薄膜晶体管、薄膜晶体管基板、电子设备及多晶半导体薄膜的制造方法

文档序号:6844480阅读:105来源:国知局
专利名称:薄膜晶体管、薄膜晶体管基板、电子设备及多晶半导体薄膜的制造方法
技术领域
本发明涉及用于有源矩阵显示器等中的薄膜晶体管以及多晶半导体薄膜的制造方法。
下面,用“TFT(thin film transistor)”来表示薄膜晶体管,并用“Si”来表示硅。
背景技术
近年来,多晶Si TFT作为在玻璃基板上形成集成电路的薄膜元件,正被积极开发。作为多晶Si薄膜的形成方法,通常使用准分子激光(excimer laser)方法,具体地首先形成非晶硅Si膜,然后通过照射准分子激光来熔化非晶Si膜并使其再结晶,从而形成多晶Si膜。作为准分子激光方法中使用的激光退火装置,目前市场上售有在其短轴方向上以几十μm的间距扫描照射照射口径为300mm×0.4mm左右的激光的装置。若使用此激光退火装置,则能够形成亚μm级晶粒随机排列的多晶Si膜,因此,能够以高成品率批量生产迁移率为150cm2/Vs左右的TFT。但是,今后为实现TFT的高性能化,需要扩大结晶粒径并控制晶粒位置。
多晶Si膜的大粒径化技术在日本专利第2689596号公报、日本专利申请特开平8-71780号公报、日本专利申请特开平11-274095号公报、MRSBulletin 21卷(1996年)3月刊、以及第61次应用物理学会学术演讲预稿集(2000年)No.2等中均有公开。
在日本专利第2689596号公报中公开的多晶Si膜的大粒径化技术是利用两层的非晶Si膜来使薄膜部分大粒径化的技术。但是,在该大粒径化技术中,对于基于激光照射条件的膜的熔化状态以及膜厚之外的膜的结构,没有任何记载或启示。另外,对于晶粒的位置控制也没有任何记载或启示。
另一方面,改进准分子激光退火方法,从而通过一边控制激光照射位置一边形成与TFT的沟道长度相匹配的几μm的晶粒,推进了伪单晶SiTFT(pseudo single crystal Si TFT)的开发。
例如,在上述MRS Bulletin 21卷(1996年)中公开了这样的技术通过以0.75μm的间距向形成为岛形状的非晶Si薄膜照射宽度为5μm的极细的线状光束,来形成由大致平行排列的结晶粒界构成的单向生长多晶Si薄膜。另外,在上述第61次应用物理学会学术演讲预稿集(2000年)中公开了这样的技术使用移相掩模来制造具有μm级强度周期的激光,从而根据照射位置来形成生长至3μm左右的Si晶粒。
在这些通过激光照射位置来控制晶粒位置的情况下,在TFT形成过程中,需要使得到的晶粒和TFT沟道区域高精度地对准。因此,例如在上述第61次应用物理学会学术演讲预稿集(2000年)中公开的那样,需要在基板上设置用于步进器(stepper)的对准标记,并在激光照射装置上设置读取标记用的照相机。
但是,如果设置这样的照相机,激光照射装置就会变得又大又复杂。尤其LCD用玻璃基板目前已达到了1m2左右的大小,因此,如果设置与退火室不同的另外的读取标记用的腔室的话,装置占有面积就会明显增大。另外,为了进行基板的定位,除了X、Y两轴之外还需要进行θ校正,因此,需要能够进行微调用的精密操作的复杂的环节。所以,这样的装置可能会存在成本增加和运行效率下降的问题。另外,由于读取基板标记和定位需要时间,所以退火工序的处理能力下降。
并且,当使用移相掩模时,由于需要将掩模几乎紧贴到非晶Si表面上,所以在激光退火中从非晶Si膜表面游离出来的Si原子会污染掩模。因此,必须频繁地更换高价格的掩模。从而,存在作为生产设备的激光退火装置价格变高,而且装置的运行效率也会下降的问题。
本发明的目的是提供一种可简单地实现低阈值电压、高载流子迁移率以及低漏电流等性能的薄膜晶体管和多晶半导体薄膜的制造方法等。即,本发明的目的是提供一种不使用高价且复杂的激光照射装置就能够具有被位置控制的沟道区域的薄膜晶体管以及多晶半导体薄膜的制造方法等。

发明内容
为了达到上述目的,本发明涉及的TFT由具有热容量大的大热容量部分和热容量小的小热容量部分的多晶半导体薄膜构成,并且小热容量部分至少被用作沟道部分。此外,多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过小热容量部分完全熔化而大热容量部分不完全熔化的能量密度的激光退火而形成。
这里,完全熔化的能量密度是指微晶化阈值以上的能量密度。通过非晶半导体膜的激光退火而得到的多晶半导体膜的结晶粒径依赖于激光的能量密度。而且已知以下事实随着能量密度的增加,所述半导体膜结晶生长的结晶粒径也增大,但一旦超过了某一特定的能量密度,所述结晶粒径就会变得非常微细(例如在Si的情况下为20nm以下)。但是,根据膜厚,在通过激光照射而熔化之后,不结晶而是非晶化。将此时的能量密度称为微晶化阈值。
微晶化被认为是通过下述而产生的根据非晶半导体膜的熔化状态从不完全熔化向完全熔化变化,再结晶时的晶核生成机理由以基板和非晶半导体膜之间的界面为成核位置的异质成核变为没有特殊的成核位置的同质成核。该晶核生成机理的变化依赖于基板和非晶半导体膜之间的界面所达到的温度、膜厚方向上的温度分布、以及膜的冷却速度等。因此,微晶化阈值依赖于非晶半导体膜的膜厚、非晶半导体膜的结构、非晶半导体膜的光学常数、脉冲激光的波长以及脉宽等。例如,经激光退火过的多晶Si膜的微晶化阈值显示为比激光照射前的非晶Si膜大14%。另外,若能量密度进一步增大,就会因为烧蚀(ablation)而发生膜脱落。
当以小热容量部分完全熔化而大热容量部分不完全熔化的能量密度进行激光退火的处理时,大热容量部分的温度达到微晶化阈值以下。因此,在大热容量部分中,基板和非晶半导体膜之间的界面成为主要的成核位置,结晶从基板和非晶半导体膜之间的界面向非晶半导体膜表面方向生长。另一方面,小热容量部分由于完全熔化,所以基板和非晶半导体膜之间的界面上的晶核生成被抑制。因此,在大热容量部分生长的晶粒成为晶种,并且,该晶种从大热容量部分沿着从与小热容量部分之间的界面朝向小热容量部分的横向(膜面方向)生长,从而可以得到粗大粒径的晶粒(粗大晶粒)。
这里,如果能量密度过高,从而导致小热容量部分和大热容量部分均完全熔化的话,在小热容量部分和大热容量部分上均会生长微晶化组织。相反,如果能量密度过低从而导致大热容量部分的熔化不充分的话,将会在基板和非晶半导体膜之间的界面附近残留非晶半导体膜区域。这样,晶种会在从小热容量部分和大热容量部分的界面靠近小热容量部分的一侧形成,因而粗大晶粒的粒径变小。而且,当能量密度过低从而小热容量部分不完全熔化时,由于在基板和非晶半导体膜之间的界面上引起晶核的生成,所以在大热容量部分和小热容量部分上均形成随机生成的异质(例如在Si的情况下小于1μm)晶粒。
因此,选定这样的条件照射能量密度在小热容量部分上大于等于微晶化阈值且小于烧蚀阈值,而在大热容量部分则大于等于非晶半导体膜在膜厚方向上完全多晶化的值且小于微晶化阈值。
因此,作为本发明中的激光退火的能量密度,所谓小热容量部分完全熔化的能量密度是大于等于小热容量部分的微晶化阈值且小于烧蚀阈值的能量密度,所谓大热容量部分不完全熔化的能量密度是大于等于大热容量部分的多晶化阈值且小于微晶化阈值的能量密度。另外,作为本发明中的激光退火的能量密度,所谓小热容量部分完全熔化的能量密度也可以是大于等于小热容量部分的微晶化阈值的能量密度,所谓大热容量部分不完全熔化的能量密度也可以是小于大热容量部分的微晶化阈值的能量密度。
另外,本发明的TFT也可以如下构成使小热容量部分位于两个大热容量部分之间,并使这些大热容量部分之间的距离根据位置而不同。
