静压式变速车辆及静压式变速器的控制器的制作方法

文档序号:3969094阅读:252来源:国知局
专利名称:静压式变速车辆及静压式变速器的控制器的制作方法
技术领域
本发明涉及静压式变速车辆及静压式变速器的控制器。
背景技术
以往有利用静压式变速器改变引擎的输出而行驶的静压式变速车辆。静压式变速器具备由引擎驱动的可变容量泵、接收可变容量泵的压力油而旋转的可变容量油压马达。此外,通过改变可变容量泵或可变容量油压马达的斜板角度,就可以改变静压式变速器的容量,从而可以改变静压式变速器所能够吸收的引擎输出或改变作业车辆的车速。
另外,所述的静压式变速车辆中还包括建筑机械,在建筑机械当中,有例如像推土机那样的机械,其具有减速踏板,通过在行驶中踩踏减速踏板,降低引擎转速,从而可以暂时使车辆减速。
将此种以往的车辆的系统构成表示在图7中。引擎100的燃料喷射泵101具有用于调节燃料喷射量的未图示的调节杆。
该调节杆借助推拉钢索及连杆机构,与燃料调整杆102及减速踏板103连接。
车辆的操作者可以通过操作燃料调整杆102而将引擎100的转速设定为所需的转速。另外,通过踩踏减速踏板103,可以使引擎转速从由燃料调整杆102设定的转速进一步下降,从而可以使车辆暂时减速。而且,虽然通过移动燃料调整杆102,减速踏板103会一起转动,但即使踩踏减速踏板103,燃料调整杆102的位置也不会变化(例如参照特开2002-235564号公报)。
在减速踏板103上设有电位计104,表示减速踏板103的位置(转动量)的信号被传递给控制器105,并且在引擎100上设有引擎旋转传感器106,表示引擎转速的信号也被传递给控制器105。
控制器105基于来自电位计104及引擎转速传感器106的信号,控制静压式变速器107的容量。
这里,所谓控制静压式变速器107的容量,更具体来说,是指控制静压式变速器107的可变容量泵或可变容量马达的斜板角度。即,所谓改变静压式变速器107的容量,是指改变引擎产生转矩当中的能够被静压式变速器107吸收的转矩,另外,也指改变静压式变速器107的输出转速相对于引擎转速的比(即减速比)。
图8是表示图7所示的以往的系统的静压式变速器的容量控制的一个例子的图。
图8中,粗虚线ET是表示引擎5的转速和转矩的关系的引擎转矩曲线。另外,粗实线HT是表示将燃料调整杆102设为最大位置,未踩踏减速踏板103的状态,即调节杆被推拉钢索移动至最大位置,引擎100能够以最大的转速旋转的状态下(以下将该状态称为「高怠速」状态)的、可以利用静压式变速器107吸收的转矩的特性的吸收转矩曲线。
吸收转矩曲线HT更具体来说,是表示相对于由引擎旋转传感器106检测出的引擎100的实际的转速的变化(图8的横轴),使由静压式变速器107吸收的转矩如何变化的特性的曲线。
如图8所示,在高怠速时,引擎转矩曲线ET和吸收转矩曲线HT在比额定点P0略低的转速区域相交。即,在引擎额定转速NH附近,由引擎100产生的转矩的全部都被设定为被静压式变速器107吸收。另外,当行驶阻力负载增大而引擎转速降低时,就会使被静压式变速器107吸收的转速迅速减少,从而防止引擎熄火。
利用此种特性,车辆就可以在将引擎100的转速保持在额定转速NH附近的状态下,完全利用引擎100的产生转矩而行驶。即,如果用上述的推土机的例子来说,则可以有效地使用引擎输出,有力地并且高速地进行运土作业等。
作为此种作业车辆的一个例子的推土机在作为土方工程作业而进行推土的运土的情况下,操作者操作燃料调整杆102而将引擎100的转速设定为高怠速。引擎100如图8所示,以额定转速NH旋转,在产生额定转矩T0的额定点P0运转。
静压式变速器107为了能够吸收额定转矩T0,按照使可以吸收的转矩达到引擎产生转矩以上的值TK0的方式,对控制器105进行控制。具体来说,将可变容量泵的容量设为最大容量Q0。
当相对于推土机的土的负载变大,引擎100的转速在高怠速转速NH以下时,控制器105由于引擎转速传感器106的转速信号下降,因此与之对应地进行使可变容量泵的容量如图8的线C所示、与引擎转速下降对应地降低的控制,防止引擎100的熄火。
控制器105当像这样引擎转速在额定转速NH以下时,进行使静压式变速器107的容量降低的控制。当容量降低时,负载就会减少,引擎转速上升,因此其结果是,静压式变速器107维持其吸收转矩为不在引擎产生转矩以上的最大限的容量。
