相变存储器元件的真空包覆电极的制作方法

文档序号:6775096阅读:116来源:国知局
专利名称:相变存储器元件的真空包覆电极的制作方法
技术领域
本发明通常涉及非易失性存储器器件,尤其涉及使用相变材料的存储器器件。
背景技术
以相变为基础的存储器材料被广泛地应用于读写光盘中,且这些材料也逐渐使用于计算机存储器器件之中。这些材料包括有至少两种固相,包括例如通常为非晶固相(amorphous solid phase),以及通常为结晶固相(crystalline solid phase)。激光脉冲用于读写光盘中,以在二种相之间进行切换,并读取该材料在相变之后的光学性质,并且采用同样方法将电脉冲应用于计算机存储器器件中。
例如硫属化物及类似材料的这些相变存储器材料,可通过对其施加其幅度合适于于集成电路中的电流,而致使其晶相变。一般而言,非晶态的特征是其电阻高于结晶态,此电阻值可轻易测量得到并将其作为指示。这种特性则引发了使用可编程电阻材料来形成非易失性存储器电路等的兴趣,此电路可用于随机存取读写。
从非晶态转变至结晶态一般是低电流步骤。从结晶态转变至非晶态(以下称为重置(reset))一般是高电流步骤,其包括短暂的高电流密度脉冲以融化或破坏结晶结构,其后此相变材料会快速冷却,抑制相变的过程,使得至少部份相变结构得以维持在非晶态。在理想状态下,致使相变材料从结晶态转变至非晶态的重置电流幅度应该是越低越好。可以通过减小在存储器中的相变材料元件的尺寸、以及减少电极与此相变材料的接触面积来实现降低重置所需的重置电流幅度的目的,因此可针对此相变材料元件施加较小的绝对电流值来实现较高的电流密度。
该领域发展的一种方法是致力于在集成电路结构上形成微小孔洞,并使用微量可编程的电阻材料填充这些微小孔洞。致力于这种微小孔洞的专利包括于1997年11月11日公告的美国专利5,687,112,“Multibit Single Cell Memory Element Having Tapered Contact”,发明人为Ovshinky;于1998年8月4日公告的美国专利5,789,277,“Methodof Making Chalogenide[sic]Memory Device”,发明人为Zahorik等;于2000年11月21日公告的美国专利6,150,253,“Controllable OvonicPhase-Change Semiconductor Memory Device and Methods ofFabricating the Same,”,发明人为Doan等;于1999年7月6日公告的美国专利5,920,788,“Chalcogenide Memory Cell with a Plurality ofChalcogenide Electrodes”,发明人为Reinberg。
已知的相变存储器与结构所具有的特殊问题在于其所产生的散热效应。一般而言,现有技术示出如何使用位于相变存储器元件两侧的金属电极,而电极的尺寸大约等于相变构件。这些电极会作为散热装置,金属的高导热性会快速地将热量导离相变材料。由于相变现象是加热的结果,因此散热效应会导致需要更大的电流来产生理想的相变现象。
解决这种热流问题的一种方法,可参考美国专利6,815,704,“SelfAligned Air-Gap thermal Insulation for Nano-scale InsulatedChalcogenide Electronics(NICE)RAM”,其中使用一种方式来隔离此存储器单元。此结构及其制造过程太过复杂并且仍然无法获得存储器器件中的最小电流。
因此,希望能够提供一种存储器单元(memory cell)结构,其具有小尺寸以及低重置电流,同时其结构可解决导热性问题,同时能提供一种用于制造所述结构的方法并且所述方法能够满足用于制造大尺寸存储器器件时的严格的制造过程变量规格。希望提供一种制造过程以及结构,其可兼容于制造同一集成电路的周边电路。

发明内容