小热容量部分与每个大热容量部分具有界面。从这些界面向小热容量部分的区域内分别有粗大晶粒生长,并且粗大晶粒相互冲突(collide)的面成为晶界。若中间夹着小热容量部分的两个大热容量彼此之间的距离在任何位置均恒定,则这些大热容量部分和小热容量部分之间的两个界面平行,因而晶界也被形成在与两个界面等距离的位置上。即,晶界的位置被一维控制。与此相对,当大热容量部分彼此之间的距离根据位置而不同时,由于这些大热容量部分和小热容量部分之间的两个界面不平行,所以晶界也被形成在复杂的位置上。即,晶界的位置被二维控制。
另外,多晶半导体薄膜的大热容量部分的膜厚较厚,小热容量部分的膜厚较薄。或者,只在形成大热容量部分的半导体薄膜的区域的基板上形成下层膜。
若向具有上述结构的半导体薄膜照射某一能量密度的激光,膜厚较厚的部分或具有下层膜的部分例如由于单位质量的能量值小,温度难以上升,因而成为大热容量部分。另一方面,膜厚薄的部分或没有下层膜的部分例如由于单位质量的能量值大,温度易于上升,因此成为小热容量部分。
所述下层膜由金属膜、金属硅化膜或金属氮化膜等热容量大的材料构成。在小热容量部分位于大热容量部分彼此之间的情况下,可以得到从大热容量部分和小热容量部分的界面向小热容量部分一侧生长的粒径粗大的晶粒(粗大晶粒)。沟道部分被形成在粗大晶粒的列上。另外也可以如下形成小热容量部分位于两个大热容量部分之间,具有从这些大热容量部分和小热容量部分的界面向小热容量部分一侧生长并彼此接触的两排粗大晶粒。通过在两列粗大晶粒每一排上形成沟道部分来形成双栅结构。小热容量部分可以是具有由粒径粗大的晶粒形成的区域和由粒径细小的晶粒形成的区域的结构。在包含粒径细小的晶粒的区域形成杂质导入区域。此时,杂质导入区域被形成为低浓度杂质导入区域。
本发明涉及的薄膜晶体管包括提供到同一基板上的低阈值电压的TFT和将多晶膜或微晶膜用于沟道部分的中阈值电压的TFT。另外,也可以在同一基板上具有由本发明涉及的TFT形成的低阈值电压的TFT、将多晶膜或微晶膜用于沟道部分的中阈值电压的TFT、以及将非晶膜用于沟道部分的高阈值电压的TFT。另外,也可以通过使用不同阈值电压的TFT来形成薄膜集成电路。
本发明涉及的多晶半导体薄膜的制造方法包括半导体膜形成步骤,在基板上形成具有热容量大的大热容量部分和热容量小的小热容量部分的非单晶半导体薄膜;以及退火步骤,向非单晶半导体薄膜照射小热容量部分完全熔化而大热容量部分不完全熔化的能量密度的激光。优选的是,在退火步骤中,激光是被加工成具有短轴和长轴的线状的斑直径的脉冲激光,并一边在短轴方向上以短轴方向上的多晶半导体薄膜粒径以下的移动距离依次移动所述激光,一边进行照射。当形成非单晶半导体薄膜时,使小热容量部分位于两个大热容量部分之间,并使这些大热容量部分之间的距离根据位置而不同。也可以使大热容量部分仅存在于被激光照射的区域的一部分上。
另外,可以将本发明涉及的薄膜晶体管基板安装到液晶显示装置、有机电致发光(EL)显示装置、移动电话机、移动信息终端或电子设备中。
另外,本发明可以改变成如下结构。
即,由具有热容量不同的区域的多晶半导体薄膜构成,具有彼此相对的大热容量部分和位于这些大热容量部分之间的小热容量部分,所述小热容量部分至少被用作沟道部分,所述多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光退火而形成,并且使所述大热容量部分彼此之间的距离不同。
另外,也可以为以下结构由具有热容量不同的区域的多晶半导体薄膜构成,所述小热容量部分至少被用作沟道部分,大热容量部分通过所述多晶半导体薄膜与金属膜、金属硅化膜或金属氮化膜等接触而形成,所述多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光退火而形成。
另外,也可以为以下结构由具有热容量不同的区域的多晶半导体薄膜构成,小热容量部分至少被用作沟道部分,所述多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光退火而形成。
另外,也可以是具有从所述大热容量部分和小热容量部分的界面向所述小热容量部分一侧生长的粗大晶粒的列的结构。在所述小热容量部分中,也可以在与所述粗大晶粒列邻接的区域上形成细小晶粒。
另外,本发明的TFT也可以具有双栅结构。
本发明的TFT基板具有仅将所述粗大晶粒列用作沟道部分的低阈值电压TFT和将所述粗大晶粒列以外的区域用作沟道部分的中阈值电压TFT。
另外,本发明的TFT基板除了所述阈值电压TFT和所述中阈值电压TFT以外,还可以具有将非晶半导体用作活性层的高阈值电压TFT。
并且,本发明的TFT基板也可以具有薄膜集成电路,该薄膜集成电路由所述具有不同阈值电压的TFT形成。
本发明的电子设备的特征在于具有所述TFT基板。这样的电子设备也可以是液晶显示装置、有机EL显示装置、移动电话机或移动信息终端。
本发明的多晶半导体薄膜的制造方法向具有热容量不同的区域的非单晶半导体薄膜照射被加工成线状的脉冲激光,从而在所述小热容量部分形成被位置控制的粗大晶粒,其中所述脉冲激光具有小热容量部分完全熔化而大热容量部分不完全熔化的能量密度,在该多晶半导体薄膜的制造方法中,可以以多晶半导体薄膜在所述激光的短轴方向上的粒径以下的移动距离,一边在短轴方向上依次移动所述脉冲激光,一边进行照射。
另外,也可以具有相对的大热容量部分,并使所述相对的大热容量部分之间的距离在激光照射区域内变化。并且,所述大热容量部分也可以仅存在于激光照射区域的一部分上。
并且,本发明也可以具有以下结构被形成在所述小热容量部分上的所述沟道部分的沟道宽度方向上的端部不比所述大热容量部分的沟道宽度方向上的端部向外突出。
根据这样的结构,在进行蚀刻处理等时,由粗大晶粒形成的沟道区域不会被过蚀刻,从而能够提供具有与设计值相同的阈值电压的薄膜晶体管。


图1的[1]~[4]是本发明第一实施方式的截面图,制造步骤按照图1的[1]至[4]的顺序进行;图2的[1]~[4]是本发明第一实施方式的平面图,制造步骤按照图2的[1]至[4]的顺序进行;图3是示出本发明的比较例的平面图;图4的[1]~[3]是接在图1之后的TFT制造工序的截面图,其中,图4[1]是第一例,图4[2]是第二例,图4[3]是第三例;图5的[1]~[3]是接在图4[2]之后的TFT制造工序的截面图,其中,图5[1]是第一例,图5[2]是第二例,图5[3]是第三例;图6的[1]~[4]是本发明第二实施方式的截面图,制造工序按照图6的[1]至[4]的顺序进行;图7的[1]~[3]是本发明第三实施方式的截面图,制造工序按照图7的[1]至[3]的顺序进行;图8的[1]~[2]是示出现有例的平面图,制造工序按照图8的[1]至[2]的顺序进行;图9的[1]~[2]是本发明第四实施方式的截面图,制造工序按照图9的[1]至[2]的顺序进行;图10的[1]~[3]是示出本发明第一实施例中的大热容量部分和小热容量部分的界面的平面图,其中,图10[1]是第一例,图10[2]是第二例,图10[3]是第三例;图11的[1]~[3]是本发明第二实施例的截面图,其中,图11[1]是第一制造工序,图11[2]是第二制造工序的第一例,图11[3]是第二制造工序的第二例;图12的[1]~[4]是本发明第三实施例的截面图(其一),制造工序按照图12[1]~[4]的顺序进行;图13的[1]和[2]是本发明第三实施例的截面图(其二),制造工序按照图13[1]至图13[2]的顺序进行;图14的[1]和[2]是本发明第五实施方式的示意图,其中,图14[1]是方框图,图14[2]是外观图;图15的[1]和[2]是本发明第六实施方式的示意图,其中,图15[1]是方框图,图15[2]是外观图;图16的[1]和[2]是本发明比较例的示意图,其中,图16[1]是平面图,图16[2]是沿图16[1]中XVI-XVI线的截面图;图17的[1]和[2]是本发明第七实施方式的示意图,其中,图17[1]是平面图,图17[2]是示出避免了粗大晶粒被过度蚀刻的截面图;图18的[1]和[2]是本发明第七实施方式的示意图,图18的[1]和[2]是平面图。
具体实施例方式