当操作者操作铲斗等而负载变轻时,引擎转速进一步上升,因此控制器105就使可变容量泵的容量回到原来的最大容量Q0。所以,推土机就可以总是有效地将引擎的输出100用于作业中。
当使推土机的速度降低时,踩踏减速踏板103。这样,与减速踏板103的踩踏量对应,调节杆移动,引擎100的转速下降,例如从图8的额定转速NH下降至减速转速ND。
此时,由于当使静压式变速器107的容量保持不变时,则车速不降低,为了使车速下降,利用来自电位计104的信号,控制器105将可变容量泵的容量作为规定的容量QD,而使可以吸收的转矩下降至TKD。
如果对该情况用图8进行再次说明,则当为了使所述的车辆暂时减速而踩踏减速踏板103时,与踩踏量对应地,调节杆移动,燃料喷射量被限制,因此引擎转速降低,引擎转矩曲线从外观上,按照ET1、ET2...的方式变化。
另外,此时,控制器105基于由电位计104获得的减速踏板103的踩踏量,进行使图8所示的静压式变速器107的吸收转矩曲线按照HT1、HT2...的方式变化的控制。
如图8所示,减速踏板103踏入时的静压式变速器107的容量控制模式显示如下特性,即,随着减速踏板103的踩踏量变大,使静压式变速器107的吸收转矩减少。所以,就可以与减速踏板103的踩踏量对应地使车速降低。
但是,在以所述的推土机为代表的建筑机械等的车辆中,对于作业中的噪音的降低、燃料消耗量的减少的要求日益增强,通过操作燃料调整杆102而减小引擎100的转速,执行不完全运转而进行作业的情况增多,例如将引擎100的转速降低至图8的部分转速NP而进行作业。引擎100在部分转速NP下,就可以产生部分转矩TP。
但是,当操作燃料调整杆102时,由于减速踏板103也移动,因此控制器105就会根据电位计104的检测值,进行使由静压式变速器107吸收的转矩减少的容量控制(参照图8)。即,控制器105根据不完全运转的电位计104的检测值,使引擎100的目标转速下降至NP,因此就会为了使静压式变速器107的容量降低,而进行使吸收转矩曲线变为HT2的控制,其结果是,由于静压式变速器107的可以吸收的转矩下降至TKP,因此就无法将引擎100的输出转矩TP的全部都吸收。
所谓静压式变速器107的吸收转矩在引擎产生转矩以下的情况,是指尽管在引擎转矩中还有余量,但是只有很少被传递给行驶装置。即,在该状态的不完全运转中,无法将引擎性能有效地完全利用,操作效率就会降低。

发明内容
本发明是着眼于所述的问题而完成的,其目的在于,提供一种即使在不完全运转下也可以有效地利用引擎的输出的静压式变速车辆及静压式变速器的控制用控制器,采用如下的构成。
发明之一的静压式变速车辆是具备用于限制引擎转速的燃料调整部、用于降低引擎转速而减小车速的减速操作部,并利用静压式变速器改变引擎的输出而行驶的静压式变速车辆,其特征是,具备检测所述燃料调整部的操作位置的燃料调整位置检测部、检测所述减速操作部的操作量的减速操作位置检测部、控制所述静压式变速器的容量的控制器,所述控制器具备根据所述燃料调整位置检测部及所述减速操作位置检测部的检测值判定所述燃料调整部及所述减速操作部的操作状态的操作状态判定部、利用该操作状态判定部生成在利用所述燃料调整部限制引擎转速时和在利用所述减速操作部限制引擎转速时不同的容量控制指令的容量控制指令生成部。
发明之二的静压式变速车辆的特征在于,在发明之一中,所述控制器具备存储了按照所述引擎的产生转矩的全部被所述静压式变速器吸收的方式,进行所述静压式变速器的容量的控制的第1容量控制模式、以及按照被所述静压式变速器吸收的转矩在所述引擎的产生转矩以下的方式进行所述静压式变速器的容量的控制的第2容量控制模式的容量控制模式存储部,所述容量控制部当所述操作状态判定部判定利用燃料调整部限制了引擎转速时,进行基于所述第1容量控制模式的容量控制,当所述操作状态判定部判定利用减速操作部限制了引擎转速时,则基于所述第2容量控制模式进行容量控制。
发明之三的静压式变速车辆的特征在于,在发明之一或发明之二中,所述操作状态判定部比较由所述燃料调整位置检测部的检测值获得的所述引擎的目标转速、由所述减速操作位置检测部的检测值获得的所述引擎的目标转速,当两目标转速不同时,判定为某个较低的目标转速的部的操作。
发明之四至发明之六的静压式变速器的容量控制用控制器是将前述的静压式变速车辆的各发明作为静压式变速器的容量控制用控制器而构成的装置。
