用于制造包括随机分布的纤维素纤维和非随机分布的合成纤维的一体纤维结构的方法和...的制作方法

文档序号:2425558阅读:172来源:国知局
专利名称:用于制造包括随机分布的纤维素纤维和非随机分布的合成纤维的一体纤维结构的方法和 ...的制作方法
技术领域
本发明涉及包括纤维素纤维和合成纤维组合在一起的纤维结构。更具体地讲,本发明涉及具有不同微观区域的纤维结构。
背景技术
纤维素纤维结构例如纸幅已为本领域所熟知。低密度纤维网目前常用于纸巾、卫生纸、面巾纸、餐巾纸、湿擦拭物等等。此类纸制品的巨大消耗已经产生了对于改善产品型式和其加工方法的需求。为了满足此类需求,造纸厂商必须平衡机器和原料的成本与将制品递送给消费者的总成本。
包括纤维素纤维在内的各种天然纤维以及多种合成纤维已经被用于造纸业中。典型的薄页纸主要由纤维素纤维组成。用于薄纸的绝大多数纤维素纤维来源于树木。使用了很多种类,包括含长纤维的软木(针叶树或裸子植物)和含短纤维的硬木(落叶或被子植物)。另外,采用了很多不同的制浆方法。一方面,有牛皮纸浆制法和硫酸盐纸浆制法,伴随有强烈漂白,生产柔韧的、不含木质素的和非常白的纤维。另一方面,有热机械或化学机械纸浆制法,生产柔韧性差、在光照下易于发黄以及可湿性差的含较高木质素的纤维。通常纤维所含的木质素越多,纸浆就越便宜。
尽管造纸业中采用的纤维种类很广,当仅用于一次性薄纸和纸巾制品时,来源于树的纤维素纤维有其局限性。木质纤维通常干模量高并且直径较粗大,这导致它们的抗弯刚度较高。此类高刚度纤维有助于生产硬的非软薄纸。另外,木质纤维具有讨厌的特性,干燥时硬度高,典型地使得所得的产品柔软性差,润湿时由于水合作用的缘故硬度低,典型地使得所得的产品吸收性差。木基纤维也具有局限性,因为纤维的几何尺寸或形态基本上不能被“加工”。除了很少量种类变异之外,造纸厂商必须接受大自然提供的纤维。
要制成可用的纤维网,典型的一次性薄纸和纸巾制品中的纤维通过化学相互作用彼此粘结起来。如果不要求湿强度,则粘结一般限于纤维素分子上的羟基之间自然产生的氢键结合。如果在最终的产品中要求暂时性或永久性湿强度,则可添加增强树脂。这些树脂或通过与纤维素共价反应或是通过在现有的氢键周围形成保护性的分子层而起作用。无论如何,所有这些粘结机制均具有局限性。它们容易产生刚性的和非弹性的键合,其对制品的柔软性和能量吸收性产生不利的影响。
使用彼此和/或对纤维素纤维具有热熔合能力的合成纤维对于解决前面提到的局限性是一个极好的办法。木基纤维素纤维不是热塑性的,因此不能与其它纤维热粘合。合成的热塑性聚合物可被纺成很小的纤维直径并通常比纤维素的模量要低。这导致纤维的抗挠刚度很低,有助于产生良好的制品柔软性。另外,合成纤维的工作截面在纺纱过程中可进行微加工。合成纤维也具有理想的水稳定模量特性。与纤维素纤维不同的是,当润湿时,正确设计的合成纤维不损失任何明显的模量,因此用此类纤维制成的纤维网在吸收性用途期间抗萎陷。在薄页纸制品中使用热粘合合成纤维导致非常柔韧的纤维(其对柔软性有益)与耐水的高拉伸键(其对柔软性和湿强度有益)相结合的坚固网络。
因此,本发明涉及包括纤维素和合成纤维结合起来的纤维结构和用于加工此类纤维结构的方法。
发明概述本发明提供一种新颖的一体纤维结构和一种用于加工这样一种纤维结构的方法。本发明的一体或单层纤维结构包括随机分布在整个纤维结构上的多根纤维素纤维和以非随机重复图案分布在整个纤维结构上的多根合成纤维。非随机重复图案可包括基本连续的网络图案、基本半连续的图案、不连续的图案,以及它们的任意组合。纤维结构可包括具有密度较高的多个微观区域和具有密度较低的多个微观区域。至少一种所述多个微观区域、最典型地具有密度较高的多个微观区域与多根合成纤维的非随机重复图案相对应。
在纤维结构的一个实施方案中,多根合成纤维的至少一部分与合成纤维和/或与纤维质纤维进行互连。纤维可在包括非随机重复图案的区域中有益地互连。
合成纤维可包括选自聚烯烃、聚酯、聚酰胺、聚羟基链烷酸酯、多糖,以及它们的任意组合的材料。合成纤维还可包括选自聚对苯二甲酸乙二酯、聚对苯二甲酸丁二醇酯、聚-1,4-环己烯二亚甲基对苯二甲酸酯、间苯二酸共聚物、乙二醇共聚物、聚烯烃、聚乳酸、聚羟基醚酯、聚羟基醚酰胺、聚己酸内酯、聚酯酰胺、多糖,以及它们的任意组合的材料。
用于加工依照本发明的一体纤维结构的方法实质上包括以下步骤(a)提供一个纤维网,其包括随机分布在整个纤维网上的多根纤维素纤维和随机分布在整个纤维网上的多根合成纤维;和(b)使纤维网中的至少一部分合成纤维重新分布形成一体纤维结构,其中多根合成纤维的基本部分以非随机重复图案分布在整个纤维结构上。
包括随机分布在整个纤维网上的多根纤维素纤维和随机分布在整个纤维网上的多根合成纤维的纤维网(本文也称作“胚”网)可通过提供一种包括与多根合成纤维相混合的多根纤维素纤维的含水浆液、将含水浆液沉积在一个成型构件上和使浆液部分脱水来制备。该方法也包括将胚纤维网从成型构件转移到一个模塑构件的步骤,在模塑构件上,可进一步使胚网脱水并依照所需的图案造型。纤维网中的合成纤维重新分布的步骤可发生在纤维网被设置在模塑构件上之时。除此之外或可供选择地,重新分布的步骤可发生在纤维网与一个干燥表面例如一个干燥转筒的表面结合之时。