下面,对本发明的实施方式进行详细的说明。
(第一实施方式)图1的[1]~[4]以及图2的[1]~[4]所示的本发明实施方式的特点在于,使半导体薄膜的膜厚不同地形成多晶晶粒膜。
首先,在绝缘板12上沉积非晶Si膜14(图1[1]、图1[2])。接着,使用光刻胶(PR)法和干式蚀刻(DE)法对非晶Si膜实施图形化,使非晶Si膜14的膜厚改变,由此形成热容量不同的区域、即大热容量部分16和小热容量部分18。此时,从表面观察,使大热容量部分16和小热容量部分18的界面形成为矩形波形状(图1[2]、图2[2])。因此,隔着小热容量部分18而相对的大热容量部分16彼此之间的距离D1、D2不固定。
接着,向非晶Si膜14照射准分子激光20。将准分子激光20的能量密度设为小热容量部分18完全熔化而大热容量部分16不完全熔化的能量密度。结果,粗大晶粒26从大热容量部分16和小热容量部分18的界面向小热容量部分18一侧生长,并且位置控制良好地形成为列形状(图1[3]、图1[4])。
这里,完全溶解的能量密度是指微晶化阈值以上的能量密度。在非晶Si膜的激光退火中,形成的多晶Si膜的结晶粒径依赖于激光的能量密度(例如参考日本专利申请特开平11-274095号公报)。即,已知以下事实结晶粒径随着能量密度增加而不断变大,但如果超过某一特定的能量密度的话,就会变为极其细小,如20nm以下(根据膜厚,在经激光照射而熔化之后不结晶而是被非晶化)。将此时的能量密度称为微晶化阈值。
当薄膜的熔化状态从不完全熔化向完全熔化变化时,再结晶时的晶核生成机理由以基板和Si膜之间的界面为成核位置的异质成核向没有特殊成核位置的同质成核变化。由此可以认为发生了微晶化。另外,当完全熔化时,基板和Si膜的界面上的晶核生成受到抑制,其结果,晶核生成的潜伏时间变得非常长。
该晶核发生机理的变化依赖于基板和薄膜的界面所达到的温度、膜厚方向上的温度分布、膜的冷却速度等。因此,微晶化阈值依赖于薄膜的膜厚、薄膜的结构、薄膜的光学常数、脉冲激光的波长和脉宽等而变化。例如,经激光退火过的多晶Si膜的微晶化阈值显示为比激光照射前的非晶Si膜大约大14%的值。另外,若能量密度进一步增大,就会因为烧蚀而发生膜脱落。
在本实施方式中,小热容量部分18不全部微晶化而是在小热容量部分18中形成粗大晶粒26的机理是源于有大热容量部分16存在。即,由于以微晶化阈值以下的能量密度照射大热容量部分16,因而基板和Si的界面成为主要的成核位置。另一方面,通过小热容量部分18被完全熔化,基板和Si的界面上的晶核生成受到抑制。因此,在大热容量部分16中形成的成核位置24成为晶种,并获得向小热容量部分18的横向(膜面方向)生长的粗大晶粒26。如果选定隔着小热容量部分18而相对的大热容量部分16彼此之间的距离,则粗大晶粒26形成为列状,并将小热容量部分18分为两部分(图1的[3]和[4])。此时,在两排粗大晶粒26的结晶生长端部形成近似垂直于沟道方向的晶界34。
这里,在低于小热容量部分18的微晶化阈值的能量密度下,在小热容量部分18上也形成从基板和Si之间的界面成核的小的晶粒。另一方面,在大热容量部分16的微晶化阈值以上的能量密度下,大热容量部分16和小热容量部分18双方均被微晶化。
另外,在本实施方式中,如图2所示,隔着小热容量部分18而相对的大热容量部分16彼此之间的距离不固定。与这些距离相应的区域被定义为短距离区域28和长距离区域30。因此,首先在相对短距离区域28上,从不同方向结晶生长的两排粗大晶粒26在将小热容量部分18分为两部分的地点彼此冲突并因此而停止生长,从而在该结晶生长端部形成晶界34。此时,从不同方向结晶生长的两排粗大晶粒26未到达长距离区域30中的将小热容量部分18分为两部分的地点,由此有熔液(melt)32残留(图2[3])。随着时间的推移,长距离区域30的粗大晶粒26生长并充填该熔液32的残留区域。于是,两排粗大晶粒26的结晶生长端部彼此冲突并同样地形成晶界34(图2[4])。
本实施方式的TFT由具有膜厚薄的小热容量部分18和膜厚厚的大热容量部分16的多晶Si膜36构成,其中膜厚薄的小热容量部分16至少被用于沟道部分。并且,多晶半导体薄膜由通过下述能量密度的激光退火而形成的晶粒膜构成,所述能量密度具有使小热容量部分完全熔化而使大热容量部分不完全熔化的大小。由于通过从小热容量部分18和大热容量部分16的界面生长的列状粗大晶粒26来形成沟道部分,所以使用一般的激光退火装置就能够容易地实现低阈值电压、高载流子迁移率以及低漏电流等性能。
图3是示出本发明的比较例的平面图。下面,根据图2的[1]~[4]以及图3来进行说明。
如上所述,本实施方式可以通过进行二维位置控制来形成粗大晶粒26。另一方面,本比较例是中间夹着小热容量部分的大热容量部分16彼此之间的距离为恒定的示例。此时,尽管能够进行粗大晶粒26的位置控制,但是该控制仅限于一维控制,而不能对箭头35方向上的晶粒位置进行控制。可以考虑所要求的TFT的性能及其均匀性、以及在TFT制造工序中的图形精度和其均匀性以及再现性等因素来选择粗大晶粒26的控制是采用一维控制还是二维控制。
图4的[1]~[3]是接在图1之后的TFT制造工序的截面图,其中,图4[1]是第一例,图4[2]是第二例,图4[3]是第三例。下面,根据图1的[1]~[4]以及图4的[1]~[3]来进行说明。
接在图1[4]所示的工序之后,对由粗大晶粒26构成的多晶Si膜36进行图形化,沉积栅绝缘膜37,并仅在由小热容量部分18的粗大晶粒26构成的多晶Si膜36上经栅绝缘膜37而形成栅电极38(图4[1])。
由小容量部分18的粗大晶粒26构成的多晶Si膜36的位置不依赖于激光照射的位置,而是依赖于使用了PR法的大热容量部分16的位置。因此,在TFT的形成中,无需使用特殊的激光退火装置,通过步进器就能够容易地使由小热容量部分18的粗大晶粒26构成的多晶Si膜36的位置与栅电极38的位置高精度地对准。栅电极38的位置决定沟道区域39的位置。
粗大晶粒26隔着晶界34而形成为两列。图4[1]的TFT横跨小热容量部分18的两个粗大晶粒26而形成了栅电极38(沟道区域39),并获得了低迁移率且高阈值电压的特性。图4[2]的TFT仅在由小热容量部分18的一个粗大晶粒26构成的多晶Si膜36上形成了栅电极40(沟道区域41),并获得了高迁移率且低阈值电压的特性。图4[3]的TFT在由小热容量部分18的两个粗大晶粒26构成的多晶Si膜36上分别形成了栅电极42a、42b(沟道区域43a、43b),并获得了高迁移率且低阈值电压的特性。这里所称的“低迁移率且高阈值电压”是相对本发明涉及的伪单晶TFT而言的,而与现有技术相比可达到高性能。
如上所述,通过粗大晶粒26的粒径和所要求的沟道长度的结合,可以获得迁移率和阈值电压不同的多种TFT特性。图4[1]的TFT是通过控制使晶界34形成为一个平面(相对于沟道长度方向的一个平面)的。图4[2]的TFT是没有与沟道长度方向近似垂直的晶界34的伪单晶TFT,具有高迁移率且低阈值电压的特性。图4[3]的TFT是没有与沟道长度方向近似垂直的晶界34的伪单晶TFT,并且是与形成为两排的粗大晶粒26的每一排相应地形成沟道部分的双栅结构的伪单晶TFT。
图5的[1]~[3]是接在图4[2]之后的TFT制造工序的截面图,图5[1]是第一例,图5[2]是第二例,图5[3]是第三例。下面,根据图4的[1]~[3]以及图5的[1]~[3]来进行说明。
接在图4[2]所示的工序之后,通过导入杂质来形成源/漏极区域46。在这里,根据需要也可以设置LDD区域。接着,沉积层间绝缘膜47,开接触孔48并形成源/漏电极49,由此完成了TFT(图5[1])。
另外,在图5[2]的TFT中,在大热容量部分16的小粒径区域50上设置栅电极52,从而将小粒径区域50用作沟道部分。此时,小粒径区域50的结晶粒径小于上述粗大晶粒26的粒径。其原因是大热容量部分16的膜厚较厚,热容量大,因此结晶生长受到抑制,从而导致结晶粒径变小。