根据如上所述的本发明,由于使静压式变速器的容量控制模式在利用燃料调整部限制了引擎转速时和利用所述减速操作部限制了引擎转速时不同,因此即使在操作燃料调整杆而使引擎不完全运转的状态下,也可以有效地利用引擎性能。
另外,由于将利用所述燃料调整部限制了引擎转速时的静压式变速器的容量控制模式设定为引擎产生转矩的全部都被所述静压式变速器吸收的模式,因此在操作燃料调整杆而使引擎不完全运转的状态下,也可以充分地利用性能。


图1是本发明的实施方式1的推土机的外观图。
图2是表示所述实施方式的推土机的驾驶员座周围的图。
图3是表示所述实施方式的推土机的HST装置的构造的示意图。
图4是表示所述实施方式的控制器的构造的示意图。
图5是表示所述实施方式的HST装置的容量控制的一个例子的图。
图6是用于说明所述实施方式的作用的流程图。
图7是表示以往的车辆的系统构造的示意图。
图8是表示以往的系统的静压式变速器的容量控制的一个例子的图。
具体实施例方式
下面将参照附图对搭载了本发明的连续无级变速器的车辆的实施方式进行说明。
整体构成图1中,表示本发明的实施方式的推土机1。该推土机1具备车辆主体2、铲斗3、履带装置4。
铲斗3被配置于推土机1的前端部,是进行装土、平地作业的部分。该铲斗3借助支架31而与车辆主体2连接,利用汽缸32的伸缩而上下移动。
履带装置4被配置于车辆主体2的下方两侧,是作为行驶装置发挥作用的部分,具备履带架41、驱动轮42、惰轮43及履带44。
履带架41被作为沿着车辆主体2延伸的钢制体而构成,被自由摆动地轴向支撑在突设于车辆主体2的主支架上的枢轴上。
驱动轮42是利用后述的作为驱动源的油压马达而驱动的部分,被制成链轮状,履带44在咬合在该链轮部分上的状态下被卷绕安装。
惰轮43是卷绕履带44的另一端的车轮,当因驱动轮42的驱动而使履带44移动时,伴随着该履带44的移动,惰轮43也旋转。而且,图1中虽然省略了图示,但是在履带架41的下部,配置有多个下转轮,这些下转轮支撑履带44受到的来自地面的载荷,并且还作为驱动轮42的驱动时的导向辊发挥作用。
车辆主体2被搭载在省略了图示的主支架上,具备配置于行驶方向前方侧的引擎5、配置于行驶方向后方侧的操作室6。引擎5具备被收纳于引擎罩51内的引擎主体,是用于驱动构成配置于车辆主体2的下方的HST装置7的HST泵的动力源。
操作室6是操作者所乘坐而操作推土机1的部分,具备驾驶员座61、操作杆62、63,其上部被顶蓬8覆盖。
该操作室6如图2所示,在驾驶员座61的左侧配置有行驶杆62,在右侧配置有用于操作铲斗3的铲斗操作杆63。在行驶杆62的把手64的上部,设有换高速档开关641和换低速档开关642。
行驶杆62被作为控制手柄那样的杆而构成,当操作该行驶杆62时,就会向后述的控制器9输出操作信号,控制器9基于它而生成控制信号,使HST装置7的各部位动作,使推土机1行驶。具体来说,输出如下的操作信号,即,当行驶杆62向前方倾倒时,就使之前进,向后方倾倒时就使之后退,向左方倾倒时就使之向左转向,向右方倾倒时就使之向右转向。
在驾驶员座61的前方设有配置了仪表或开关等的监视器面板65。在监视器面板65的靠近中央的左侧设有速度级显示部66,右侧设有换档模式切换开关67。
另外,在行驶杆62的左方,设有作为燃料调整部的燃料调整杆68,当操作该燃料调整杆68时,就可以调整引擎5的转速。
另外,在驾驶员座61的右下方,设有作为减速操作部的减速踏板69,当踩踏该减速踏板69时,引擎5的转速就会降低。而且,对于与这些燃料调整杆68及减速踏板69的操作对应的控制将在后面叙述。
HST装置7的构造下面,参照图3,对HST装置7的构造进行说明。
作为静压式变速器的HST装置7具备HST泵71、与履带装置4的左右的行驶装置对应地设置的2个行驶驱动部72、包括4连的电磁阀的切换操作部73、工作油罐74,该HST装置7被控制器9控制。
(2-1)HST泵71的构成HST泵71具备2个可变容量泵711、泵促动器712、泵伺服阀713、EPC阀714,各个可变容量泵711与对应的行驶驱动部72构成封闭回路,向各行驶驱动部72供给压力油。
可变容量泵711通过使斜板的倾斜角度连续地变化,就可以使容量改变,通过增加该可变容量泵711的排出量,就可以增大推土机1的行驶速度。
泵促动器712是进行可变容量泵711的排出量的控制的部分,具体来说,通过将利用油压驱动的伺服活塞与可变容量泵711的斜板端部结合,从导引管线(pilot line)向泵促动器712供给压力油,使斜板的倾斜角度变化,从而就会使排出量改变。