本发明的一个目的在于提供一种存储器器件,其具有环绕第一电极元件的真空夹层(jacket),以提供较佳的隔热效果。所述存储器器件包括第一电极元件;相变存储器元件,接触至第一电极元件;电介质填充层,围绕相变存储器元件以及第一电极元件,其中电介质层与第一电极元件之间有间隔,以在第一电极元件与电介质填充层之间定义腔室;且将相变存储器层密封到电介质填充层,以定义环绕第一电极元件的隔热夹层。


图1示出了本发明的实施例的相变存储器元件的剖面图,其使用了空气单元隔热元件;图2a-2m示出了用于制造图1所示的相变存储器元件的各个步骤的示意图;以及图3a-3j示出了用于制造图1所示的相变存储器元件的可替代实施例的各步骤示意图。
主要组件符号说明10,10a,10b 存储器元件12 衬底14,14a,14b 栓塞元件15a,15b 字线16,16a,16b 下电极元件17 公共源极线
18 阻挡层20,20a,20b 相变元件22,22a,22b 上电极元件24,24a,24b 热绝缘单元26,26a 上绝缘层26b 覆盖氧化物层28a,28b 接触元件30 位线50 光阻材料52 蚀刻掩膜116 氮化钛层118 阻挡层120 GST材料122 电极材料210a,210b 存储器元件211a,211b 凹洞212 衬底214a,214b 栓塞元件215a,215b 字线216a,216b 下电极元件217 公共源极线218a,218b 侧壁220a,220b 相变元件222a,222b 上电极元件224a,224b 热绝缘单元226,226a上电介质层226b 覆盖氧化物层228a,228b 接触元件320 GST材料322 电极材料层
230 位线具体实施方式
本发明关于各实施例的讨论是参考图1-3。可以了解的是,在实施例中所示的各项特征仅用于举例目的、并用于说明其本质,而并非用于限制本发明的范畴。本发明的范畴仅由权利要求的范围所界定。
本发明是关于存储器元件与存储器单元的。如本文所述以及该领域中所公知的,存储器单元是设计用于维持电荷或状态以指示单一数据位的逻辑电平的电路器件。举例而言,存储器单元排列成阵列以提供计算机使用的随机存取存储器。在特定的存储器单元中,存储器元件执行了实际维持电荷或状态的功能。举例而言,在已知的动态随机存取存储器单元中,电容器指示该单元的逻辑电平,完全充电状态指示逻辑“1”(或高状态),而完全放电状态则指示逻辑“0”(或低状态)。
在本发明的实施例中,存储器元件10在图1中示出。如图所示,为了简洁起见,该存储器元件10表示为单一器件。在实际中,每一个元件都是存储器单元的一部份,而每一个存储器单元则是较大存储器阵列的一部份,如下所详述。存储器元件的结构会先被讨论,接着描述用于制造存储器元件的方法。
此存储器元件形成于衬底12上,衬底12优选地为电介质填充材料,例如二氧化硅。其它适合的材料包括聚亚醯胺(polyimide)、氮化硅、或其它已知的电介质填充材料。栓塞元件14延伸穿透衬底以电接触至外部电路,其优选地由例如钨等耐火金属形成。其它适合的耐火金属包括钛、钼、铝、钽、铜、铂、铱、镧、镍、以及钌。
从栓塞元件向上延伸的是下电极元件16、相变元件20、以及上电极元件22。上电极元件电接触至外部电路。
相变元件可由优选地包括以硫属化物为基础的材料在内的一类材料所构成。硫属化物包括下列形成元素周期表上第VI族的部分的四种元素之中任意一种氧(O)、硫(S)、硒(Se)、以及碲(Te)。硫属化物是将硫属元素与更为正电性的元素或自由基结合而得到。硫属化合物合金是将硫属化合物与其它物质例如过渡金属等结合。硫属化合物合金通常包括一个以上的选自元素周期表第六栏的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多以相变为基础的存储器材料已经在技术文件中进行了描述,包括下列合金镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金族中,可以尝试大范围的合金成分。此成分可以下列特征式表示TeaGebSb100-(a+b)。