更具体地讲,用于加工纤维结构的方法包括以下步骤提供一个包括多个流体可透过区域和多个流体不可透过区域的模塑构件、与模塑构件以一种面对面关系将胚纤维网设置在其上、将纤维网转移到一个干燥表面上和将胚网加热到足以引起纤维网中的合成纤维重新分布的温度。合成纤维的重新分布可通过熔化合成纤维、至少部分移动合成纤维或它们的组合来实现。
模塑构件是微观单平面的并具有一个纤维网接触侧和一个与纤维网接触侧相对的背侧。流体可透过区域(最典型地包括孔)从模塑构件的纤维网侧延伸到背侧。当纤维网被设置在模塑构件上时,纤维网的纤维倾向于适形于模塑构件的微观几何形状,以便设置在模塑构件上的纤维网包括与模塑构件的多个流体可透过区域相对应的第一多个微观区域和与模塑构件的多个流体不可透过区域相对应的第二多个微观区域。可对设置在模塑构件上的纤维网施加流体压力差以促进第一多个纤维网微观区域陷入到模塑构件的流体可透过区域中。
可通过模塑构件或是从相反的一侧用热气加热设置在模塑构件上的纤维网。当通过模塑构件加热纤维网时,第一多个微观区域首先暴露于热气中。纤维网也可在与干燥转筒结合时进行加热。纤维网被加热到足以引起纤维网中的合成纤维重新分布的温度,以便合成纤维包括非随机重复图案,同时纤维素纤维保持随机分布在整个纤维网上。
模塑构件的一个实施方案包括一个以面对面关系连接到图案形骨架上的加强元件。在这样一个实施方案中,图案形骨架包括模塑构件的纤维网侧。图案形骨架可包括一种选自树脂、金属、玻璃、塑料或任何其它合适的材料的合适材料。图案形骨架可具有基本连续的图案、基本半连续的图案、不连续的图案或它们的任意组合。
本发明的方法可有益地包括以下步骤在模塑构件和一个合适的压制表面例如一个干燥转筒的表面之间压缩胚网以致密所选择的部分胚网。最典型地,纤维网的致密部分为与模塑构件的多个流体不可透过区域相对应的那些部分。
在一种本文附图中所示的工业连续生产过程中,每个成型构件和模塑构件包括一个绕着支撑辊连续行进的环形带。
附图概述

图1为本发明方法的一个实施方案的示意性侧视图。
图2为具有基本连续骨架的模塑构件的一个实施方案的示意性平面图。
图3为图2所示的并沿着图2的线3-3截取的模塑构件的示意性剖面图。
图4为具有基本半连续骨架的模塑构件的一个实施方案的示意性平面图。
图5为具有不连续图案骨架的模塑构件的一个实施方案的示意性平面图。
图6为沿着图5的线6-6截取的示意性剖面图。
图7为设置在模塑构件上的本发明的一体纤维结构的示意性剖面图。
图8为设置在模塑构件上的胚网的更详细的示意性剖面图,显示随机分布在整个纤维结构上的示例性合成纤维。
图9为与图8类似的剖面图,显示了本发明的一体纤维结构,其中合成纤维以非随机重复图案分布在整个结构上。
图10为本发明的一体纤维结构的一个实施方案的示意性平面图。
图11为在一个压制表面和模塑构件之间压缩的本发明的一体纤维结构的示意性剖面图。
图12为双组分合成纤维与另一个纤维互连的示意性剖面图。
发明详述本文所用下列术语具有下述含义。
“一体纤维结构”是一种包括多个相互缠结的纤维素和合成纤维的排列,以形成一个具有某种预定的显微几何、物理和美学性质的单层片制品。如本领域所熟知的那样,在一体纤维结构中,纤维素和/或合成纤维可为层状。
“微观几何结构”或其取代词是指相当小的(即,“微观的”)纤维结构细节例如表面纹理,与结构的整个构型无关,并与其整体(即,“宏观的”几何结构不同。例如,在本发明的模塑构件中,流体可透过区域和流体不可透过区域组合起来构成模塑构件的微观几何结构。在考虑其处于一个二维构型例如X-Y平面上时,含“宏观的”或“宏观上”的术语是指一个结构或其一部分的“宏观几何结构”或整体几何结构。例如,在宏观水平上,当将其放置在一个平坦表面上时,纤维结构由一个相当平薄的片组成。然而,在微观水平上,纤维结构可由形成不同高度的多个微观区域例如具有第一高度的网络区域和分散分布的并从网络区域向外伸出来形成第二高度的多根纤维“枕块”组成。
“定量”为纤维结构的单位面积(典型地按平方米进行测定)的重量(按克测量),其中单位面积在纤维结构平面上取得。由其测定定量的单位面积的尺寸和形状取决于具有不同定量的各个区域的相对和绝对尺寸和形状。
“厚度”为一个样本的宏观厚度。厚度应该与差异区域的高度区分开来,差异区域的高度为各个区域的微观特征。最典型地,在均匀施加的95克每平方厘米(g/cm2)的载荷下测定厚度。
“密度”为定量与一个区域的厚度(正交于纤维结构平面取得)之比。视密度为样本的定量除以引入其中的经过适当单位换算的厚度。本文所用的视密度单位为克每立方厘米(g/cm3)。
“纵向”(或“MD”)为平行于通过加工设备所制造的纤维结构流动的方向。“横向”(或“CD”)为垂直于纵向以及平行于所制造的纤维结构的总平面的方向。