泵伺服阀713被作为3位4通的阀而构成,是进行向泵促动器712的送油量的控制的部分,通过切换位置,调整经由导引管线而供给的工作油的量,向泵促动器712供给。
EPC阀714在泵伺服阀713上设置了2个,与控制器9电连接。
EPC阀714将与从控制器9输入的容量控制指令电流的大小对应的信号压力向泵伺服阀713输出,使泵伺服阀713的阀芯移动。泵伺服阀713以与阀芯的移动量相同的量使泵促动器712移动,这样可变容量泵711的斜板角度就会变化。
(2-2)行驶驱动部72的构成行驶驱动部72与左右的履带装置4对应地设置。各行驶驱动部72具备离合器(clutch)721、可变容量马达722、第1促动器723、第2促动器724、往复阀725、安全阀726及变速切换阀727。
离合器721被夹设配置在可变容量马达722的旋转轴和履带装置4的驱动轮42的驱动轴421之间。该离合器721是为了将可变容量马达722的旋转力向驱动轴421传递而设置的,可以利用附设的促动器721A将可变容量马达722的旋转轴与驱动轴421连接,或解除连接。
可变容量马达722将作为输出轴的旋转轴与离合器721连接,将油压供给源借助配管线A0与所述的可变容量泵711连接,利用来自该可变容量泵711的压力油而驱动,作为履带装置4的驱动轮42的驱动源发挥作用。该可变容量马达722通过使斜板的倾斜角度按3个阶段变化,就可以改变从旋转轴输出的旋转速度、转矩等。
第1促动器723及第2促动器724进行可变容量马达722的输出控制。第1促动器723的输出轴与可变容量马达722的斜板端部结合。第2促动器724的输出轴为了限制第1促动器723的输出轴的后退量,与第1促动器723的输出轴的突出部接触。
在第1促动器723的输出轴最为突出的状态下,可变容量马达722的斜板角度达到最大,在第1促动器723的输出轴后退到最后的状态下,可变容量马达722的斜板角度就达到最小角度。在第2促动器724的输出轴突出的状态下,第1促动器723的输出轴的后退量被限制,该状态下,可变容量马达722的斜板角度就变为中间角度。
往复阀725被设于按照从可变容量泵711及可变容量马达722的配管线A0的中途分支,并夹隔可变容量马达722的上游侧及下游侧的方式设置的配管线A1的中途,是为了向第1促动器723及第2促动器724供给压力油而设置的。该往复阀725是3位5通的阀,输入侧的2端口与可变容量马达722的上游侧及下游侧连接,输出侧的3端口当中的2个端口与变速切换阀727的输入侧连接,1个端口借助安全阀726而与排泄管道连接。
另外,往复阀725被按照利用自身压力改变位置的方式构成,当取得可变容量马达722的上游侧及下游侧的压力油的平衡时,就以中央的位置将任意一方的输入都与排泄管道阻断。另一方面,当上游侧及下游侧的平衡改变时,往复阀725就利用上游侧、下游侧的压力改变位置,将压力高的一方的流动向变速切换阀727输出,将压力低的一方的流动经过安全阀726向排泄管道排出。
变速切换阀727是根据后述的控制器9的变速控制信号,切换位置的3位5通的阀。变速切换阀727的输入侧2端口中的一方与所述的往复阀725的输出侧连接,另一方则与排泄管道连接,输出侧3端口中的1个与将第2促动器724的活塞向输出轴的行进方向移动的输出端口连接,另外的2个与将第1促动器723的活塞向进退方向分别移动的输入输出端口连接。
而且,将第1促动器723的输出轴向后退方向移动的端口、和将第2促动器724的输出轴向后退方向移动的端口连通。
在该变速切换阀727的内部,设有流量调整阀728,利用该流量调整阀728来调整第1促动器723、第2促动器724的动作时间,即可变容量马达722的斜板角度切换时间。
另外,变速切换阀727被设定有MIN、MID、MAX这3个位置,当未输入来自控制器9的变速控制信号时,则被设定为中央的MAX的位置。具体来说,在各位置下,被设定为如下的压力油供给状态。
首先,MAX位置是将输入的压力油向第1促动器723、第2促动器724的全部的端口供给的设定。该位置下,由于各促动器723、724内的活塞的受压面积的差别,各促动器723、724的输出轴都突出,可变容量马达722的斜板角度达到最大角度。
MID位置是将第1促动器723的输出轴的行进方向的端口与排泄管道连接,并向其他的端口供给所输入的压力油的设定。该位置下,第2促动器724的输出轴突出,第1促动器723的输出轴只能后退到中间位置,可变容量马达722的斜板角度变为中间角度。