图5[3]的TFT通过在小热容量部分18的微晶化区域54上设置栅电极56而将微晶化区域54用作沟道部分。
此时,微晶化区域54的结晶粒径小于上述小粒径区域50的粒径。其原因是小热容量部分18的膜厚较薄,热容量小,并且不存在与小热容量部分18形成界面的大热容量部分16,因此,没有如上述的在大热容量部分16中形成的粗大晶粒朝着小热容量部分18结晶生长的情况,而且在小热容量部分18中结晶粒径被微细化。
下面,粗大晶粒是指在本发明中通过完全熔化和非完全熔化的熔融差而形成的晶粒。另外,小晶粒是指在非完全熔化下形成的晶粒,特别是指在大热容量部分16中形成的晶粒。另外,微小晶粒是指在完全熔化且在同质成核的情况下形成的晶粒。并且,这些结晶粒径具有粗大晶粒的粒径>小晶粒的粒径>微小晶粒的粒径的关系。
这些TFT与图5[1]中的将粗大晶粒26用作沟道部分的高性能TFT相比,显示出高阈值电压的特性。因此,通过改变大热容量部分18的配置,可以容易地在同一基板上分开制作阈值电压不同的多种TFT。
通过使用阈值电压不同的多种TFT,可以形成具有电平位移电路和电源升压电路等薄膜集成电路的TFT基板。使用该TFT基板能够形成通过输入低电源电压可获得高工作电压的低功耗电子设备。另外,根据电子设备,还可以获得使用未照射激光而残留有非晶Si膜的区域形成了更高阈值电压的非晶Si TFT的TFT基板。
特别是当将Si膜制成30nm以下的薄膜时,会有由于蚀刻接触孔的工序中Si膜被穿透而工序成品率变差的倾向。与此相对,在本实施方式中,由于大热容量部分16被做成更厚,所以Si膜不会因蚀刻而穿透,因此可以改善成品率。
(第二实施方式)根据图6[1]至图6[4]来说明本发明的第二实施方式。在图6[1]至图6[4]所示的本发明的实施方式中,通过使用热容量大的下层膜而使半导体薄膜具有热容量差。下面,进行详细的说明。
在绝缘基板12上沉积金属膜58(图6[1])。金属膜58优选是W、Ti、Ta等在一般的半导体制造工艺中使用的高熔点金属,也可以是这些高熔点金属的硅化物或氮化物。接着,对金属膜58进行图形化,并将该图形化了的金属膜58用作下层膜(图6[2])。
接着,沉积非晶Si膜14(图6[3])。其结果是,与金属膜58接触的区域成为大热容量部分16,其余的区域成为小热容量部分18。接着,向非晶Si膜14照射准分子激光。激光的能量密度是小热容量部分18完全熔化而大热容量部分16不完全熔化的能量密度。其结果,粗大晶粒从大热容量部分16和小热容量部分18的界面向小热容量部分18一侧生长(图6[4])。
与第一实施方式中利用膜厚差来形成热容量不同的区域的情况相比,当利用作为下层膜的金属膜58的有无来形成热容量不同的区域时,粗大晶粒26的粒径有扩大的倾向。这是因为由于金属膜58的冷却效果,金属膜58和非晶Si膜14的界面更优先成为成核位置,因此,在大热容量部分16中晶核生成的潜伏时间变得更短,其结果,大热容量部分16中的晶核生成的潜伏时间和小热容量部分18中的晶核生成的潜伏时间的时间差变大。
与第一实施方式一样,在本实施方式中也可以通过精密控制形成使沟道部分与粗大晶粒26对应的TFT。并且,在使大热容量部分16与TFT的源/漏极层对应的情况下,将金属膜58用作与配线之间的接触部分,由此可以减少接触电阻。
特别是当将Si膜制成30nm以下的薄膜时,会有由于蚀刻接触孔的工序中Si膜被穿透而工序成品率变差的倾向。与此相对,在本实施方式中,由于金属膜58成为蚀刻阻止层,所以不会出现成品率变差的现象。
(第三实施方式)根据图7的[1]~[3]来说明本发明的第三实施方式。
在绝缘基板上形成了非晶Si膜,该非晶Si膜具有使大热容量部分16成为带状的热容量差(图7[1])。接着,以小热容量部分18完全熔化而大热容量部分16不完全熔化的能量密度照射准分子激光60,该准分子激光是被加工成光束短轴的宽度为10μm以下的极细的线状光束。准分子激光60以其长轴侧横跨大热容量部分16和小热容量部分18的方式来进行照射,并且光束宽度(光束短轴方向)窄。因此,结合热容量差的效果,在被夹在大热容量部分16之间的小热容量部分18上形成进行了二维位置控制的粗大晶粒26(图7[2])。
接着,一边在光束宽度方向上移动一边扫描照射准分子激光60。扫描间距设为粗大晶粒26在扫描方向上的粒径以下。其结果,粗大晶粒26作为晶种在扫描方向上连续生长,从而形成与扫描距离相应长度的连续生长晶粒62(图7[3])。
这里,在不在非晶Si膜14上设置热容量差的现有示例中,尽管如图8[2]所示的那样可获得在扫描方向上连续生长的晶粒63,但其生长位置不能如图8[1]所示的那样在光束长轴方向上进行控制。另外,光束长轴方向的结晶粒径(晶粒宽度)也小。即,在本发明中,通过使用具有热容量差的非晶Si膜,可以形成晶粒宽度扩大的连续生长晶粒62并同时对其进行位置控制。
连续生长晶粒62的位置依赖于使用PR法的大热容量部分16的位置。因此,在TFT的形成中,可以使用步进器来容易并高精度地对准连续生长晶粒62的位置和沟道位置。
(第四实施方式)根据图9来说明本发明的第四实施方式。
在绝缘基板上形成设置了热容量差的非晶Si膜14(图9[1])。大热容量部分16仅被点缀在激光照射开始预定位置的附近,光束长度方向上的大热容量部分16的宽度在扫描方向上逐渐变细。与第三实施方式一样,使用细线状的准分子激光60并以结晶粒径以下的间距来进行扫描照射。该结晶粒径相当于在被夹在大热容量部分16中间的小热容量部分18中形成的晶粒的扫描方向上的粒径。此时,激光退火的照射能量密度被设定为小热容量部分18完全熔化而大热容量部分16不完全熔化的能量密度。
在被夹在大热容量部分16中间的小热容量部分18中形成的粗大晶粒26成为晶种,并在扫描方向上连续生长。此时,通过控制大热容量部分16的形状和大热容量部分16的间隔,可以形成晶粒宽度扩大的连续生长晶粒62,该连续生长的晶粒62即使在扫描过程中大热容量部分16消失也会不间断地连续生长。即,仅通过控制晶种位置,就可以获得位置被控制的连续生长晶粒62。
若要在没有大热容量部分16的区域上也能够良好地控制并维持连续生长,则在大热容量部分16的后端形成的楔形角度α和大热容量部分16的间隔x的值尤其重要,大热容量部分16的后端角α优选为30度至90度,大热容量部分16的间隔x优选为光束长度方向上的结晶粒径的大约两倍以内的尺寸。
连续生长晶粒62的位置依赖于使用PR法的大热容量部分16的位置。因此,在TFT的形成中,可以使用步进器来容易并高精度地对准连续生长晶粒62的位置和沟道位置。
在第五和第六实施方式中,使用在上述实施方式中描述的本发明的TFT基板来形成电子设备。本发明的TFT基板具有本发明的低阈值电压TFT、中阈值电压TFT、大阈值电压TFT等。并且,在第五实施方式中,作为电子设备形成移动电话机,在第六实施方式中,作为电子设备形成移动信息终端,当然,电子设备不限于这些。
(第五实施方式)根据图14的[1]和[2]来说明本发明的第五实施方式。
图14[1]所示的有机EL显示装置100包括信号线101、电源线102、使用低阈值电压TFT和中阈值电压TFT的电源升压电路103、使用低阈值电压TFT的数据线驱动电路104、使用低阈值电压TFT和中阈值电压TFT的放大电路105、使用低阈值电压TFT的栅线驱动电路106、使用低阈值电压TFT和中阈值电压TFT的电平位移电路107、以及使用中阈值电压TFT的电流镜像素电路阵列(current mirror pixel circuit array)(显示区域)108等。
图14[2]所示的移动电话机150将没有图示的收发电路、信号处理电路等收纳在机壳151内,并包括图14[1]的有机EL显示装置100、扬声器152、天线153、开关类部件154、以及扩音器155等。