“X”、“Y”和“Z”表示传统的笛卡尔坐标系统,其中相互垂直的坐标“X”和“Y”确定一个基准X-Y平面,以及“Z”确定正交于X-Y平面。“Z向”表示垂直于X-Y平面的任何方向。类似地,术语“Z尺寸”是指平行于Z向测量的尺寸、距离或参数。当一个元件例如一个模塑构件弯曲或换句话讲偏离平面时,X-Y平面遵循元件的构型。
“基本连续的”区域(面积/网络/骨架)是指这样一个区域,在其内部,可用一条整个线的长度完全在那个区域内部延伸的连续线将任意两点连接起来。就是说,基本连续的区域或图案在平行于X-Y平面的所有方向上具有基本的“连续性”并仅在那个区域的边缘处被终止。术语“基本上”与“连续的”相结合用来表示尽管绝对连续性为优选的,略微背离于绝对连续性可为容许的,只要那些背离不会影响所设计的和采用的纤维结构或模塑构件的性能。
“基本半连续的”区域(面积/网络/骨架)是指这样一个区域,其在除了平行于X-Y平面的至少一个方向之外的所有方向上具有连续性,并且在该区域中不能用一条整个线的长度完全在那个区域内部延伸的连续线将任意两点连接起来。半连续的骨架可在仅平行于X-Y平面的一个方向上具有连续性。根据上述的连续区域类推,尽管除了在至少一个方向以外的所有方向上绝对连续性为优选的,略微背离于绝对连续性可为容许的,只要那些背离不会影响结构或模塑构件的性能。
“不连续的”区域(或图案)是指在平行于X-Y平面的所有方向上不连续的离散的并彼此分离的区域。
“模塑构件”为一个可被用作包括多根纤维素纤维和多根合成纤维的胚网的支撑的结构元件,也是成型或“模塑”一个本发明所需的纤维结构微观几何结构的成型单元。模塑构件可包括具有流体可透过区域以及为其上所生产的结构赋予微观的三维图案能力的任何元件,并包括(没有局限性)单层和多层结构,包括静止的金属板、皮带、纺织物(包括提花型等编织图案)、带子和辊。
“加强元件”在模塑构件的某些实施方案中是一个合意的(但非必需的)元件,主要起到提供或有助于包括如树脂材料的模塑构件的整体性、完整性和耐用性的作用。加强元件可为流体可透过的或部分流体可透过的,可具有各种实施方案和编织图案,并可包括各种材料,例如交织纱(包括提花型等编织图案)、毡、塑料、其它适用的合成材料或它们的任意组合。
“压制表面”为一个设置在模塑构件纤维网侧的纤维网可紧贴其进行压缩以致密部分纤维网的表面。
“重新分布温度”是指引起构成本发明的一体纤维结构的多根合成纤维的至少一部分熔化、至少部分移动、收缩、或换句话讲改变它们在纤维网中的初始位置、状态或形状导致纤维网中的多根合成纤维的基本部分“重新分布”以便合成纤维包括遍布于纤维网上的非随机重复图案的温度或温度范围。
“互连的纤维”是指已经通过熔化、胶粘、卷绕彼此进行熔合或粘合、或换句话讲结合到一起,同时保持其各自的单独纤维特性的两种或更多种纤维。
一般而言,用于制造一体纤维结构100的本发明方法包括以下步骤(a)提供包括随机分布在整个纤维网上的多根纤维素纤维和随机分布在整个纤维网上的多根合成纤维的纤维网10,和(b)使纤维网中的合成纤维的至少一部分重新分布以形成一体纤维结构100,其中多根合成纤维的基本部分以非随机重复图案分布在整个纤维结构上。
如本领域所熟知的那样,胚网10可在成型构件13上进行成型。在显示本发明的连续方法的一个示例性实施方案的图1中,来自流浆箱12的纤维素和合成纤维的含水混合物或含水浆液11可被沉积到一个被辊13a、13b和13c支撑并在箭头A方向上绕其连续行进的成型构件13上。据信将纤维首先沉积到成型构件13上有助于在所制造的纤维结构100的整个宽度上的多根纤维定量的均匀性。本发明考虑了纤维(合成的以及纤维素的)的分层沉积。
成型构件13是流体可透过的,并且位于成型结构13下方以及将流体压力差施加到位于其上的多根纤维的真空装置14有助于使成型结构13上所成型的胚网10至少部分脱水并或多或少地促进成型构件13上的纤维的平均分布。成型构件13可包括本领域所熟知的任何结构,包括但不限于金属丝、包括加强元件和连接到其上的树脂骨架的复合带以及任何其它适用结构在内。
在成型构件13上形成的胚网10可用本领域已知的任何常规方法从成型构件13转移到到模塑构件50上,例如通过施加足以使位于成型构件13上的胚网10与其分离并粘附到模塑构件50上的真空压力的真空底板15。在图1中,模塑构件50包括被辊50a、50b、50c和50d所支撑的并在箭头B的方向上绕着其行进的环形带。模塑构件50具有纤维网接触侧51和与纤维网接触侧相对的背侧52。
本发明的纤维结构可被缩短。例如,可设想在用于制造一体纤维结构100的本发明的连续方法中,模塑构件50的线速度可小于成型构件13的线速度。在从成型构件13到模塑构件50的转移点处使用这样一种速度差在造纸领域是常见的,并可用来实现所谓的“微收缩”,其典型地据信当应用于低稠度湿纤维网时是有效的。美国专利4,440,597详细描述了此类“湿微收缩”,为了说明微收缩的主要机制起见,将其公开内容引入本文以供参考。简言之,湿微收缩涉及将具有低纤维稠度的纤维网从第一构件(例如一个多孔成型构件)转移到比第一构件移动慢的第二构件(例如一个稀松编织织物)上。成型构件13的速度可大于模塑构件50速度的约1%至约25%。描述引起微收缩的所谓冲击转移的其它专利包括例如美国专利5,830,321、关国专利6,361,654和美国专利6,171,442,为了说明冲击转移方法和通过其制造的产品起见,它们的公开内容均引入本文以供参考。