MIN位置是将第1促动器723的输出轴的行进方向的端口和第2促动器724的输出轴的行进方向的端口与排泄管道连接,并向其他的端口供给所输入的压力油的设定。该位置下,各促动器723、724的输出轴都后退,可变容量马达722的斜板角度达到最小角度。
(2-3)切换操作部73的构成切换操作部73具备固定容量泵73A、4个电磁阀731、732、733、734,是进行构成行驶驱动部72的阀的切换的部分。
固定容量泵73A是生成由图3中的虚线所示的导引管线的控制压力的泵,将工作油罐74内的工作油作为压力油向导引管线供给。
电磁阀731是基于来自控制器9的变速控制信号,进行可变容量马达722的斜板的向中间角度的切换的部分,当设于电磁阀731上的线圈被励磁时,则控制压力就会经过导引管线P1而向变速切换阀727供给,将该变速切换阀727的位置切换为MID位置。
电磁阀732是基于来自控制器9的变速控制信号,进行可变容量马达722的斜板的向最小角度的切换的部分,当设于电磁阀732上的线圈被励磁时,则控制压力就会经过导引管线P2而向变速切换阀727供给,将该变速切换阀727的位置切换为MIN位置。
电磁阀733省略了图示,为向减速闸用的机构供给控制压力的部分,电磁阀734向停车闸提供控制压力,利用控制压力驱动附设在离合器721上的促动器721A,将离合器721的连接解除。
控制器9的控制构造下面,参照图4,对利用控制器9进行引擎5及HST装置7的驱动控制构造进行说明。
如图4所示,引擎5的燃料喷射泵52具有用于调节燃料喷射量的未图示的调节杆。该调节杆借助推拉钢索及连杆机构与燃料调整杆68及减速踏板69连接。
此外,当操作燃料调整杆68时,来自燃料喷射泵52的燃料喷射量改变,引擎5的转速上下变化,操作减速踏板69,来自燃料喷射泵52的燃料喷射量也会变化,引擎5的转速发生变化。
另外,当就座于驾驶员座61的操作者踩踏减速踏板69时,就可以将引擎5的转速从由燃料调整杆68设定的转速进一步下降,从而可以使车辆暂时减速。而且,本例中,虽然与以往相同地通过使燃料调整杆68移动,减速踏板69也一起转动,但是采用即使踩踏减速踏板69,燃料调整杆68的位置也不改变的构造。
控制器9被作为根据引擎5的引擎转速而进行HST装置7的驱动控制的控制部而构成,在输入侧,电连接有引擎旋转传感器53、电位计681、电位计691及HST回路油压传感器75。
引擎旋转传感器53具有检测引擎5的转速并变换为电信号而向控制器9输出的功能。
电位计681作为检测基于燃料调整杆68的操作的燃料调整位置的燃料调整位置检测部而发挥作用,当操作者操作燃料调整杆68时,就会将与该操作量对应的电信号向控制器9输出。
电位计691是作为检测基于减速踏板69的操作的减速操作位置的减速操作位置检测部而发挥作用的部分,当操作者踩踏减速踏板69时,就会将与该踩踏量对应的电信号向控制器9输出。
HST回路油压传感器75被设于左右的行驶驱动部72上,是检测各行驶驱动部72的油压回路内的压力而向控制器9反馈的传感器。
另外,在控制器9的输出侧,电连接有构成HST装置7的EPC阀714、电磁阀731、732,通过向这些阀输出电信号,进行阀的开闭控制。通过进行这些阀的开闭控制,就可以改变构成HST装置7的可变容量泵711及可变容量马达722的斜板角度,从而实现HST装置7的容量控制。
控制器9是根据从与输入侧连接的电位计681、691、引擎旋转传感器53、HST回路油压传感器75输出的检测信号,向构成HST装置7的EPC阀714、电磁阀731、732输出控制指令的部分,具备操作状态判定部91、驱动状态判定部92、容量控制模式存储部93及容量控制指令生成部94。
操作状态判定部91基于电位计681的检测值,取得与燃料调整杆68的调整位置对应的目标转速,并且基于电位计691的检测值,和与减速踏板69的踩踏量对应的目标转速进行比较,判定为较低的一方的目标转速的操作状态。即,在与由燃料调整杆68的操作设定的目标转速相比,由减速踏板69的踩踏设定的目标转速的一方更低的情况下,操作状态判定部91就判定为进行减速踏板69的减速操作。而且,前面已经叙述,由于当操作燃料调整杆68时,减速踏板69也会随之转动,因此减速踏板69的目标转速在由燃料调整杆68设定的目标转速之上的情况,在本实施方式中并未被预先设定。