一位研究员描述了最有用的合金为在沉积材料中所包含的平均碲浓度远低于70%,典型地低于60%,并且在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳地是介于48%至58%的碲含量。锗的浓度高于约5%,且其在材料中的平均范围从最低8%至最高30%,一般为低于50%。最佳地,锗的浓度范围介于8%至40%。在此成分中所剩下的主要成分则为锑。上述百分比为原子百分比,其为所有组成元素相加总和为100%。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(Noboru Yamada,“Potential of Ge-Sb-Te Phase-changeOptical Disks for High-Data-Rate Recording”,SPIE v.3109,pp.28-37(1997))更一般地,过渡金属例如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成相变合金,其具有可编程电阻属性。可使用的存储器材料的特殊示例如Ovshinsky‘112专利中栏11-13所述,在此引入该示例作为参考。
相变材料能在该单元的主动通道区域内按照其位置顺序,在材料为一般非晶固态的第一结构状态与材料为一般结晶固态的第二结构状态之间进行切换。这些材料至少为双稳态。术语“非晶”用于指示相对较无次序的结构,其与单晶相比更加无次序性,而具有可检测的特征,例如与结晶态相比具有更高的电阻值。术语“结晶态”用于指示相对较有次序的结构,其与非晶态相比更有次序,因此包括可检测的特征,例如比非晶态更低的电阻值。典型地,相变材料可以在完全结晶态与完全非晶态之间的所有可检测的不同状态之间进行电切换。其它受到非晶态与结晶态之间的改变的影响的材料特征包括原子次序、自由电子密度、以及活化能。此材料可切换成为不同的固态,或者可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰度级部分。此材料中的电属性也可能随之改变。
相变材料可通过施加电脉冲而从一种相态切换至另一种相态。先前观察指出,较短、较大幅度的脉冲倾向于将相变材料的相态改变成大体为非晶态。较长、较低幅度的脉冲倾向于将相变材料的相态改变成大体为结晶态。在较短、较大幅度脉冲中的能量足够大,因此足以破坏结晶结构的键,同时其足够短,因此可以防止原子再次排列成结晶态。在没有不适当实验的情形下,可以确定特别适用于特定相变合金的适当的脉冲量变曲线。在本文的后续部分,此相变材料称为GST,同时应该理解的是,也可以使用其它类型的相变材料。在本文中所描述的一种适用于相变元件中的材料为Ge2Sb2Te5。
上下电极元件与下电极元件优选地由氮化钛(TiN)或类似材料所构成,例如从下列元素中选出的一个以上的元素硅、钛、铝、钽、氮、氧、及碳。必须注意的是,在进行参考时,在附图中由下往上的方向称为“垂直”,而侧向方向则称为“横向”或“水平”。这种称谓对于器件中的实际方向并无影响,包括在制造中或使用时都是一样。
优选地,相变元件20的厚度(亦即平行于页面长轴方向的尺寸)介于约20nm至150nm之间,最佳地为约70nm。下电极16的厚度应介于约20nm至约150nm之间,且最佳地为约100nm。下电极16的宽度(亦即平行于页面短轴方向的尺寸)介于约10nm至约70nm之间,且最佳地为约50nm。热绝缘单元的宽度应介于2nm至约20nm之间,且最佳地为约10nm。因此,相变器件的总长度应介于50nm至约120nm之间,且最佳地为约70nm。
电极元件与相变元件被上绝缘层26所包围,其材料优选地与衬底12的材料相同或相似。在二个绝缘层之间为阻挡层18,其由氮化硅或类似材料所构成。
上绝缘层与相变元件和上电极的侧边接触,但并不与下电极元件接触。相变元件水平地延伸超越下电极的边缘,使得相变元件的两端、下电极与上绝缘层的侧边、以及阻挡层的一部份,定义了热绝缘单元24,其围绕着下电极元件16。