在某些实施方案中,多根纤维素纤维和多根合成纤维可被直接沉积到模塑构件50的纤维网接触侧51上。模塑构件50的背侧52典型地如特定工序所需的那样接触设备例如支撑辊、导辊、真空装置等。模塑构件50包括多个流体可透过区域54和多个流体不可透过区域55,如图2和3所示。流体可透过区域54从模塑构件50的纤维网侧51贯穿模塑构件50的厚度H至背侧52,如图3所示。有益的是,多个流体可透过区域54和多个流体不可透过区域55中的至少一种形成遍布在模塑构件50上的非随机分布的重复图案。这样一种图案可包括基本连续的图案(图2)、基本半连续的图案(图4)、不连续的图案(图5)或它们的任意组合。模塑构件50的流体可透过区域54可包括从模塑构件50的纤维网接触侧51延伸到背侧52的孔。孔壁可垂直于纤维网接触表面51,或可供选择地,可如图2、3、5和6所示是倾斜的。如果需要,由孔构成的几个流体可透过区域54可为“盲的”或“闭合的”(未示出),如1999年10月26日授予Polat等人的美国专利5,972,813中所述,其公开内容引入本文以供参考。
当包括多个随机分布的纤维素纤维和多个随机分布的合成纤维的胚网10被沉积在模塑构件50的纤维网接触侧51时,设置在模塑构件50上的胚网10至少部分地适形于模塑构件50的图案,参见图7。为读者方便起见,设置在模塑构件50上的纤维网用参考数字20来标示(并可称为“模塑”网)。
模塑构件50可包括一个皮带或带子,当其平放在基准X-Y平面上时为宏观单平面的,其中Z向垂直于X-Y平面。同样,一体纤维结构100可被认为是宏观单平面的并平放在一个平行于X-Y平面的平面上。垂直于X-Y平面为Z方向,沿着其延伸结构100的厚度H、或者模塑构件50或结构100的不同微观区域的高度。
如果需要,可将包括一个皮带的模塑构件50制成一个压毡(未示出)。一种依照本发明使用的适用压毡可依照以下美国专利说明进行制造,1996年8月27日授予Phan的5,549,790;1996年9月17日授予Trokhan等人的5,556,509;1996年12月3日授予Ampulski等人的5,580,423;1997年3月11日授予Phan的5,609,725;1997年5月13日授予Trokhan等人的5,629,052;1997年6月10日授予Ampulski等人的5,637,194;1997年10月7日授予McFarland等人的5,674,663;1997年12月2日授予Ampulski等人的5,693,187;1998年1月20日授予Trokhan等人的5,709,775;1998年7月7日授予Ampulski等人的5,776,307;1998年8月18日授予Ampulski等人的5,795,440;1998年9月29日授予Phan的5,814,190;1998年10月6日授予Trokhan等人的5,817,377;1998年12月8日授予Ampulski等人的5,846,379;1999年1月5日授予Ampulski等人的5,855,739;和1999年1月19日授予Ampulski等人的5,861,082,它们的公开内容均引入本文以供参考。在一个可供选择的实施方案中,可根据1996年10月29日授予Cameron的美国专利5,569,358的说明将模塑构件200制成一个压毡。
模塑构件50的一个主要实施方案包括一个连接到加强元件70上的树脂骨架60,参见图2-6。树脂骨架60可具有某种预选图案,图案可为基本连续的(图2)、基本半连续的(图4)、不连续的(图5和6)或以上的任意组合。例如,图2和3显示具有多个孔的基本连续的骨架60。加强元件70可为基本上流体可透过的并包括如图2-6所示的编织筛网,或诸如有孔元件、毡、网状物、具有多个孔洞的平板之类的非编织元件,或它们的任意组合。加强元件70与模塑构件50上的孔54相对应的部分在加工一体纤维结构100过程期间为陷入模塑构件的流体可透过区域的纤维提供支撑并防止所制造的纤维网穿过模塑构件50(图7),从而减少所得结构100中的针孔的产生。适用的加强元件70可根据以下美国专利进行制造1996年3月5日授予Stelljes等人的5,496,624、1996年3月19日授予Trokhan等人的5,500,277和1996年10月22日授予Trokhan等人的5,566,724,它们的公开内容均引入本文以供参考。