驱动状态判定部92是基于来自引擎5的引擎旋转传感器53及HST回路油压传感器75的检测值,监视引擎5的驱动状态及HST装置7的动作状态的部分,监视伴随着外部负载的引擎5的转速的降低、HST装置7的油压的变化,将其状态向后述的容量控制指令生成部94输出。
容量控制模式存储部93被作为存储了多个构成HST装置7的可变容量泵711及/或可变容量马达722的容量控制模式的存储器等存储装置而构成。
具体来说,在该容量控制模式存储部93中,如图5所示,存储有与燃料调整杆68的操作量对应地成为将HST装置7可以吸收的转矩设为最大转矩TK0的吸收转矩曲线HT1、HT2、HT3、HT4的第1容量控制模式、与减速踏板69的踩踏量对应地成为可以吸收的转矩发生变化的曲线HT1A、HT2A、HT3A...的第2容量控制模式。
容量控制指令生成部94基于由操作状态判定部91判定的结果和由驱动状态判定部92判定的引擎5及HST装置7的驱动状态,选择存储在容量控制模式存储部93中的容量控制模式,生成对HST装置7的容量控制指令,向构成HST装置7的EPC阀714输出控制指令,另外,根据需要,向电磁阀731、732输出控制指令。EPC阀714基于容量控制指令生成部94的容量控制指令,驱动泵促动器712,改变可变容量泵711的斜板角度,使该可变容量泵711的容量改变。
控制器9的作用下面,基于图6所示的流程图,对所述的控制器9的作用进行说明。
(1)操作状态判定部91在推土机1的驱动中,借助电位计681检测出燃料调整杆68的指令值SE1(处理S1)。另外,操作状态判定部91借助电位计691检测出减速踏板69的指令值SE2(处理S2)。
(2)操作状态判定部91判定指令值SE1及指令值SE2的大小关系(处理S3)。
(3)当操作燃料调整杆68时,由于减速踏板69也会随之同时转动,因此在通常的操作状态下,检测出指令值SE1=指令值SE2。此时,容量控制指令生成部94选择存储在容量控制模式存储部93中的第1容量控制模式(处理S4),生成基于它的容量控制指令(处理S5)。具体来说,如图5所示,容量控制指令生成部94,与通过操作燃料调整杆68而设定的引擎5的目标转速无关地,选择HST装置7可以吸收的转矩为吸收转矩曲线HT1、HT2、HT3、HT4的第1容量控制模式,其中上述各吸收转矩曲线HT1、HT2、HT3、HT4的最大转矩为TK0。此外,容量控制指令生成部94按照成为所选择的第1容量控制模式的吸收转矩的方式,生成控制指令并向改变构成HST装置7的可变容量泵711的斜板角度的EPC阀714输出。当输出此种控制指令时,HST装置7中,EPC阀714动作,实施可变容量泵711的容量控制(处理S6)。
(4)而且,第1容量控制模式中,如图5所示,将基于燃料调整杆68侧的电位计681的目标转速NH确定为容量降低控制的起始点,进行随着引擎转速降低而使吸收转矩降低的控制,防止引擎5的熄火。其结果是,如图5所示,在高怠速时,引擎转速曲线ET和吸收转矩曲线HT在比额定点P0略低的转速区域相交。即,在引擎额定转速NH附近,由引擎5产生的转矩的全部被按照由HST装置7吸收的方式设定。另外,当行驶阻力增大而引擎转速降低时,就会使HST装置7所吸收的转矩迅速减少,防止引擎熄火。通过以此种特性进行控制,在高怠速时,引擎就可以总是在额定转速NH附近旋转,另外,可以将引擎产生转矩的全部经由HST装置7向行驶装置传递,因此就可以有效地利用引擎输出而强有力并且高速地进行运土作业等。当操作者对铲斗3进行操作等而负载变轻时,由于引擎转速上升,因此控制器9就会使可变容量泵的容量恢复到最大容量Q0。
(5)当操作者为了停止推土机1而踩踏减速踏板69时,该指令值SE2被电位计691检测出,控制器9的操作状态判定部91判定指令值SE1>指令值SE2,判定来自电位计691的目标转速的指令值SE2与基于来自电位计681的信号的目标转速的指令值SE1相比更低。容量控制指令生成部94基于该判定结果,从容量控制模式存储部93中选择第2容量控制模式(处理S7),生成减速时的容量控制指令(处理S8),与前面所述相同,进行可变容量泵711的控制(处理S9)。
(6)即,控制器9的容量控制指令生成部94基于利用电位计691获得的减速踏板69的踩踏量,如图5所示,进行使HST装置7的吸收转矩曲线按照HT1A、HT2A...的方式变化的控制。减速踏板69踩踏时的HST装置7的容量控制模式形成如下特性,即,随着减速踏板69的踩踏量变大,使HST装置7的吸收转矩减少。所以,与减速踏板69的踩踏量对应,来自HST装置7的输出变小,车速减小。
