碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法

文档序号:8540946阅读:820来源:国知局
碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
【技术领域】
[0001]本发明属于锂离子电池技术领域,具体涉及一种碳包覆的二氧化钛纳米片阵列和石墨烯复合电极材料及其制备方法,该材料所表现出的电化学性能较好,能够在能源领域中得到应用。
【背景技术】
[0002]锂离子电池由于其能量密度高、循环性能好,得到了广泛的应用,进而在很多领域逐步的取代了传统铅酸电池等化学电源。随着社会的发展,能源和环境问题日益凸显,新能源产业得到了越来越多的重视。目前混合动力汽车和电动汽车行业的迅速发展,锂离子电池作为其中重要的储能装置被广泛的应用。
[0003]现在商业所用的负极电极材料以石墨为主,虽然石墨的成本低,但是其理论容量(372mAhg-1)较低,且安全性差等问题受到限制。二氧化钛是一种具有长寿命、安全环保等特性的高性能锂离子电池负极材料。与碳材料相比,其具有嵌锂电位高(1.7V vs Li/Li+),化学稳定性好,安全性高等优点,另外二氧化钛纳米片阵列由于具有二维的特殊结构使其具有更大的比表面积、孔径和孔体积、更强的吸附能力,有望更大程度的提高储锂性能。二维片状结构作为电极能极大程度的缩短锂离子的扩散路径,进而促进电池的倍率性能,但是它本身电子导电性较差,对其性能的发挥具有限制作用。
[0004]石墨烯是一种二维的碳单原子层结构,由于具有超薄的厚度,较大的比表面积,极高的导电率等优点,使其在电子技术、能量储存等领域得到广泛的应用。因此为了提高二氧化钛材料的导电性,将石墨烯和二氧化钛纳米片阵列复合到一起,会极大的提高材料的综合性能。到目前为止,将二氧化钛纳米片阵列长在石墨烯上仍然是一个重要的攻关课题。中国专利CN 104157833 A通过聚合物(苯乙烯嵌段共聚物)的引入,后经过高温碳化除去聚合物,得到石墨烯/ 二氧化钛复合多孔材料。中国专利CN 102496700 A先在1M的浓强碱性条件下反应,然后在经过酸交换,最后在经过高温焙烧合成出的石墨烯-二氧化钛纳米管复合材料。这些合成方法较复杂,合成成本较高,且对合成过程中所使用的设备要求较高。为了克服这些缺点,我们采用简单的溶剂热合成方法一步合成出碳包覆的二氧化钛纳米片阵列/石墨烯复合电极材料,该材料所表现出的电化学性能较好。