可如以下美国专利所说明的那样将加强元件70应用于骨架60上,1996年8月27日授予Phan的5,549,790;1996年9月17日授予Trokhan等人的5,556,509;1996年12月3日授予Ampulski等人的5,580,423;1997年3月11日授予Phan的5,609,725;1997年5月13日授予Trokhan等人的5,629,052;1997年6月10日授予Ampulski等人的5,637,194;1997年10月7日授予McFarland等人的5,674,663;1997年12月2日授予Ampulski等人的5,693,187;1998年1月20日授予Trokhan等人的5,709,775;1998年8月18日授予Ampulski等人的5,795,440;1998年9月29日授予Phan的5,814,190;1998年10月6日授予Trokhan等人的5,817,377和1998年12月8日授予Ampulski等人的5,846,379,它们的公开内容均引入本文以供参考。
如果需要,可利用由提花型编织物等构成的加强元件70。示例性的带可见于以下美国专利中,1995年7月4日授予Chiu等人的5,429,686;1997年9月30日授予Wendt等人的5,672,248;1998年55日授予Wendt等人的5,746,887和2000年1月25日授予Wendt等人的6,017,417,仅为显示编织图案的主要结构起见,它们的公开内容均引入本文以供参考。本发明设想包括纤维网接触侧51的模塑构件50具有这样一种提花型或类似图案。成型构件13、模塑构件50和压制表面210可采用各种样式的提花编织图案。文献中记录,在不希望在辊缝中压缩或压印的场合,例如典型地发生在转移到一个干燥转筒例如一个Yankee干燥转筒时,提花编织特别有用。
模塑构件50可包括从多个底部伸出来(典型地侧向)的多个悬垂部分,如以Trokhan等人的名义于2000年10月24日提交的普通转让的专利申请序列号09/694,915中所说明的那样,其公开内容引入本文以供参考。悬垂部分比加强元件70处高,在悬垂部分和加强元件之间形成空隙空间,在该空间中,胚网10的纤维可进行偏移以形成纤维结构100的悬臂部分。具有悬垂部分的模塑构件50可包括由至少两层形成的并以面对面关系接合到一起的多层结构。每个层可包括一个与本文附图中所示的那些结构类似的结构。接合的各层放置成使一层的孔与另一层的一部分骨架相叠合(在垂直于模塑构件50的大致平面的方向上),该部分形成上述的悬垂部分。包括多个悬垂部分的模塑构件50的另一个实施方案可通过一种包括透过一个包括透明区域和不透明区域的屏蔽差异固化一层光敏树脂或其它可固化材料的方法进行加工。不透明区域包括具有不同不透明度的区域,例如具有较高不透明度的区域(不透明的,例如黑色)和具有较低的部分不透明度的区域(即,具有某种透明性)。
胚网10一被放置在模塑构件50的纤维网接触侧51,纤维网10就至少部分适形于模塑构件50的三维图案,参见图7。另外,可采用各种方法引起或促进胚网10的纤维素和合成纤维适形于模塑构件50的三维图案并成为一个模塑网(为读者方便起见,在图1中标为“20”。然而,要理解的是,本文可交替使用参考数字“10”和“20”以及术语“胚网”和“模塑网”)。
一种方法包括将流体压力差施加到多根纤维上。例如,可排列设置在模塑构件50的背侧52处的真空装置16和/或17将真空压力施加到模塑构件50上并因而施加到设置在其上的多根纤维上,参见图1。在由各个真空装置16和17的真空压力产生的流体压力差ΔP1和/或ΔP2的作用下,部分胚网10可陷入模塑构件50的孔中以及换句话讲适形于它们的三维图案。
通过将部分纤维网陷入模塑构件50的孔中,相对于模塑网20的其它部分的密度而言,可降低在模塑构件50的孔中形成的所得枕块150的密度。未陷入孔中的区域160稍后可通过在一个压制表面210和模塑构件50之间(图11)例如在一个干燥转筒200的一个表面210和辊50c之间形成的压缩辊缝中压缩纤维网20而进行压印,参见图1。如果压印,则区域160的密度相对于枕块150的密度增加很多。
纤维结构100的两种多个微观区域可被认为是位于两个不同的高度处。本文所用的区域高度是指其距一个基准平面(即,X-Y平面)的距离。为方便起见,可将基准平面想象为水平面,其中距基准平面的高向距离是垂直的(即,Z向的)。结构100的特定微观区域的高度可使用本领域所熟知的适于此用途的任何非接触测量装置进行测量。一种特别适宜的测量仪器是一种非接触式的激光位移探测器,其光束尺寸为0.3×1.2mm,范围为50mm。适用的非接触式激光位移探测器有Idec Company销售的MX1A/B型探测器。可供选择地,一种在本技术中为人熟知的接触式指针测量尺也可用于测量不同的高度。这样一种指针测量尺被描述于授予Carstens的美国专利4,300,981中,其公开内容引入本文以供参考。依照本发明的纤维结构100可被放置在基准平面上,其中压印区域160与基准平面相接触。枕块150远离基准平面垂直延伸。多个枕块150可包括对称的枕块、不对称的枕块(图7中的数字基准150a)或它们的组合。