(7)当操作燃料调整杆68而限制了向引擎5的燃料喷射量时,则引擎转速降低,如图5所示,引擎转矩曲线在外观上,按照ET1、ET2、ET3、ET4...的方式变化。燃料调整杆68的操作量由电位计681检测出,容量控制指令生成部94基于该检测值(即,由燃料调整杆68设定的目标转速),使HST装置7的吸收转矩曲线按照HT1、HT2、HT3、HT4...的方式变化。从图5可以清楚看到,吸收转矩曲线HT1、HT2、HT3、HT4全都在比目标转速NP1、NP2、NP3、NP4分别略低的转速的区域中,与引擎转矩曲线ET相交。即,在利用燃料调整杆68的操作限制引擎转速的情况下,引擎产生转矩的全部都被HST装置7吸收。所以,在不完全运转时,也可以将引擎产生转矩的全部经由HST装置7向行驶装置传递,因此就可以有效地利用引擎输出,强有力地进行运土作业等。
(8)控制器9对作为燃料调整位置检测部的电位计681的目标转速的指令值SE1、由作为减速操作位置检测部的电位计691的检测值获得的减速踏板69的目标转速的指令值SE2进行比较,在2个目标转速相同的情况下,使燃料调整杆68的电位计681的检测值优先,在不同的情况下,基于设定了更低的目标转速的一侧的指令值来进行HST装置7的容量控制。
(9)当从操作燃料调整杆68,执行不完全运转,进行使吸收转矩曲线变为图5的HT2的控制的状态开始,踩踏减速踏板69,使引擎转速降低至NP4,例如图5所示的表观上的引擎转速曲线达到ET4所示的状态时,在本实施方式中,由于即使踩踏减速踏板69,燃料调整杆68也不会移动,因此利用减速踏板69设定的目标转速NP4与利用燃料调整杆68设定的目标转速NP2相比更低。所以,控制器9基于减速踏板69侧的电位计691的指令值,按照使HST装置7的容量从TK0达到较小的容量TKDA的方式进行控制。即,进行使吸收转矩曲线变为图4的HT4A的控制。此时,利用控制器9进行的HST装置7的容量降低的控制,根据减速踏板69的踩踏量,如从图4的点A到点B的箭头所示,按照使HST装置7的容量从TK0到较小的容量TKDA连续地变化的方式进行。
实施方式的变形而且,本发明并不限定于所述的实施方式,还包括如下所示的变形。
与所述实施方式不同,在采用即使移动燃料调整杆68,减速踏板69的位置也不会改变的机构的情况下,就不一定需要由燃料调整杆68设定的目标转速和由减速踏板69设定的目标转速一致时的使燃料调整杆68的电位计681的检测值优先的控制,在两者不同的情况下,进行基于设定了更低的转速的一侧的电位计检测值的控制即可。
另外,燃料调整杆68及减速踏板69也可以不是与引擎5的燃料喷射泵52机械地连接的装置,而是借助电信号利用控制器控制燃料喷射泵的装置。
另外,所述实施方式中,在不完全运转时,减速踏板69未被踩踏的状态下,进行将HST装置7可以吸收的转矩一直维持在比引擎的产生转矩更大的TK0的控制。即,在利用燃料调整杆68的操作限制了引擎转速的情况下,虽然为了使引擎产生转矩的全部都被静压式变速器吸收,采用了吸收转矩曲线HT1、HT2...全都与引擎转矩曲线ET相交的设定,但是不一定需要按照2条曲线相交的方式设定。例如也可以按照可以吸收比引擎5的产生转矩略低的转矩,达到在引擎5所产生的最大转矩附近可以匹配的容量的方式,控制HST装置7可以吸收的转矩,而有效地利用引擎的产生转矩。即,只要可以获得不完全运转时所必需的驱动力,HST装置7可以吸收的转矩也可以比引擎产生转矩略低。重要的是,明确地区分由燃料调整杆68的操作造成的引擎转速降低和由减速踏板69的操作造成的引擎转速降低,利用这2个操作分别使用HST装置7的容量控制模式。
另外,虽然以推土机的例子进行了说明,但是本发明也可以适用于其他的作业车辆。静压式变速器虽然以具备用引擎5驱动的未图示的可变容量泵和接收可变容量泵的压力油而旋转的未图示的可变容量油压马达、并使可变容量油压泵或可变容量油压马达的斜板角度变化的例子进行了说明,但是既可以是改变可变容量油压泵及可变容量油压马达的斜板角度的装置,也可以是以可变容量油压泵和固定容量油压马达的组合或固定容量油压泵和可变容量油压马达的组合,改变可变容量油压泵或可变容量油压马达的斜板角度的装置。