(第六实施方式)根据图15的[1]和[2]来说明本发明的第六实施方式。
图15[1]所示的液晶显示装置200包括信号线201、电源线202、使用低阈值电压TFT和中阈值电压TFT的电源升压电路203、使用低阈值电压TFT的数据线驱动电路204、使用低阈值电压TFT和中阈值电压TFT的放大电路205、使用低阈值电压TFT的栅线驱动电路206、使用低阈值电压TFT和中阈值电压TFT的电平位移电路207、使用大阈值电压TFT的像素TFT阵列(显示区域)208等。
图15[2]所示的移动信息终端250将没有图示的收发电路、信号处理电路等收纳在机壳251内,并包括图15[1]的液晶显示装置200、笔式输入装置252、以及开关类部件253等。
(发明的实施例)(第一实施例)使用图1[1]~[4]、图2[1]~[4]、图4[1]~[3]、图5[1]~[3]以及图10[1]~[3]来说明基于本发明第一实施方式的第一实施例。
将康宁(corning)1737玻璃基板用作绝缘基板,其中作为覆盖膜沉积了膜厚为300nm的SiO2膜。接着,通过PECVD(plasma enhanced CVD,等离子体增强化学气相沉积)法来沉积非晶Si膜14,使其膜厚达到70nm。接着,通过在500℃下进行10分钟的退火来进行非晶Si膜14的脱氢处理(图1[1])。
接着,通过PR法和DE法对非晶Si膜进行图形化,使一部分区域成为膜厚30nm的薄膜。由此,膜厚厚的部分成为大热容量部分16,膜厚薄的部分成为小热容量部分18。此时,将大热容量部分16和小热容量部分18的界面设为矩形波状。中间夹着小热容量部分18而相对的大热容量部分16彼此之间的距离在短距离区域28设为3μm,在长距离区域30设为4μm,并将各个区域上的大热容量部分16和小热容量部分18之间界面的长度(膜面方向)设为1.5μm(图1[2]、图2[2])。
接着,以能量密度为400mJ/cm2的条件照射激光。膜厚为30nm的部分的微晶化阈值是370mJ/cm2,膜厚为70nm的部分的微晶化阈值是470mJ/cm2,由此选定了上述的照射能量密度。其结果,在大热容量部分16和小热容量部分18的界面附近出现了成核位置24,并向小热容量部分18横向生长的粗大晶粒26经二维位置控制而形成。粗大晶粒26在主要的晶粒成长方向上的粒径在短距离区域28上为1.5μm,在长距离区域30上为2μm,并且在小热容量部分18的中央附近形成了晶界34(图1[3]、[4]、图2[3]、[4])。
这里,照射的能量密度是小热容量部分18完全熔化而大热容量部分16不完全熔化的值,进一步优选为不低于在大热容量部分16的膜厚方向使膜完全晶化的值且不大于在小热容量部分18中发生烧蚀的值。当然要避免在小热容量部分18中出现烧蚀。当在大热容量部分16中残留有非晶相时,由于粗大晶粒26的成核位置24从大热容量部分16和小热容量部分18的界面位置被推向小热容量部分18一侧,从而导致粗大晶粒26的粒径减少。因此,当利用膜厚差来设置热容量差时,如果膜厚差过大就很难选定合适的能量密度。合适的膜厚比优选1∶1.5至1∶8左右,如果对从准分子光源的稳定性角度考虑的能量密度的稳定性加以考虑的话,进一步优选为1∶1.8至1∶6。
并且,即使小热容量部分18不完全熔化,也可以生成具有一定程度大小的晶粒。例如,在340mJ/cm2下可以使直径0.6μm的晶粒生长。但是,与完全熔化的时候相比,晶粒小且排列不规则,另外晶界34的位置也不规则。本实施例中的粗大晶粒26的粒径为1.5μm以上,并且晶界34被控制在小热容量部分18的中心位置。
另外,在这里虽然使大热容量部分16和小热容量部分18的界面为矩形波状,但是不限于此形状,例如如图10所示,大热容量部分16彼此之间的距离也可以不固定。另外,尽管不需要使相对的界面对称,但会使晶界34的形状变得复杂。
接着,通过PECVD法来沉积SiO2膜并使其膜厚达到50nm,作为栅绝缘膜37。接着,通过溅射法来沉积WSi2膜,并通过PR法和DE法来形成栅电极40(图4[2])。之后,通过导入杂质来形成源/漏极区域46,并形成层间绝缘膜47、接触孔48、源/漏电极49等,由此完成TFT(图5[1])。
可以根据所需的栅极长度、TFT特性等而使TFT的沟道区域横跨两排粗大晶粒26(图4[1]),也可以将所述沟道区域做在一排粗大晶粒26之内(图4[2]),还可以在两排粗大晶粒26的每一排内侧做成所述沟道区域,从而构成双栅结构(图4[3])。将这样的粗大晶粒26作为沟道区域而利用的TFT显示出高迁移率且低阈值电压的特性。
例如,在图5[1]所示的结构中,使沟道长度为1μm并将其形成在粗大晶粒26内部时的n沟道TFT的迁移率和阈值电压分别为400cm2/Vs和0.6V。另一方面,仅将大热容量部分16作为活性层来形成TFT时,迁移率和阈值电压分别为160cm2/Vs和1.5V(图5[2])。另外,仅将小热容量部分18作为活性层,即将微晶化的多晶Si膜作为沟道区域而形成TFT时,迁移率和阈值电压分别为70cm2/Vs和2.2V(图5[3])。
使用如上述形成的阈值电压为0.6V的TFT和1.5V的TFT来制作了具有电平位移电路、电源升压电路、驱动电路、以及电流镜像素电路等的薄膜集成电路。然后,制作了具有该薄膜集成电路,并在2.5V的输入下可进行10V驱动的2.1型QVGA有机EL显示装置。接着,制作了作为显示元件安装了该有机EL显示装置的移动电话机。
(第二实施例)使用图11的[1]~[3]来说明基于本发明第一实施方式的第二实施例。
与第一实施例一样,在绝缘基板12上沉积非晶Si膜14,并形成大热容量部分16和小热容量部分18。这里,使大热容量部分16和小热容量部分18的界面为直线形状,并使大热容量部分16彼此之间的间距为5μm。其结果,在以与第一实施例相同的条件照射激光时,如图11[1]所示,在两排粗大晶粒26之间形成了宽度为1μm的微晶化区域64。
根据所要求的TFT的漏电流特性和击穿电压,需要设置LDD(轻掺杂漏)区域66。图11[2]是具有单侧LDD结构的TFT结构示例。图11[3]是具有双侧LDD结构的双栅TFT结构示例。此时,如果将微晶化区域64作为LDD区域66来使用,就会有利于增大LDD区域66的层间电阻。因此,可以形成漏电流值更低、击穿电压更高的TFT。
如果微晶化区域64横跨沟道区域41和LDD区域66,则迁移率就会降低并且由于晶界的漂移电导而导致漏电流增大。因此,为了得到高迁移率、低阈值电压且低漏电流特性的TFT,优选使微晶化区域64仅位于LDD区域66的内部。
(第三实施例)使用图12的[1]~[4]和图13的[1]~[2]来说明基于本发明第二实施方式的第三实施例,即,说明在同一基板上形成了显示三种阈值电压特性的TFT的液晶显示装置用TFT基板的制造方法。
三种TFT分别是将粗大晶粒用于沟道区域的低阈值电压多晶Si TFT(低阈值电压TFT)68、将微晶化晶粒用于沟道区域的中阈值电压多晶SiTFT(中阈值电压TFT)70、以及高阈值电压非晶Si TFT(高阈值电压TFT)72。
将日本电气硝子会社制造的OA-10玻璃基板用作绝缘基板74,其中作为覆盖膜沉积了膜厚为100nm的Si膜。接着,通过溅射法来沉积Ta膜76并使其膜厚达到80nm。接着,对Ta膜76进行图形化,以使在低阈值电压TFT 68中Ta膜76被用作形成大热容量部分的辅助膜,在高阈值电压TFT 72中Ta膜76被用作栅电极。并且,低阈值电压TFT 68中的图形化后的Ta膜彼此之间的距离为5μm(图12[1])。
接着,作为高阈值电压TFT 72的栅绝缘膜,通过PECVD法来沉积膜厚为350nm的SiN膜78。接着,通过图形化来去除低阈值电压TFT 68和中阈值电压TFT 70的区域上的SiN膜78(图12[2])。