微观区域的不同高度也可通过采用具有不同深度或高度的三维图案(未示出)的模塑构件50进行成型。具有不同深度/高度的此类三维图案可通过用砂纸打磨部分模塑构件50降低其高度进行制作。同样,包括可固化材料的模塑构件50可通过使用一个三维屏蔽进行制作。通过使用一个包括不同深度/高度的凹陷/凸起的三维屏蔽,可形成一个也具有不同高度的相应的骨架60。对于前述目的,可采用形成表面具有不同高度的其它常规技术。
为改善通过一个真空装置16和/或17和/或一个真空拾取底板15(图1)将流体压力差突然施加到所加工的纤维结构上可能将某些长丝或其一部分全部拉穿过模塑构件200并因此导致形成最终纤维结构中的所谓针孔的可能负面影响,模塑构件50的背侧52可为“带纹理的”以形成微观表面不平度。在模塑构件50的某些实施方案中,那些表面不平度是有益的,因为它们防止在模塑构件50的背侧52和造纸设备的一个表面(例如,真空装置的一个表面)之间形成真空密封,从而在其之间产生一个“渗漏”,并因此减轻在通气干燥法中施加真空压力的不良后果。产生这样一种渗漏的其它方法被公开于美国专利5,718,806;5,741,402;5,744,007;5,776,311和5,885,421中,它们的公开内容均引入本文以供参考。
采用如美国专利5,624,790;5,554,467;5,529,664;5,514,523和5,334,289中所描述的“不等光透射技术”也可产生漏损,它们的公开内容均引入本文以供参考。模塑构件可通过将一个光敏树脂涂层涂敷到一个具有不透明部分的加强元件上,然后将涂层透过具有透明和不透明区域的屏蔽以及也透过加强元件暴露于具有致活波长的光下进行制作。
产生背侧表面不平度的另一种方法包括使用带纹理的成型表面或带纹理的阻挡膜,如美国专利5,364,504;5,260,171和5,098,522中所述,其公开内容均引入本文以供参考。模塑构件可通过在加强元件在带纹理的表面上行进时将光敏树脂浇注在加强元件上,然后将涂层透过一个具有透明和不透明区域的屏蔽暴露于具有致活波长的光下进行制作。
本发明可包括一个任选步骤,其中胚网10(或模塑网20)用一个包括一个沿着模塑构件行进的环形带的柔韧材料片进行覆盖,所以对于某一段时间而言,胚网10被夹在模塑构件和柔韧的材料片(未示出)之间。柔韧材料片可具有小于模塑构件的透气率,并且在某些实施方案中可为不透气的。流体压力差透过模塑构件50施加到柔韧片上引起柔韧片的至少一部分朝向模塑构件50的三维图案偏斜,并且在某些情形下进入其中,从而迫使纤维网设置在模塑构件50上的部分紧密适形于模塑构件50的三维图案。美国专利5,893,965描述了利用柔韧材料片的方法和设备的原则安排,其公开内容引入本文以供参考。
除流体压力差之外或可供选择地,也可采用机械压力来促进本发明纤维结构100的微观三维图案的形成。这样一种机械压力可通过任何合适的压缩表面来产生,包括例如辊的表面或带的表面(未示出)。压制表面可为光滑的或本身具有三维图案。在后一情况中,可采用压制表面作为一个压花装置与模塑构件50的三维图案共同或独立于其在所制造的纤维结构100上形成一个明显不同的凸起和/或凹陷的微观图案。此外,可采用压制表面将多种添加剂例如软化剂和油墨施放到所加工的纤维结构上。可采用各种常规技术例如油墨辊、或喷射装置、或喷洒器(未示出)直接或间接地将多种添加剂施放到所加工的纤维结构上。
纤维网中的至少一部分合成纤维重新分布的步骤可在纤维网成型步骤之后来完成。最典型地,重新分布可发生在纤维网被设置在模塑构件50上时,例如通过一个加热装置90和/或干燥表面210,例如通过图1中所示的一个与一个干燥转筒的通风帽(例如,Yankee式干燥通风帽)组装在一起的加热装置80。在这两种情况中,箭头示意性地指示热气冲击纤维网的方向。重新分布可通过使至少一部分合成纤维熔化或换句话讲改变它们的构型来实现。不希望被理论所束缚,我们相信在约230℃至约300℃范围的重新分布温度下,组成纤维网的至少一部分合成纤维可因为其收缩和/或在高温的作用下至少部分熔化而移动。图8和9用来示意性地图示说明胚网10中合成纤维的重新分布。在图8中,显示在热量已经被作用到纤维网上之前合成纤维101、102、103和104随机分布在整个纤维网上。在图9中,热量被作用到纤维网上,引起合成纤维101-104至少部分熔化、收缩或换句话讲改变它们的形状,从而引起纤维网中合成纤维的重新分布。
不希望被理论所束缚,我们相信合成纤维可在施加足够高的温度之后在两个现象中的至少一个的影响下移动。如果温度高到足以熔化合成(聚合物)纤维,由于表面张力的缘故,所得的液体聚合物将趋于使其表面积/体积降至最低,并在纤维未受到热影响部分的末端形成一个球形形状(图9中的102、104)。另一方面,如果温度处于熔点之下,具有高残余应力的纤维将通过纤维的收缩或卷曲软化到减轻应力的点处。相信这会发生,因为聚合物分子典型地更趋于处在非线性卷曲状态。已经被高度退火然后在加工期间进行冷却的纤维由已被拉伸成亚稳态构型的聚合物分子构成。在随后的加热过程中,分子,进而纤维,回到最小自由能卷曲状态。
