对比例中的低温烧结氧化物热电材料进行性能检测,检测结果如表1所示:1、测试方法:烧结温度测试采用烧结点温度测试仪进行检测;功率因子(pf)是用来表征材料热电性能的物理量;zt值即无量纲热电优值,zt值越高,表示热电材料的热电性能越好,热电发电效率也越高。表1测试项目实例1实例2实例3对比例烧结温度(℃)10009509001200功率因子(w·m-1·k-2)1.2×10-41.4×10-41.8×10-40.9×10-4zt值0.0680.0720.0740.027根据上述中数据可知本发明制得的低温烧结氧化物热电材料烧结温度比对比例中的低200~300℃,能耗降低,功率因子是对比例中的2倍,zt值是对比例中的2倍多,热电性能好,热电发电效率高,具有广阔的应用前景。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1