接着,通过PECVD法来沉积膜厚为40nm的非晶Si膜80。接着,通过在500℃下进行10分钟的退火来进行非晶Si膜80的脱氢处理。接着,向低阈值电压TFT 68和中阈值电压TFT 70的区域上的非晶Si膜80照射激光82。此时的能量密度是膜厚40nm的微晶化阈值(410mJ/cm2)以上的430mJ/cm2。其结果,在低阈值电压TFT 68的沟道区域上形成了粒径为2.5μm的两排粗大晶粒。由于在大热容量部分的形成中使用了Ta膜76,所以粗大晶粒的直径比第二实施例的2μm变大了。另外,在中阈值电压TFT 70的沟道区域上形成了粒径为20nm以下的微晶化晶粒。另一方面,高阈值电压TFT 72的沟道区域保持非晶相状态(图12[3])。
接着,对部分晶化的非晶Si膜80进行图形化以使其成为各个TFT的活性层。接着,通过PECVD法来沉积SiO2膜84,使其膜厚达到50nm。接着,对SiO2膜84进行图形化,以便在低阈值电压TFT 68和中阈值电压TFT 70中SiO2膜84被用作栅绝缘膜,而在高阈值电压TFT 72中SiO2膜84被用作沟道保护膜(图12[4])。
接着,沉积下层为n+-微结晶Si层并且上层为Cr层的两层膜86。使用PECVD法来沉积n+-微结晶Si层并使其膜厚达到80nm,使用溅射法来沉积Cr层并使其膜厚达到150nm。接着,对两层膜86进行图形化,以便在低阈值电压TFT 68和中阈值电压TFT 70中两层膜86被用作栅电极,在高阈值电压TFT 72中两层膜86被用作源/漏电极(图13[1])。
接着,通过离子掺杂法向低阈值电压TFT 68和中阈值电压TFT 70的源/漏极区域以及LDD区域中导入杂质。接着,对整个TFT进行等离子体氢化处理。
接着,沉积作为层间绝缘膜的SiN膜88。接着,在低阈值电压TFT68和中阈值电压TFT 70上开接触孔90,沉积作为源/漏电极的Al膜92,并将Al膜92图形化为预定形状。接着,沉积作为钝化膜的SiN膜94。最后,在高阈值电压TFT 72上开接触孔96,沉积作为像素电极的ITO膜98,并对ITO膜98进行图形化(图13[2])。
通过上述的处理而形成的低阈值电压TFT 68、中阈值电压TFT 70和高阈值电压Si TFT的阈值电压分别为0.6V、2.2V和5V。
使用如上述形成的低阈值电压TFT 68和中阈值电压TFT 70来形成具有电平位移电路、电源升压电路、驱动电路等的薄膜集成电路,并制作将高阈值电压TFT 72用作像素开关并且在2.5V的输入下有20V的输出的3.5型SXGA液晶显示装置。然后,制作将该液晶显示装置用作显示元件而安装的便携式信息终端(PDA)。
(第四实施例)
使用图7来说明基于本发明第三实施方式的第四实施例。
与第一实施例一样,在绝缘基板上形成具有大热容量部分16和小热容量部分18的非晶Si膜14。这里,大热容量部分16彼此之间的距离为4μm。接着,以420mJ/cm2的能量密度照射口径为长30mm×宽3μm的细线状准分子激光60。其结果,在小热容量部分18中形成了光束长度方向和光束宽度方向的粒径分别为2μm和1.2μm的粗大晶粒26。接着,将粗大晶粒26用作晶种,并以0.8μm的间距扫描照射准分子激光60,可以得到位置精度高的连续生长晶粒62。
图8示出了不设置热容量差而是使用与以往一样的非晶Si膜14并进行了细线状光束的扫描照射的情况。在图8中,连续生长的晶粒63在光束长度方向上的生长位置没有被控制,光束长度方向的结晶粒径小到1μm左右。而且,晶粒生长方向也没有完全被控制,因而若斜着生长,那么也会形成与其他晶粒相撞而结束生长的短的晶粒。
(第五实施例)使用图9来说明基于本发明第四实施方式的第五实施例。
与第四实施例一样,在绝缘基板上形成具有大热容量部分16和小热容量部分18的非晶Si膜14,并扫描照射细线状的激光60。但是,仅在激光照射开始位置的附近设置大热容量部分16,并使大热容量部分16彼此之间的距离x为4μm,晶种形成位置的大热容量部分16彼此之间的距离x为2μm,后端角α为60度,光束扫描方向上的最大的大热容量部分16的长度为7μm。
其结果,即使不在光束扫描区域的整个宽度上设置大热容量部分16,也可以形成位置被控制的连续生长的晶粒62。
本发明当然不限于上述实施方式和实施例。例如,也可以在基板上形成第一非晶Si膜,对第一非晶Si膜的一部分进行蚀刻,并在包含被蚀刻的第一非晶Si膜的基板上形成第二非晶Si膜,由此来形成小热容量部分和大热容量部分。
(第七实施方式)接着,使用图16至图18来说明本发明的第七实施方式。
在有大热容量部分16和小热容量部分18的情况下进行蚀刻时,存在以下两个问题。
如图16[1]所示,第一个问题与大热容量部分16和小热容量部分18分别被连成带状的情况下的蚀刻有关。图16[1]所示的大热容量部分16的膜厚较厚,小热容量部分18的膜厚较薄,从而大热容量部分16和小热容量部分18之间具有膜厚差。
(1)如图16[1]所示,当使用掩模301与大热容量部分16的膜厚相应地进行蚀刻时,如图16[2]所示,对具有小热容量部分18的区域302的粗大晶粒26进行侧面蚀刻,还对下层的绝缘板12进行过蚀刻。
(2)相反地,当与小热容量部分18的膜厚相应地进行蚀刻时,大热容量部分16中的膜没有被完全除去,从而大热容量部分16的膜还残留部分膜厚。
在上述(2)的情况下,当想从具有如图16[1]所示的那样连续的大热容量部分16的区域303,制作出在图16[1]的上下方向上排列的多个TFT时,不同TFT的大热容量部分16彼此之间有可能无法分离,从而是以连接的状态形成。
为了解决这个问题,需要使大热容量部分16与各个TFT单体相应地独立。一旦将大热容量部分16独立,即使由于进行与小热容量部分18的膜厚相应的蚀刻而使大热容量部分16的膜残留部分膜厚,也不会有什么问题。
因此,在本发明的第七实施方式中,如图17[1]所示,从没有图示的大热容量部分形成彼此独立的两个大热容量部分16。即使在这种情况下,两个大热容量部分16彼此之间夹着一个小热容量部分18。如图17[1]所示,从大热容量部分16结晶生长的粗大晶粒26朝着位于两个大热容量部分16之间的区域(形成沟道区域的小热容量部分)结晶生长,同时向各大热容量部分16的周边部分呈放射状结晶生长。
当在粗大晶粒26如图17[1]所示的那样生长的情况下,与图16[1]一样,使用掩模301并与小热容量部分18的薄的膜厚相应地进行蚀刻时,如图17[2]所示,对粗大晶粒26不进行侧面蚀刻,对下层的绝缘基板12也不进行过蚀刻。另一方面,大热容量部分16的膜没有被完全除去,从而大热容量部分16的膜还残留部分膜厚,但由于大热容量部分16独立形成,所以可将不同TFT的大热容量部分16完全分开。
下面说明第二个问题。参考图17[1]可知,粗大晶粒26结晶生长,直到在位于两个大热容量部分16之间的沟道区域上形成晶界。但是,如图17[1]所示,在没有被大热容量部分16进行位置控制的区域,粗大晶粒26在具有大热容量部分16的曲率半径r的拐角部分左右分开地结晶生长,并在向左右分开的部分形成微晶化区域64。若沟道区域包括该微晶化区域64,则会给TFT的特性带来不良影响。
因此,如图18的[1]、[2]所示,本发明的第七实施方式的特点在于在小热容量部分形成的沟道区域的沟道宽度方向上的端部18a不比大热容量部分16的沟道宽度方向上的端部16a向外突出。因此,在本发明的第七实施方式中,可以在小热容量部分18上形成的沟道区域的沟道宽度方向上的两个端部18a之间形成具有W宽度的沟道区域,其中,所述两个端部18a不比大热容量部分16的沟道宽度方向上的端部16a向外突出。由此,在沟道宽度方向具有W宽度的沟道区域中不包括微晶化区域64,沟道区域全部由粗大晶粒26形成,因此,可以确保TFT的期望特性。
为了在小热容量部分的两个端部18a之间形成宽度为W的沟道区域,例如使用图18[1]、[2]所示的掩模301进行蚀刻。