由于合成纤维至少部分熔化或软化,它们变得能够与相邻的纤维无论是纤维素纤维或是合成纤维互连。不希望被理论所束缚,我们相信纤维的互连可包括机械互连和化学互连。当至少两个相邻的纤维在分子水平上结合到一起使得各个互连纤维的特性在互连的区域基本消失时发生化学互连。当一个纤维仅仅适形于相邻纤维的形状并且在互连的纤维间没有化学反应时发生纤维的机械互连。图12示意性地显示了机械互连的一个实施方案,其中一个纤维111被相邻的合成纤维112物理“捕捉”。纤维111可为一个合成纤维或一个纤维素纤维。在图12所示的一个实施例中,合成纤维112包括一个双组分结构,双组分结构包括一个芯112a和一个鞘或壳112b,其中芯112a的熔化温度大于鞘112b的熔化温度,以便在加热时仅鞘112b熔化同时芯112a保持其完整性。要了解的是,在本发明中可采用包括多于两个组分的多组分纤维。
加热纤维网中的合成纤维可通过加热与模塑构件50的流体可透过区域相对应的多个微观区域来实现。例如,可将来自加热装置90的热气吹过纤维网,如图1示意性所示。也可采用预干燥机(未示出)作为进行纤维重新分布的能量来源。要了解的是,根据本方法,热气的流动方向可相对于图1所示的方向倒转,以便热气穿过模塑构件透入纤维网,参见图9。然后,纤维网设置在模塑构件50的流体可透过区域中的“枕块”部分150将主要受到高温气体的影响。模塑构件50将使纤维网的其余部分免于受到热气的影响。因此,互连的纤维将主要在纤维网的枕块部分150中进行互连。根据本方法,合成纤维可进行重新分布,使得具有较高密度的多个微观区域与多根合成纤维的非随机重复图案相对应。可供选择地,合成纤维可进行重新分布,使得具有较低密度的多个微观区域与多根合成纤维的非随机重复图案相对应。
尽管合成纤维以本文所述的方式进行重新分布,纤维素纤维的随机分布未受到热的影响。因此,纤维结构100包括随机分布在整个纤维结构上的多根纤维素纤维和以非随机重复图案分布在整个纤维结构上的多根合成纤维。图10示意性地显示纤维结构100的一个实施方案,其中纤维素纤维110被随机分布在整个结构上以及合成纤维120按非随机重复图案进行重新分布。
纤维结构100可具有具有较高定量的多个微观区域和具有较低定量的多个区域。多根合成纤维的非随机重复图案可与具有较高定量的微观区域相对应。可供选择地,多根合成纤维的非随机重复图案可与具有较低定量的微观区域相对应。如本文所述,合成纤维的非随机重复图案可选自基本连续的图案、基本半连续的图案、不连续的图案或它们的任意组合。
合成纤维的材料可选自聚烯烃、聚酯、聚酰胺、聚羟基链烷酸酯、多糖,以及它们的任意组合。更具体地讲,合成纤维的材料可选自聚对苯二甲酸乙二酯、聚对苯二甲酸丁二醇酯、聚-1,4-环己烯二亚甲基对苯二甲酸酯、间苯二酸共聚物、乙二醇共聚物、聚烯烃、聚乳酸、聚羟基醚酯、聚羟基醚酰胺、聚己酸内酯、聚酯酰胺、多糖,以及它们的任意组合。
如果需要,胚网或模塑网可具有不同的定量。在纤维结构100中产生不同定量的微观区域的一种方法包括在以下成型构件上形成胚网10,该成型构件包括主要显示于图5和6中的结构,即该结构包括连接到一个流体可透过的加强元件上的多个不连续的凸起,如普通转让的美国专利5,245,025;5,277,761;5,443,691;5,503,715;5,527,428;5,534,326;5,614,061和5,654,076中所述,它们的公开内容均引入本文以供参考。在这样一个成型构件上形成的胚网10将具有具有较高定量的多个微观区域和具有较低定量的多个微观区域。
在本方法的另一个实施方案中,重新分布的步骤可分两步来完成。作为一个实施例,首先,合成纤维可在纤维网被设置在模塑构件上时进行重新分布,例如通过将热气吹过纤维网的枕块,以便合成纤维按照例如具有较低密度的多个微观区域与多根合成纤维的非随机重复图案相对应的第一图案进行重新分布。然后,纤维网可被转移到其中合成纤维可根据第二图案进行进一步重新分布的另一个模塑构件上。
如本领域所熟知的那样,纤维结构100可任选地被缩短。缩短可通过从一个硬表面例如一个干燥转筒200的表面210将结构100起绉来实现,参见图1。同样如本领域所熟知的那样,起绉可用一个刮粉刀250来完成。例如,起绉可依照1992年4月24日授予Sawdai的美国专利4,919,756来完成,其公开内容引入本文以供参考。可供选择地或除此之外,如上所述,缩短可通过微收缩来实现。
缩短的纤维结构100典型地在纵向上比横向上延展性更大并可容易绕着缩短过程所形成的铰合线弯曲,铰合线通常在横向上即沿着纤维结构100的宽度延伸。未被起绉和/或换句话讲未被缩短的纤维结构100被认为是在本发明的范围之内。
可采用本发明的纤维结构100制造多种制品。所得的制品可用于空气、油和水的过滤器、真空清洁器过滤器、炉过滤器、茶或咖啡袋、热绝缘材料和隔音材料、用于一次性使用的卫生制品例如尿布、妇女护垫和失禁制品的无纺材料、用于改善穿戴吸湿性和柔软性的可生物降解的纺织物例如微纤维或可透气的织物、用于收集和去除灰尘的荷静电的结构纤维网、用于硬纸例如包装纸、书写纸、新闻纸、瓦楞纸的强化和纤维网和薄纸例如卫生纸、纸巾、餐巾纸和面巾纸的纤维网、医学用途例如手术单、伤口敷料、绷带和皮肤贴片。对于特定用途,纤维结构也可包括气味吸收剂、驱蚁剂、杀虫剂、灭鼠剂等等。所得的制品吸收水和油并可用于油或水溢出清理、或在农业或园艺应用场合控制水的保持和释放。
