一种图形化敏感金属或金属氧化物材料的加工方法与流程

文档序号:11679422阅读:327来源:国知局
一种图形化敏感金属或金属氧化物材料的加工方法与流程

本发明涉及半导体技术领域,尤其涉及一种图形化敏感金属或金属氧化物材料的加工方法。



背景技术:

在现代微纳功能器件制备中,很多物理性能的应用对材料的质量以及加工工艺提出了超高的要求。其中稀有金属,过渡金属,三五族金属在制备成超薄薄膜的情况下,材料将变得极其敏感。甚至化合物材料中不同的原子比在物理特性上都往往呈现出千差万别的特性。甚至常用的水,氧气等物质更将极大地破坏材料特性(晶格结构,电学特性,磁学特性等)。为此在加工中要求这种敏感材料与水,氧气等物质实现完全隔离,以获得高质量的材料,实现器件物理特性。而在半导体加工过程中在图形化的器件结构时,引进水、氧气等常用物质又是不可避免的,这就需要通过工艺设计和控制尽可能避免各种物质对器件性能的影响。



技术实现要素:

本发明实施例通过提供一种图形化敏感金属或金属氧化物材料的加工方法,解决了现有技术中在半导体加工过程中图形化敏感金属及金属氧化物材料时,引进水、氧气等物质对器件性能的影响的技术问题。

本发明实施例提供了一种图形化敏感金属或金属氧化物材料的加工方法,所述加工方法包括如下步骤:

在真空环境下在衬底上生长一层敏感金属或金属氧化物材料;

在所述敏感金属或金属氧化物材料上生长一层介质层;

在所述介质层上生长派瑞林涂层;

通过光刻、刻蚀的方法,把光刻胶上面的图形转移到所述派瑞林涂层上;

用丙酮溶液去除光刻胶,实现所述派瑞林涂层的图形化;

用所述派瑞林涂层做掩蔽,用干法刻蚀的方法同时刻蚀介质层和所述敏感金属或金属氧化物材料把图形转移;

通过机械拉伸的方法去除所述派瑞林涂层,实现所述敏感金属或金属氧化物材料的图形化。

进一步地,所述真空环境的真空压力小于10-4pa。

进一步地,所述敏感金属或金属氧化物材料和所述介质层采用溅射的方式生长,溅射功率为50w,氩气流量为20sccm。

进一步地,所述介质层为sio2、al2o3。

进一步地,所述生长派瑞林涂层包括如下步骤:

对派瑞林涂材料加热到650℃裂解成为单体;

在20℃-30℃下用cvd的方式在所述介质层上均匀生长50nm所述派瑞林涂层。

进一步地,所述通过光刻、刻蚀的方法,把光刻胶上面的图形转移到所述派瑞林涂层上,包括如下步骤:

在所述派瑞林涂层上面进行光刻;

用氧气刻蚀掉没有光刻胶保护的所述派瑞林涂层,把光刻图形转移到派瑞林涂层;其中所述氧气的流量为20sccm,刻蚀上功率为300w,下功率为20w。

进一步地,所述干法刻蚀的方法为ar等离子体物理刻蚀;其中氩气流量为30sccm,rf频率13.56mhz,上功率为300w,下功率为100w。

本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:

本发明实施例是在真空环境下进行加工,尽可能的避免敏感金属及金属氧化物材料与空气的接触;本发明实施例中干法刻蚀的过程中,将敏感金属及金属氧化物材料至于惰性气体中保护起来,从而避免对半导体器件性能的影响。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1为本发明实施例中一种图形化敏感金属或金属氧化物材料的加工方法的流程示意图;

图2为本发明实施例中在真空环境下进行溅射生长的敏感金属及金属氧化物材料、介质层和派瑞林涂层光刻的示意图;

图3为本发明实施例中图形化派瑞林涂层的示意图;