图18[1]所示的本发明第七实施方式中的掩模301具有虚线所示的长方形的形状。然后与小热容量部分18的膜厚相应地进行蚀刻。此时,大热容量部分18的膜没有被完全除去,从而残留大热容量部分16的膜剩有部分膜厚的区域304,但由于大热容量部分16独立形成,所以可将不同TFT的大热容量部分16彼此完全分开。
图18[2]所示的本发明第七实施方式中的掩模301如虚线所示,在大热容量部分16上和在沟道区域的小热容量部分上大小不同。用于覆盖沟道区域的小热容量部分的掩模301与图18[1]相同,被形成为与形成在小热容量部分上的沟道区域的沟道宽度方向上的尺寸W相一致的长方形形状。另一方面,用于覆盖大热容量部分16的掩模301具有比用来覆盖小热容量部分的掩模301大的面积。即,用于覆盖大热容量部分16的掩模301形成为这样的长方形形状,其长边具有比大热容量部分16的沟道宽度方向上的端部16a更突出的长度,其短边具有比大热容量部分16的沟道方向上的端部16b更突出的长度。
若使用图18[2]所示的第七实施方式的掩模301进行蚀刻,则由于只有膜厚薄的多余的粗大晶粒26从掩模301露出来,所以只有小热容量部分18被蚀刻。
但不仅限于图18[1]、18[2]所示的掩模301的形状。另外,虽然使两个大热容量部分16和小热容量部分18之间的界面形状为矩形波形状或三角波形状,但不限于此。
工业实用性根据本发明,通过小热容量部分完全熔化而大热容量部分不完全熔化的能量密度的激光退火来形成多晶半导体薄膜,从而由从小热容量部分和大热容量部分之间的界面生长的粗大晶粒构成沟道部分,因此,可以使用一般的激光退火装置简单地实现低阈值电压、高载流子迁移率以及低漏电流等性能。另外,当根据位置而使大热容量部分之间的距离不同时,由于这些大热容量部分和小热容量部分之间的两个界面不平行,所以可以对从界面生长的晶粒的位置进行二维控制。
换言之,本发明可以起到以下的效果。可以简单地形成被位置控制的粗大晶粒,从而能够容易地形成对准晶粒位置和沟道位置的高性能TFT。此外,可以容易地在同一基板上形成阈值电压不同的多种TFT。此外,通过使用具有由阈值电压特性不同的多种TFT形成的薄膜集成电路的TFT基板,可以获得输入电压低且功耗低的电子设备。
权利要求书(按照条约第19条的修改)1.(修改后)一种薄膜晶体管,其特征在于,由具有热容量大的大热容量部分和热容量小的小热容量部分的多晶半导体薄膜构成,所述小热容量部分至少被用作沟道部分,所述多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光退火而形成,并且由所述小热容量部分形成的所述沟道部分被形成为具有5μm以内的长度。
2.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分的晶粒膜通过所述小热容量部分完全熔化的微晶化阈值以上的能量密度的激光退火而形成,所述大热容量部分的晶粒膜通过所述大热容量部分不完全熔化的小于微晶化阈值的能量密度的激光退火而形成。
3.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分的晶粒膜通过所述小热容量部分完全熔化的微晶化阈值以上且小于烧蚀阈值的能量密度的激光退火而形成,所述大热容量部分的晶粒膜通过所述大热容量部分不完全熔化的多晶化阈值以上且小于微晶化阈值的能量密度的激光退火而形成。
4.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分由所述大热容量部分的晶种结晶生长而成的晶粒膜形成。
5.(修改后)一种薄膜晶体管,其特征在于,由具有热容量大的大热容量部分和热容量小的小热容量部分的多晶半导体薄膜构成,所述小热容量部分至少被用作沟道部分,所述多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光退火而形成。并且所述小热容量部分被夹在两个所述大热容量部分之间而形成,所述两个热容量部分之间的距离根据位置而不同。
6.(修改后)如权利要求1所述的薄膜晶体管,其特征在于,所述多晶半导体薄膜的大热容量部分的膜厚厚,所述多晶半导体薄膜的小热容量部分的膜厚薄,将所述小热容量部分的膜厚与所述大热容量部分的膜厚之比设定在1比1.5至1比8的范围内。
7.(修改后)如权利要求1所述的薄膜晶体管,其特征在于,仅在形成所述大热容量部分的半导体薄膜的区域的基板上形成下层膜,所述下层膜与所述半导体膜直接接触。
8.如权利要求7所述的薄膜晶体管,其特征在于,所述下层膜由金属膜、金属硅化膜或金属氮化膜等热容量大的膜形成。
9.如权利要求1所述的薄膜晶体管,其特征在于,形成所述小热容量部分的晶粒膜是从所述大热容量部分和所述小热容量部分的界面向所述小热容量部分一侧生长而成的。
10.如权利要求9所述的薄膜晶体管,其特征在于,在所述晶粒膜上形成了所述沟道部分。
11.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分被夹在两个所述大热容量部分之间,具有从这些大热容量部分和所述小热容量部分的界面向所述小热容量部分一侧生长并相互接触的两排晶粒膜。
12.如权利要求11所述的薄膜晶体管,其特征在于,在所述两排结晶粒膜的每一个上形成了所述沟道部分。
13.如权利要求9所述的薄膜晶体管,其特征在于,所述小热容量部分的晶粒膜由粗大直径的晶粒膜和微小直径的晶粒膜构成。
14.如权利要求13所述的薄膜晶体管,其特征在于,在包含所述微小直径的晶粒膜的区域形成了杂质导入区域。
15.如权利要求14所述的薄膜晶体管,其特征在于,在包含所述微小直径的晶粒膜的区域形成了低浓度杂质导入区域。
16.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分被夹在两个大热容量部分之间而形成,所述两个大热容量部分彼此独立地形成。
17.(修改后)如权利要求1所述的薄膜晶体管,其特征在于,形成于所述小热容量部分上的所述沟道部分的沟道宽度方向上的端部比所述大热容量部分的沟道宽度方向上的端部位于内侧。
18.一种薄膜晶体管基板,其特征在于,在同一基板上具有由权利要求1至17中任一项所述的薄膜晶体管构成的低阈值电压的薄膜晶体管,和将多晶膜或微晶膜用于沟道部分的中阈值电压的薄膜晶体管。
19.一种薄膜晶体管基板,其特征在于,在同一基板上具有由权利要求1至17中任一项所述的薄膜晶体管形成的低阈值电压的薄膜晶体管;将多晶膜或微晶膜用于沟道部分的中阈值电压的薄膜晶体管;以及将非晶膜用于沟道部分的高阈值电压的薄膜晶体管。
20.如权利要求18所述的薄膜晶体管基板,其特征在于,具有由不同阈值电压的所述薄膜晶体管形成的薄膜集成电路。
21.如权利要求19所述的薄膜晶体管基板,其特征在于,具有由不同阈值电压的所述薄膜晶体管形成的薄膜集成电路。
22.(删除)23.(修改后)一种多晶半导体薄膜的制造方法,其特征在于,包括半导体膜形成步骤,在基板上形成具有热容量大的大热容量部分和热容量小的小热容量部分的非单晶半导体薄膜;以及退火步骤,向所述非单晶半导体薄膜照射所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光,在所述激光退火步骤中,所述激光是被加工成具有短轴和长轴的线状的斑直径的脉冲激光,所述激光一边在所述短轴方向上以所述短轴方向上的所述非单晶半导体薄膜的晶种的粒径以下的移动距离依次移动,一边照射。
24.(修改后)一种多晶半导体薄膜的制造方法,其特征在于,包括半导体膜形成步骤,在基板上形成具有热容量大的大热容量部分和热容量小的小热容量部分的非单晶半导体薄膜;以及退火步骤,向所述非单晶半导体薄膜照射所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光,在所述半导体膜形成步骤中,所述小热容量部分位于两个所述大热容量部分之间,并使这些大热容量部分之间的距离根据位置而不同,由此来形成所述非单晶半导体薄膜。