权利要求
1.一种用于制造一体纤维结构的方法,所述方法包括以下步骤提供包括随机分布在整个所述纤维网上的多根纤维素纤维和随机分布在整个所述纤维网上的多根合成纤维的纤维网;和引起所述合成纤维的至少一部分与所述纤维素纤维和所述合成纤维互连,优选地包括加热所述合成纤维;其中所述互连发生在具有非随机和重复图案的区域中,优选地其中所述非随机重复图案选自基本连续的图案、基本半连续的图案、不连续的图案或它们的任意组合。
2.如权利要求1所述的方法,所述方法还包括引起所述纤维网中的合成纤维的至少一部分重新分布的步骤。
3.如权利要求2所述的方法,其中引起所述合成纤维的至少一部分重新分布的步骤包括至少部分移动所述合成纤维。
4.如权利要求2或权利要求3所述的方法,其中引起所述合成纤维的至少一部分重新分布的步骤包括至少部分熔化所述合成纤维。
5.如权利要求1所述的方法,所述方法还包括以下步骤提供包括多个流体可透过区域和多个流体不可透过区域的微观单平面模塑构件,优选地包括以面对面关系接合到所述图案形骨架上的加强元件,并且优选地其中所述模塑构件包括选自基本连续的图案、基本半连续的图案、不连续的图案或它们的任何组合的图案形骨架;提供构造成用来在其上接收所述纤维网的干燥表面;以与其面对面关系将所述纤维网设置在所述模塑构件上;将所述纤维网转移到所述干燥表面上;和用热气将所述胚网加热到足以至少部分熔化所述合成纤维的温度;优选地所述方法还包括在所述模塑构件和压制表面之间压缩所述纤维网以致密所述胚网的多个部分的步骤。
6.如权利要求5所述的方法,其中提供胚纤维网的步骤包括以下步骤提供包括与多根合成纤维相混合的多根纤维素纤维的含水浆液;提供构造成用来在其上接收所述含水浆液的成型构件,优选地所述成型构件包括接合到流体可透过的加强元件上的不连续的多个突起的图案;将所述含水浆液沉积到所述成型构件上;和使所述浆液部分脱水以形成包括随机分布在整个所述纤维网上的多根纤维素纤维和随机分布在整个所述纤维网上的多根合成纤维的胚纤维网。
7.一种用于制造一体纤维结构的方法,所述方法包括以下步骤提供包括与多根合成纤维相混合的多根纤维素纤维的含水浆液;将所述含水浆液沉积到宏观单平面的流体可透过的成型构件上并使所述沉积的浆液部分脱水以形成包括随机分布在整个所述纤维网上的多根纤维素纤维和随机分布在整个所述纤维网上的多根合成纤维的胚网;将所述胚网从所述成型构件转移到包括多个流体可透过区域和多个流体不可透过区域的非随机重复图案的微观单平面的模塑构件上,其中设置在所述模塑构件上的纤维网包括与所述模塑构件的多个流体可透过区域相对应的第一多个微观区域和与所述模塑构件的多个流体不可透过区域相对应的第二多个微观区域;和将所述纤维网的第一多个微观区域和第二多个微观区域中的至少一种加热到足以引起所述第一多个微观区域和所述第二多个微观区域中的至少一种中的合成纤维至少部分熔化的温度,从而引起所述第一多个微观区域和所述第二多个微观区域中的至少一种中的纤维素纤维和合成纤维间互连。其中所述方法优选地还包括引起所述胚网中的合成纤维的至少一部分重新分布以便所述多根合成纤维的基本部分以非随机重复图案被分布在整个所述纤维网上的步骤。
8.一种包括多个密度较高的区域和多个密度较低的区域的不等密度的一体纤维结构,所述结构包括(a)随机分布在整个所述纤维结构上的多根纤维素纤维,和(b)多根合成纤维,其中所述多根合成纤维的至少一部分包括在所述密度较低的区域中与所述合成纤维和/或与所述纤维素纤维进行互连的互连纤维。
9.如权利要求8所述的不等密度的一体纤维结构,其中所述合成纤维被随机分布在整个所述纤维结构上。
10.如权利要求8所述的不等密度的一体纤维结构,其中所述合成纤维以非随机重复图案被分布在整个所述纤维结构上。
全文摘要
一种用于制作一体纤维结构(100)的方法,所述方法包括以下步骤提供一个包括随机分布在整个纤维网上的多根纤维素纤维(100)和随机分布在整个纤维网上的多根合成纤维(120)的纤维网;并且引起合成纤维的至少一部分与纤维素纤维和合成纤维互连,其中互连发生在具有非随机和重复图案的区域中。一体纤维结构包括随机分布在整个纤维结构上的多根纤维素纤维和以非随机重复图案分布在整个纤维结构上的多根合成纤维。在另一个实施方案中,一体纤维结构包括随机分布在整个纤维结构上的多根纤维素纤维和随机分布在整个纤维结构上的多根合成纤维,其中多根合成纤维的至少一部分包括与合成纤维和/或与纤维素纤维进行互连的互连纤维。
文档编号D21F11/04GK1745213SQ200480003394
公开日2006年3月8日 申请日期2004年2月4日 优先权日2003年2月6日
发明者P·D·特罗汉, D·V·潘, O·波拉特 申请人:宝洁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1