在操作时,流经相变元件的电流从栓塞元件14流至下电极元件16、流入相变元件20、而从上电极元件22流出。当然,改变元件配置即可改变电流方向,如此领域所周知的。在任一状况中,相变材料受到电流所产生的焦耳热效应,如上所述,造成在GST材料中央的温度上升。当温度超过相变所需要的温度时,相变材料的一部份会改变其状态。在相变元件中,温度并不是四处均匀的,而是随着电流密度的改变而产生大幅度的变化。相变材料的温度会决定所产生的效果,因此电流的选择用于在GST材料中达到足以产生理想结果的温度,无论是非晶态或结晶态。如果希望读取此元件的状态,则施加低电流以进行感测。此读取操作是非破坏性的,因为元件的温度保持于相变的临界点之下。
热绝缘单元24的作用是将热量维持在相变元件中,因而有多个正面效果。首先,该设计通过防止热量离开下电极元件,降低了达到相变现象所需要的总热量,进而减少了每一次“设定”(SET)或“重置”(RESET)操作所必需的电流。同时,将热量维持在下电极元件内,则减少了传递到存储器阵列中其它部分的热量,亦即直接增加了此器件的寿命。由于在一个完整的集成电路中,存储器元件的数量非常庞大(举例而言,在1GB存储器器件中,至少有八十亿个元件),因此上述的热量降低效用是非常明显的。因此,上述的设计将可以实现存储器元件的较低电流消耗。
用于制造本发明的存储器器件的制造过程实施例如图2a-2m所示。如此领域所周知的,存储器阵列优选地采用成对的存储器单元形成,其结构如图所示。此制造过程从如图2a所示的基底结构开始,其适合于形成多个存储器单元,如下所述。栓塞元件14a与14b延伸穿透衬底材料12,作用至分离的存储器元件。这两个存储器元件所使用的材料如上所述。字线15a,15b以垂直于附图的方向延伸,采用已知的方式连接多个存储器元件。优选地采用多晶硅形成字线。公共源极线17延伸经过存储器元件对的中间,平行于字线。
图2b描述了电极材料层116的加入,其成分如上所述。在后续的两个附图2c与2d中,此结构是为蚀刻操作所做的准备,包括光阻材料50在预定位置的沉积与图案化。然而,在此已知的平板印刷制造过程并不足以实现所需要的分辨率,因为下电极元件(从氮化钛层116形成)的宽度小于已知平板印刷技术的最小特征尺寸。因此,在图2c所示的步骤中,将光阻剂图案化至可能的最小尺寸,接着在图2d的步骤中进行修剪(trimming),以产生尺寸符合需求的蚀刻掩膜52。实现此结果的制造过程在本发明的发明人的另一个审查中的专利申请中公开,其细节与本发明并无直接关系。
接着进行蚀刻步骤,其结果如图2e所示,其中形成了下电极元件16a与16b,优选地使用干式非等向性蚀刻、其使用反应性离子蚀刻(reactive ion etching,RIE)、以及以氯为基础的等离子化合物。也可使用光学发射工具(optical emission tool)来确认并控制蚀刻的终点,直到遇到其下的衬底层次为止。
在蚀刻之后,进行阻挡层118的沉积,其由上述的氮化硅所构成,如图2f所示。此层之后接着进行上绝缘层26a的沉积,如图2g所示,其材料与衬底12的材料相同或类似,例如二氧化硅。此层的沉积方式使得其完全覆盖下电极元件与阻挡层。接着,对上绝缘层进行平面化制造过程,以显露下电极组件16a,16b的上层,如图2h所示。
在接下来的两个步骤中形成热绝缘单元。首先,阻挡层118中的邻近下电极元件的部分被蚀刻,如图2i所示。在此步骤中使用湿式蚀刻,以选择性地蚀刻阻挡层材料。采用磷酸针对优选的材料氮化硅进行蚀刻。控制蚀刻步骤使其在于下电极或电介质材料发生大幅度蚀刻之前停止。
在蚀刻步骤之后,进行二个步骤的沉积作用,以在电介质材料之上沉积一层GST材料120,再接着沉积一层电极材料122(优选地为氮化钛),如图2j所示。此沉积作用必须通过将先前蚀刻步骤中留下的空洞密封来形成热绝缘单元24a,24b。此步骤所使用的优选制造过程为溅镀,使得GST材料延伸进入此单元并密封。制造过程参数的选择必须使得溅镀不会一次密封所有的单元,如此领域所周知的。
下一步骤定义了存储器元件对10a与10b。图2k描述了图案化与蚀刻步骤的结果,而对先前步骤中沉积的GST与电极材料层进行蚀刻并留下相变器件20a,20b以及上电极元件,其一般位于下电极16a,16b上的中央位置。此图案化与蚀刻操作属于已知技术。