25.(修改后)如权利要求23所述的多晶半导体薄膜的制造方法,其特征在于,所述大热容量部分仅存在于被所述激光照射的区域的一部分上。
26.一种液晶显示装置,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
27.一种有机电致发光显示装置,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
28.一种移动电话机,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
29.一种便携式信息终端,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
30.一种电子设备,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
权利要求
1.一种薄膜晶体管,其特征在于,由具有热容量大的大热容量部分和热容量小的小热容量部分的多晶半导体薄膜构成,所述小热容量部分至少被用作沟道部分,所述多晶半导体薄膜由下述的晶粒膜形成,所述晶粒膜通过所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光退火而形成。
2.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分的晶粒膜通过所述小热容量部分完全熔化的微晶化阈值以上的能量密度的激光退火而形成,所述大热容量部分的晶粒膜通过所述大热容量部分不完全熔化的小于微晶化阈值的能量密度的激光退火而形成。
3.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分的晶粒膜通过所述小热容量部分完全熔化的微晶化阈值以上且小于烧蚀阈值的能量密度的激光退火而形成,所述大热容量部分的晶粒膜通过所述大热容量部分不完全熔化的多晶化阈值以上且小于微晶化阈值的能量密度的激光退火而形成。
4.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分由所述大热容量部分的晶种结晶生长而成的晶粒膜形成。
5.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分被夹在两个所述大热容量部分之间而形成,所述两个热容量部分之间的距离根据位置而不同。
6.如权利要求1所述的薄膜晶体管,其特征在于,所述多晶半导体薄膜的大热容量部分的膜厚厚,所述多晶半导体薄膜的小热容量部分的膜厚薄。
7.如权利要求1所述的薄膜晶体管,其特征在于,仅在形成所述大热容量部分的半导体薄膜的区域的基板上形成下层膜。
8.如权利要求7所述的薄膜晶体管,其特征在于,所述下层膜由金属膜、金属硅化膜或金属氮化膜等热容量大的膜形成。
9.如权利要求1所述的薄膜晶体管,其特征在于,形成所述小热容量部分的晶粒膜是从所述大热容量部分和所述小热容量部分的界面向所述小热容量部分一侧生长而成的。
10.如权利要求9所述的薄膜晶体管,其特征在于,在所述晶粒膜上形成了所述沟道部分。
11.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分被夹在两个所述大热容量部分之间,具有从这些大热容量部分和所述小热容量部分的界面向所述小热容量部分一侧生长并相互接触的两排晶粒膜。
12.如权利要求11所述的薄膜晶体管,其特征在于,在所述两排结晶粒膜的每一个上形成了所述沟道部分。
13.如权利要求9所述的薄膜晶体管,其特征在于,所述小热容量部分的晶粒膜由粗大直径的晶粒膜和微小直径的晶粒膜构成。
14.如权利要求13所述的薄膜晶体管,其特征在于,在包含所述微小直径的晶粒膜的区域形成了杂质导入区域。
15.如权利要求14所述的薄膜晶体管,其特征在于,在包含所述微小直径的晶粒膜的区域形成了低浓度杂质导入区域。
16.如权利要求1所述的薄膜晶体管,其特征在于,所述小热容量部分被夹在两个大热容量部分之间而形成,所述两个大热容量部分彼此独立地形成。
17.如权利要求1所述的薄膜晶体管,其特征在于,形成于所述小热容量部分上的所述沟道部分的沟道宽度方向上的端部不比所述大热容量部分的沟道宽度方向上的端部向外突出。
18.一种薄膜晶体管基板,其特征在于,在同一基板上具有由权利要求1至17中任一项所述的薄膜晶体管构成的低阈值电压的薄膜晶体管,和将多晶膜或微晶膜用于沟道部分的中阈值电压的薄膜晶体管。
19.一种薄膜晶体管基板,其特征在于,在同一基板上具有由权利要求1至17中任一项所述的薄膜晶体管形成的低阈值电压的薄膜晶体管;将多晶膜或微晶膜用于沟道部分的中阈值电压的薄膜晶体管;以及将非晶膜用于沟道部分的高阈值电压的薄膜晶体管。
20.如权利要求18所述的薄膜晶体管基板,其特征在于,具有由不同阈值电压的所述薄膜晶体管形成的薄膜集成电路。
21.如权利要求19所述的薄膜晶体管基板,其特征在于,具有由不同阈值电压的所述薄膜晶体管形成的薄膜集成电路。
22.一种多晶半导体薄膜的制造方法,其特征在于,包括半导体膜形成步骤,在基板上形成具有热容量大的大热容量部分和热容量小的小热容量部分的非单晶半导体薄膜;以及退火步骤,向所述非单晶半导体薄膜照射所述小热容量部分完全熔化而所述大热容量部分不完全熔化的能量密度的激光。
23.如权利要求22所述的多晶半导体薄膜的制造方法,其特征在于,在所述激光退火步骤中,所述激光是被加工成具有短轴和长轴的线状的斑直径的脉冲激光,所述激光一边在所述短轴方向上以所述短轴方向上的所述非单晶半导体薄膜的晶种的粒径以下的移动距离依次移动,一边照射。
24.如权利要求22所述的多晶半导体薄膜的制造方法,其特征在于,在所述半导体膜形成步骤中,所述小热容量部分位于两个所述大热容量部分之间,并使这些大热容量部分之间的距离根据位置而不同,由此来形成所述非单晶半导体薄膜。
25.如权利要求22所述的多晶半导体薄膜的制造方法,其特征在于,所述大热容量部分仅存在于被所述激光照射的区域的一部分上。
26.一种液晶显示装置,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
27.一种有机电致发光显示装置,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
28.一种移动电话机,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
29.一种便携式信息终端,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
30.一种电子设备,其特征在于,具有权利要求18至21中任一项所述的薄膜晶体管基板。
全文摘要
本发明提供一种能够简单地实现低阈值电压、高载流子迁移率以及低漏电流等特性的TFT等。TFT由具有小热容量部分和大热容量部分的多晶Si膜构成,小热容量部分至少被用作沟道部分。并且,多晶Si膜由通过激光退火而形成的晶粒膜构成,该激光退火的能量密度具有使小热容量部分完全熔化而使大热容量部分不完全熔化的大小。由于由从小热容量部分和大热容量部分的界面生长的粗大晶粒构成沟道部分,所以,可以使用一般的激光退火装置简单地实现低阈值电压、高载流子迁移率以及低漏电流等特性。
文档编号H01L29/786GK1813344SQ20048001820
公开日2006年8月2日 申请日期2004年3月15日 优先权日2003年6月27日
发明者奥村展 申请人:日本电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1