图4为本发明实施例中用干法刻蚀的方法同时刻蚀介质层和所述敏感金属或金属氧化物材料把图形转移的示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示,本发明实施例提供一种图形化敏感金属或金属氧化物材料的加工方法,所述加工方法包括如下步骤:

步骤110:在真空环境下在衬底上生长一层敏感金属或金属氧化物材料;

具体的,所述真空环境的真空压力小于10-4pa;所述敏感金属或金属氧化物材料和所述介质层采用溅射的方式生长,溅射功率为50w,氩气流量为20sccm。

步骤120:在所述敏感金属或金属氧化物材料上生长一层介质层;

具体的,所述介质层必须相对稳定,不容易与空气或者水等溶液发生反应,比如,所述介质层为sio2、al2o3。

步骤130:在所述介质层上生长派瑞林涂层;

具体的,所述生长派瑞林涂层包括如下步骤:

步骤1301:对派瑞林涂材料加热到650℃裂解成为单体;

步骤1302:在20℃-30℃下用cvd的方式在所述介质层上均匀生长50nm所述派瑞林涂层。派瑞林涂层在室温20℃-30℃下进行生长,可以保证不影响器件性能,同时可以通过机械拉伸的方法进行去除。

步骤140:通过光刻、刻蚀的方法,把光刻胶上面的图形转移到所述派瑞林涂层上,如图2和图3所示;

具体的,包括如下步骤:

步骤1401:在所述派瑞林涂层上面进行光刻;

步骤1402:用氧气刻蚀掉没有光刻胶保护的所述派瑞林涂层,把光刻图形转移到派瑞林涂层;其中所述氧气的流量为20sccm,刻蚀上功率为300w,下功率为20w。

步骤150:用丙酮溶液去除光刻胶,实现所述派瑞林涂层的图形化;

步骤160:用所述派瑞林涂层做掩蔽,用干法刻蚀的方法同时刻蚀介质层和所述敏感金属或金属氧化物材料把图形转移,如图4所示;

具体的,所述干法刻蚀的方法为ar等离子体物理刻蚀;其中氩气流量为30sccm,rf频率13.56mhz,上功率为300w,下功率为100w。采用为ar等离子体物理刻蚀,这样就能保证在刻蚀过程中不引入其它与敏感金属及金属氧化物材料发生反应的元素,进而影响材料及器件的性能。

步骤170:通过机械拉伸的方法去除所述派瑞林涂层,实现所述敏感金属或金属氧化物材料的图形化。

实施例1:基于敏感金属mg电极cossbar结构图形化的加工方法,具体步骤如下所述:

步骤201:先在真空环境中溅射一层mg金属,覆盖一层al2o3介质层,然后通过常规的光刻、蒸发、剥离工艺生长一层下电极,然后再生长派瑞林涂层,再光刻、刻蚀、剥离工艺把光刻胶上面的图形转移到派瑞林涂层上;

步骤202:用以派瑞林涂层做掩蔽,用ar等离子体物理刻蚀的方法,刻蚀掉al2o3介质层和mg金属层,实现图形化,再用机械拉伸的方法去除派瑞林涂层,实现mg电极cossbar结构的图形化。

实施例2:基于金属氧化物mgo图形化的加工方法,具体步骤如下所述。

步骤301:先在真空环境中溅射一层mgo,覆盖一层sio2介质层,然后再生长派瑞林涂层,再通过光刻、刻蚀、剥离工艺把光刻胶上面的图形转移到派瑞林涂层上;

步骤302:用以派瑞林涂层做掩蔽,用ar等离子体物理刻蚀的方法,刻蚀掉sio2介质层和mgo,实现图形化,再用机械拉伸的方法去除派瑞林涂层。

本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:

本发明实施例是在真空环境下进行加工,尽可能的避免敏感金属及金属氧化物材料与空气的接触;本发明实施例中干法刻蚀的过程中,将敏感金属及金属氧化物材料至于惰性气体中保护起来,从而避免对半导体器件性能的影响。

尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1