最后二个步骤则完成了存储器元件的制造,在图2l中,将覆盖氧化物层26b施加至图2k中所示的结构上。此材料应与绝缘层26a中所使用的材料相同,并且其沉积深度必须足以完全覆盖存储器元件10a与10b。在图2m中的最后步骤中,图示出了金属化过程,其显示了接触元件28a与28b的形成,接触元件从上电极元件22a,22b开始延伸,而位线30则横跨了存储器元件10a与10b、并在双方向上延伸至其它存储器元件,如此领域中所周知的。
可替代制造过程如图3a-3j所示。一般而言,此方法遵循波纹镶嵌技术,此技术通常避免了已知的用于在大范围区域中沉积金属与活性材料、接着进行平板印刷的图案化与电介质填充步骤,而是首先沉积电介质填充材料、再接着形成和填充(相当微小)金属与活性材料区域。
此制造过程开始于如图3a所示的基底结构,此结构适合于形成多个存储器单元,如下所示。栓塞元件214a与214b延伸通过衬底材料212,而作用至分离的存储器元件。这两个元件所使用的材料如上所述。字线215a,215b沿着垂直于附图的方向延伸,采用已知方式连接数个存储器元件。优选地,字线由多晶硅所形成。公共源极线217延伸穿过存储器元件对的中间,平行于字线。
图3b示出了上电介质层226的加入,其材料优选地与衬底所使用的材料相同。在接续的图3c-3f中,形成每一个存储器元件的下半部。首先,对上电介质层进行图案化与蚀刻,以生成二个凹洞211a,211b,分别位于栓塞214a,214b之上。必须控制此蚀刻步骤(可由反应性离子蚀刻完成)以露出栓塞元件的上表面。用以生成这些凹洞的平板印刷制造过程是此领域中所周知的。接着如图3d所示,在每一凹洞中形成侧壁218a与218b。侧壁优选地包括氮化硅或类似材料。优选地,利用化学气相沉积法(CVD)或类似制造过程沉积侧壁,接着进行反应性离子蚀刻以形成此侧壁。接着则进行如图3e所示的沉积步骤,其中形成下电极元件216a,216b,优选地使用CVD或其它已知沉积技术。这些元件优选地包括氮化钛或类似材料,如上所述。最后,侧壁218a,218b被蚀刻移除,如图3f所示。在此步骤中,使用湿式蚀刻制造过程选择性地蚀刻侧壁层材料。采用磷酸蚀刻针对优选材料氮化硅进行蚀刻。同时,控制蚀刻步骤使其在下电极或电介质材料发生大幅度蚀刻之前就停止。
热绝缘单元与存储器元件的上半部在接下来的二个步骤中形成。如图3g所示的二个步骤的沉积作用,其用于在电介质材料226a上沉积一层GST材料320,接着沉积一层电极材料322(优选地为氮化钛)。此沉积作用必须可以密封先前蚀刻步骤中所留下的空洞、从而形成热绝缘单元224a,224b。此步骤的优选制造过程为溅镀,使得GST材料可延伸进入此单元并将其密封,如图所示。制造过程参数的选择必须使得溅镀不会一次填满所有单元,如此领域所周知的。
下一步骤定义了存储器元件对210a,210b。图3h描述了图案化与蚀刻步骤的结果,而对在前一步骤中沉积的GST与电极材料层进行蚀刻并留下相变元件220a,220b以及上电极元件222a,222b,其一般位于下电极216a,216b上的中央位置。此图案化与蚀刻步骤为已知技术。
最后二个步骤则完成了存储器元件的制造。在图3i中,将覆盖氧化物层226b施加至图3h所示的结构上。此材料应与绝缘层226a所使用的材料相同,并且其沉积深度必须足以完全覆盖存储器元件210a,210b。在图3j中示出了最终步骤的金属化,其显示了接触元件228a,228b的形成,并从上电极元件222a,222b开始延伸,同时位线230横跨存储器元件210a,210b并且在双方向上延伸至其它存储器元件,如此领域所周知的。
虽然已经参考优选实施例对本发明进行了描述,但是应该理解的是,本发明并非限制于所述内容。先前描述中已经建议了可替换方案及修改方式,并且其它可替换方案及修改方式是本领域技术人员能够想到的。特别是,根据本发明的结构与方法,所有具有实质上相同于本发明的构件组合从而实现与本发明实质上相同的结果的技术都不脱离本发明的精神范畴。因此,所有这些可替换方案及修改方式都会落在本发明的附带的权利要求以及等价物所界定的范围中。在前文中所提及的专利申请以及公开出版物都是作为本发明的参考。