【发明内容】

[0005]本发明采用溶剂热法先合成出了垂直长在石墨烯基底上的含钛有机复合物纳米片阵列,然后在氢气和氩气混合气氛下热处理获得碳包覆的二氧化钛纳米片阵列与石墨烯的复合电极材料。通过复合提高了电极的导电性和锂离子电池的倍率性能和循环性能。
[0006]本发明中二氧化钛纳米片是由锐钛矿相纳米粒子组成,同时碳包覆的二氧化钛纳米片的厚度为8?10纳米。
[0007]所述的碳包覆二氧化钛纳米片阵列与石墨烯的复合电极材料的制备方法,具体操作步骤如下:
[0008](I)将20?10mg氧化石墨烯超声分散在10?15mL醇中,超声处理30?120分钟,得到氧化石墨烯的醇溶液;
[0009](2)将丙三醇、醇、无水乙醚混合,搅拌20?30min ;
[0010](3)将步骤(I)得到的氧化石墨烯溶液快速倾倒入搅拌状态下的步骤(2)得到的溶液中,搅拌10?30min;
[0011 ] (4)将0.4?1.0g钛源加入到步骤(3)的溶液中,搅拌4?6小时;
[0012](5)将步骤(4)的溶液装入反应釜中,密闭后在自生压力下进行恒温晶化,待晶化完毕后离心,固体产物用无水乙醇洗涤,再在80?120°C空气中干燥I?2天,得到含钛的有机复合物纳米片阵列与石墨烯复合材料原粉;
[0013](6)将上述原粉在氩气和氢气的混合气氛中焙烧,得到碳包覆的二氧化钛纳米片阵列与石墨烯复合材料。
[0014]所述步骤(I)和步骤⑵中的醇为甲醇、乙醇和异丙醇中的一种或多种的混合;
[0015]所述步骤⑵中无水乙醚和步骤⑴中氧化石墨稀的质量比为2.4xl(T3?1.5χ1(Γ2:1 ;
[0016]步骤(3)中,使用的丙三醇、醇(步骤(I)与步骤(2)的总量)和无水乙醚的体积比为 0.7 ?1.6:1 ?2.5:1 ;
[0017]步骤⑶中搅拌的转速为500?900转/分钟;
[0018]步骤(4)中的钛源为硫酸氧钛、钛酸四丁酯或异丙醇钛,优选硫酸氧钛;
[0019]步骤(5)中的晶化温度为110?140°C,晶化时间为24?36小时;
[0020]步骤(6)中氩气和氢气的混合气氛中,氢气的体积分数为5?10% ;
[0021]步骤(6)中焙烧的温度为450?550°C,焙烧时间为3?10小时。
【附图说明】
[0022]图1为本发明实施例2制备的碳包覆的二氧化钛纳米片阵列/石墨烯复合材料的X射线衍射(XRD)谱图,说明该方法所合成出来的样品晶相均为锐钛矿相的二氧化钛;
[0023]图2为本发明实施例2制备的碳包覆的二氧化钛纳米片阵列/石墨烯复合材料的扫描电镜图片,说明,且纳米片的厚度为9.8纳米左右;
[0024]图3为本发明实施例2制备的碳包覆的二氧化钛纳米片阵列/石墨烯复合材料的透射电镜图片,进一步证明二氧化钛纳米片垂直均匀的长在石墨烯的表面上;
[0025]图4为本发明实施例2制备的碳包覆的二氧化钛纳米片阵列/石墨烯复合材料的元素分布扫描图片,证明了复合样品表面均匀分布着碳元素,钛元素和氧元素,进一步证明了二氧化钛纳米片的表面包覆着一层碳层;
[0026]图5为本发明实施例2制备的碳包覆的二氧化钛纳米片阵列/石墨烯复合材料和相同方法下合成的纯二氧化钛在不同倍率下充放电倍率图。实心表示放电过程,空心表示充电过程。在10mAg4的电流密度下复合样品的比容量达到331.1mAhg^1,而纯二氧化钛的比容量为180.emAhg—1;随着电流密度的增加,复合材料的比容量都比纯二氧化钛的比容量高,然后将电流密度在调回lOOmAg—1时,复合材料的比容量能够达到SUmAhg—1比纯二氧化钛的比容量高。说明碳包覆的二氧化钛纳米片阵列/石墨烯复合材料具有比纯二氧化钛更优秀的倍率性能。
[0027]图6为本发明实施例2制备的碳包覆的二氧化钛纳米片阵列/石墨烯复合材料和相同方法下合成的纯二氧化钛在800mAg<的电流密度下循环200圈的充放电循环图。实心表示放电过程,空心表示充电过程。在SOOmAg-1的电流密度下循环200圈碳包覆的二氧化钛纳米片阵列/石墨烯复合材料的比容量仅仅衰减了 14.2%,而纯二氧化钛衰减了 80.48%,说明了碳包覆的二氧化钛纳米片阵列/石墨烯复合材料具有优秀的循环性能。
【具体实施方式】
[0028]下面通过实施例进行详述本发明,但并不只限这些例子。
[0029]实施例1
[0030](I)将20mg氧化石墨烯超声分散在15mL甲醇中,超声处理氧化石墨烯30分钟,得到氧化石墨烯溶液A液;
[0031](2)将11.6mL丙三醇、3.56mL甲醇、11.5mL无水乙醚混合,搅拌20min,得到溶液B液;
[0032](3)将A液全部快速倾倒入搅拌状态下的B液中,600转/分钟搅拌lOmin,此时丙三醇、甲醇(包括步骤⑴中使用的甲醇)、无水乙醚的体积比为1:1.6:1 ;
[0033](4)将0.4g硫酸氧钛加入到步骤(3)溶液中,搅拌6小时;
[0034](5)将上述液体装入反应釜中,密闭后在自生压力下110°C下晶化36小时,待晶化完毕后,固体产物经离心,用无水乙醇洗涤多次,再在80°C空气中干燥I天,得到含钛的有机复合物纳米片阵列与石墨烯的复合材料原粉;
[0035](6)将上述原粉在氩气和氢气(氢气体积分数为10% )的混合气氛中450°C焙烧10小时,得到碳包覆的二氧化钛纳米片阵列与石墨稀的复合材料,产物质量是0.15go
[0036]通过XRD表征发现所获得样品的结构均为锐钛矿相(PDF 21-1272),由扫描图片和透射图片可得到样品的形貌为碳包覆的二氧化钛纳米片阵列均匀的垂直生长在石墨烯的表面,且碳包覆的二氧化钛纳米片的厚度为8.5纳米左右,通过元素分布扫描图片可知,氧元素,钛元素和碳元素均匀的分布在整个样品形貌上,同时可以证明碳元素包覆在了二氧化钛纳米片的表面。
[0037]实施例2
[0038](I)将50mg氧化石墨烯超声分散在15mL乙醇中,超声处理氧化石墨烯70分钟,得到氧化石墨烯溶液A液;
[0039](2)将11.6mL丙三醇、3.56mL乙醇、11.5mL无水乙醚混合,搅拌30min,得到溶液B液;
[0040](3)将A液全部快速倾倒入搅拌状态下的B液中,600转/分钟搅拌lOmin,此时丙三醇、乙醇(包括步骤(I)中使用的乙醇)、无水乙醚的体积比为1:1.6:1 ;
[0041 ] (4)将0.8g硫酸氧钛加入到步骤(3)溶液中,搅拌4小时;
[0042](5)将上述液体装入反应釜中,密闭后在自生压力下110°C下晶化36小时,待晶化完毕后,固体产物经离心,用无水乙醇洗涤多次,再在80°C空气中干燥I天,得到含钛的有机复合物纳米片阵列与石墨烯的复合材料原粉;
[0043](6)将上述原粉在氩气和氢气(氢气体积分数为10% )的混合气氛中550°C焙烧3小时,得到碳包覆的二氧化钛纳米片阵列与石墨稀的复合材料,产物质量是0.21go
[0044]通过XRD表征发现所获得
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1