此外,本发明的实施时的具体的构造及形状等,在能够实现本发明的目的的范围内,也可以采用其他的构造等。
权利要求
1.一种静压式变速车辆,其具备用于限制引擎转速的燃料调整部、和用于降低引擎转速而减小车速的减速操作部,并利用静压式变速器变换引擎的输出而行驶,其特征是,该静压式变速车辆具备检测所述燃料调整部的操作位置的燃料调整位置检测部;检测所述减速操作部的操作量的减速操作位置检测部;和控制所述静压式变速器的容量的控制器,所述控制器具备根据所述燃料调整位置检测部及所述减速操作位置检测部的检测值,判定所述燃料调整部及所述减速操作部的操作状态的操作状态判定部;和利用该操作状态判定部,生成在利用所述燃料调整部限制引擎转速时和在利用所述减速操作部限制引擎转速时不同的容量控制指令的容量控制指令生成部。
2.根据权利要求1所述的静压式变速车辆,其特征是,所述控制器具备容量控制模式存储部,该容量控制模式存储部存储有按照所述引擎的产生转矩的全部被所述静压式变速器吸收的方式进行所述静压式变速器的容量的控制的第1容量控制模式、以及按照被所述静压式变速器吸收的转矩在所述引擎的产生转矩以下的方式进行所述静压式变速器的容量的控制的第2容量控制模式,所述容量控制部,当所述操作状态判定部判定为利用燃料调整部限制了引擎转速时,进行基于所述第1容量控制模式的容量控制,当所述操作状态判定部判定为利用减速操作部限制了引擎转速时,则基于所述第2容量控制模式进行容量控制。
3.根据权利要求1所述的静压式变速车辆,其特征是,所述操作状态判定部,比较由所述燃料调整位置检测部的检测值获得的所述引擎的目标转速、和由所述减速操作位置检测部的检测值获得的所述引擎的目标转速,当两目标转速不同时,判定为其中较低的目标转速的部的操作。
4.一种静压式变速器的容量控制用控制器,其被用于如下的静压式变速车辆,所述静压式变速车辆具备用于限制引擎转速的燃料调整部、和用于降低引擎转速而减小车速的减速操作部,并利用静压式变速器变换引擎的输出而行驶,其特征是,具备根据所述燃料调整位置检测部及所述减速操作位置检测部的检测值,判定所述燃料调整部及所述减速操作部的操作状态的操作状态判定部;和利用该操作状态判定部,生成在利用所述燃料调整部限制引擎转速时和在利用所述减速操作部限制引擎转速时不同的容量控制指令的容量控制指令生成部。
5.根据权利要求4所述的静压式变速器的容量控制用控制器,其特征是,具备容量控制模式存储部,该容量控制模式存储部存储有按照所述引擎的产生转矩的全部被所述静压式变速器吸收的方式进行所述静压式变速器的容量的控制的第1容量控制模式、以及按照被所述静压式变速器吸收的转矩在所述引擎的产生转矩以下的方式进行所述静压式变速器的容量的控制的第2容量控制模式,所述容量控制指令生成部,当所述操作状态判定部判定为利用燃料调整部限制了引擎转速时,进行基于所述第1容量控制模式的容量控制,当所述操作状态判定部判定为利用减速操作部限制了引擎转速时,则基于所述第2容量控制模式进行容量控制。
6.根据权利要求4所述的静压式变速器的容量控制用控制器,其特征是,所述操作状态判定部,比较由所述燃料调整位置检测部的检测值获得的所述引擎的目标转速、和由所述减速操作位置检测部的检测值获得的所述引擎的目标转速,当两目标转速不同时,判定为其中较低的目标转速的部的操作。
全文摘要
本发明提供一种静压式变速车辆及静压式变速器的控制器,静压式变速车辆具备检测燃料调整部(68)的操作位置的燃料调整位置检测部(681)、检测减速操作部(69)的操作量的减速操作位置检测部(691)、控制静压式变速器(7)的容量的控制器(9),控制器(9)具备基于燃料调整位置检测部(681)及减速操作位置检测部(691)的检测值,判定燃料调整部(68)及减速操作部(69)的操作状态的操作状态判定部(91)、在利用燃料调整部(68)限制了引擎转速时和在利用减速操作部(69)限制了引擎转速时生成不同的容量控制指令的容量控制指令生成部(94)。由此,即使在不完全运转的情况下也可以有效地利用引擎的输出。
文档编号B60W10/10GK1680701SQ200510004660
公开日2005年10月12日 申请日期2005年1月21日 优先权日2004年1月21日
发明者深泽敏彦, 杉本丰, 石桥永至, 加美川忍 申请人:株式会社小松制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1