权利要求
1.一种存储器器件,包括第一电极元件;相变存储器元件,其接触至所述第一电极元件;电介质填充层,围绕所述相变存储器元件以及所述第一电极元件,其中所述电介质填充层与所述第一电极元件之间有间隔,以在所述第一电极元件与所述电介质填充层之间定义一腔室;且将所述相变存储器元件密封至所述电介质填充层,以定义环绕所述第一电极元件的隔热夹层(jacket)。
2.如权利要求1所述的存储器器件,其中,所述存储器材料包括由锗(Ge)、锑(Sb)、及碲(Te)所形成的组合物。
3.如权利要求1所述的存储器器件,其中,所述相变存储器元件包括由下列群组中的至少两种材料所形成的组合物锗(Ge)、锑(Sb)、碲(Te)、硒(Se)、铟(In)、钛(Ti)、镓(Ga)、铋(Bi)、锡(Sn)、铜(Cu)、钯(Pd)、铅(Pb)、银(Ag)、硫(S)、以及金(Au)。
4.如权利要求1所述的存储器器件,其中,所述相变存储器元件的宽度约70nm、其厚度约70nm、且所述第一电极元件的直径约50nm。
5.如权利要求1所述的存储器器件,其中,所述隔热夹层的厚度约10nm。
6.一种制造存储器器件的方法,包括下列步骤形成第一电极元件;在所述第一电极元件上沉积衬底层;形成电介质层,其环绕所述第一电极元件;对所述电介质层的上表面进行调整从而使得环绕所述第一电极元件的所述衬底层外露;选择性地蚀刻所述衬底层,以在所述第一电极元件与所述电介质层之间生成空洞;以及沉积相变元件以密封所述空洞并电接触至所述第一电极元件,进而界定环绕所述第一电极元件的隔热夹层。
7.如权利要求6所述的方法,其中,所述相变元件包括由锗、锑、及碲所形成的组合物。
8.如权利要求6所述的方法,其中,所述相变元件包括由下列群组中之至少两种材料所形成的组合物锗、锑、碲、硒、铟、钛、镓、铋、锡、铜、钯、铅、银、硫、以及金。
9.如权利要求6所述的方法,其中,所述相变元件的宽度约为70nm、其厚度约70nm、且所述第一电极元件的直径约50nm。
10.如权利要求6所述的方法,其中,所述隔热夹层的厚度约为10nm。
11.一种用以制造存储器器件的方法,包括下列步骤形成衬底,所述衬底的最上层由电介质填充材料所构成;移除所述电介质材料的选定部分以在所述衬底中形成凹洞;在所述凹洞中形成由衬底材料所形成的侧壁;在所述凹洞中形成第一电极元件;选择性地蚀刻所述衬底层,以在所述第一电极元件与所述电介质层之间形成空洞;以及沉积相变元件以密封所述空洞并电接触至所述第一电极元件,进而定义环绕所述第一电极元件的隔热夹层。
12.如权利要求11所述的方法,其中,所述相变元件包括由锗、锑、及碲所形成的组合物。
13.如权利要求11所述的方法,其中,所述相变元件包括由下列群组中的至少两种材料所形成的组合物锗、锑、碲、硒、铟、钛、镓、铋、锡、铜、钯、铅、银、硫、以及金。
14.如权利要求11所述的方法,其中,所述相变元件的宽度约为70nm、其厚度约70nm、且所述第一电极元件的直径约50nm。
15.如权利要求11所述的方法,其中,所述隔热夹层的厚度约为10nm。
全文摘要
本发明公开了一种存储器器件,其具有环绕第一电极元件的真空夹层(jacket),以提供较佳的隔热效果。此存储器器件包括第一电极元件;相变存储器元件,其接触至第一电极元件;电介质填充层,其围绕相变存储器元件以及第一电极元件,其中电介质层与第一电极元件之间有间隔,以在第一电极元件与电介质填充层之间定义腔室;且将相变存储器层密封到电介质填充层,以定义环绕第一电极元件的隔热夹层。
文档编号G11C11/56GK1971960SQ200610132070
公开日2007年5月30日 申请日期2006年10月24日 优先权日2005年11月21日
发明者龙翔澜 申请人:旺宏电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1