高温-燃料电池的阴极材料及可由此材料制备的阴极的制作方法

文档序号:6846364阅读:266来源:国知局
专利名称:高温-燃料电池的阴极材料及可由此材料制备的阴极的制作方法
技术领域
本发明涉及一种用于燃料电池,特别是用于高温-燃料电池的阴极材料,以及一种适于制备含该阴极材料的阴极的方法。
现有技术高温-燃料电池(SOFC)由于高的温度对所用材料提出了特殊要求。如由DE 19543759 C1已知,在高温-燃料电池中使用由镍和钇稳定化的氧化锆(YSZ)制成的金属陶瓷作为阳极材料和YSZ作为电解质材料。
在这类高温-燃料电池中所使用的阴极材料由于其高温特别应具有下列特性该材料应具有适配于其周围材料的热膨胀系数,以避免由热引起的应力和由此产生的损坏。该阴极材料还应具有与其邻接材料的化学相容性以及具有高的电化学活性。这意味该阴极材料应有良好的氧还原特性。此外,还希望具有高的电导性和高的离子传导性。
由EP 0593281 B1已知一种电极材料,其由La0.8Ca0.2Mn(1-y)(Al、Co、Mg、Ni)yCO3组成,其中0.05≤y≤0.2。该材料适于高温-燃料电池的热膨胀特性。
由文献[1]还已知,为提高化学稳定性和减少与YSZ-电解质的反应,使用具有A-位亚化学计量的(La,Sr)MnO3-阴极。
在[2]中公开对(La,Sr)MnO3-阴极的功率的改进,其中使用La0.8-xSr0.2FeO3-δ阴极。但在该材料中的A-位亚化学计量被认为是降低功率的。
在EP 568281 A1和EP 510820 A2中描述了由亚化学计量量的钙钛矿组成的电极。按照EP 568281 A1,在镧/钙-亚锰酸盐中该(镧+钙)/锰的比应小于1,以确保不形成氢氧化镧。在EP 510820 A2中表明,在用于电极的钙钛矿材料中应欠钙、镧或锶。曾提及以镧-锰酸盐或镧-钴酸盐作材料,其中部分钙可由锶取代。
从德国专利DE 19702619 C1已知,如通过应用含钴的阴极材料可达到改进电化学特性。描述了一种适于阴极的亚化学计量的材料,其式为LwMxMnyCozO3,其中L=镧系元素,M=Ca或Sr,不同于EP0593281 B1,其0.9<(w+x)<1。该材料的亚化学计量量由于其改进的氧还原特性应起到有利的作用。
此外,由文献中已知,(La,Sr)(Co,Fe)氧化物是一种用作高温-燃料电池的阴极材料的非常好的材料,特别是La0.6Sr0.4Co0.2Fe0.8O3-δ。
比较在文献中所述的各种阴极材料的特性通常是困难的,因为其常在不同的操作条件下使用和试验。制备甚至在低于800℃有效工作的高温-燃料电池是所希望的。这时电池电压应不低于0.7V,并可达尽可能高的功率,例如高于0.8W/cm2,特别是高于1W/cm2。
目的和解决方案本发明的目的在于提供一种用于高温-燃料电池的改进型阴极材料,该材料与至今现有技术已知的阴极材料相比能明显提高功率。此外,本发明的目的还在于提供一种由上述阴极材料的用于该阴极的制备方法。
本发明的目的是通过具有独立权利要求的总体特征的阴极材料达到的。此外,本发明的目的是通过用于该阴极的制备方法以及通过具有从属权利要求的总体特征的阴极达到的。该阴极材料、阴极和制备方法的有利方案列于各相关权利要求中。
发明主题权利要求的阴极材料由具有下列总组成的材料组成Ln1-x-yMyFe1-zCzO3-δ,其中0.02≤x≤0.05,0.1≤y≤0.6,0.1≤z≤0.3,0≤δ≤0.25和Ln=镧系元素,M=锶或钙和C=钴或铜。这里,一种特别成功的可望方案的组成为La0.58Sr0.4Fe0.8Co0.2O3-δ。除铜外,特别是材料中的钴含量产生在阴极上的良好的氧还原特性。该铜含量或钴含量最高0.3。相对于通常所用材料如由YSZ组成的电解质,更高的含量通常会导致化学不相容性和太大的热膨胀系数。铁和钴或铁和铜的含量按权利要求补充到1。
在A-位上的成分,Ln和M,即镧系元素和锶或钙,确保在钙钛矿(Perowskiten)的晶体结构中的材料的结晶。该晶体结构在其材料特性上证明适于高温-燃料电池。特别是镧和锶的组合表明是有利的。
与已知的标准-阴极材料不同,在本发明材料中A-位以亚化学计量存在。这里,该亚化学计量在0.02-0.05之间波动,使得例如镧和锶的含量尽管小于1,但通常大于0.95。通常地,该阴极材料的有利特性不受钙代替锶或其它镧系元素代替镧的影响。
本发明的阴极具有前述的本发明的阴极材料。此外,该材料以平均粒度为0.4-1.0μm,特别是0.6-0.8μm存在于阴极中。大约(um)0.8μm的粒度分布表明是特别合适。优选的阴极的阴极材料具有下列组合物La0.58Sr0.4Fe0.8Co0.2O3-δ或La0.55Sr0.4Fe0.8Co0.2O3-δ或La0.78Sr0.2Fe0.8Co0.2O3-δ,同时由此不应限制其余公开的组合物。属于本发明的并具有稍微较高钴含量的另一有利的化合物例如是La0.58Sr0.4Fe0.7Co0.3O3-δ。与前述化合物相比,该化合物的热膨胀系数稍高,而电化学特性也稍有改进。含铜化合物La0.58Sr0.4Fe0.8Cu0.2O3-δ表明也是特别有利的。该化合物的氧还原特性方面的材料数据也是非常有希望的。
在阴极中上述有利的粒度分布特别是可通过一种特殊的制备方法实现。这时使用平均粒度d50小于2μm,特别是d50为0.6-0.8μm的原料(阴极材料)。d50意指该粒度分布的中值,即50%的颗粒(按数目计)小于或等于d50-值。在制成的阴极中,该平均粒度分布例如是经电子显微照片分析确定的。也可根据电子显微照片估算。
与所选用的阴极材料有关的较小的原料粒度可有利地使烧结温度低,通常低1100℃。特别是亚化学计量对高烧结活性起决定作用。该低的烧结温度一方面又通过由此所产生的微结构导致所必需的孔隙度,另一方面有利地保证所需的稳定性。
本发明的用于高温-燃料电池的阴极材料由于其有利的组成及与其适配的最佳制备方法可提供一种阴极,该阴极在750℃和0.7V电池电压的运行中能够可再现性地达到大于1W/cm2的功率。
一种适于制备本发明阴极的方法例如如下列所述。首先制备阳极-电解质-复合体。在该复合体上首先涂敷含小孔隙度的中间层。这类层如是(Ce,Gd)O2-δ层(CGO-层),其中0≤δ≤0.25。以平均粒度d50小于2μm,特别是粒度d50小于0.8μm的粉末状涂敷该中间层。烧结在1250-1350℃下进行。以此方法得到孔隙度通常小于35%,特别是小于30%的中间层。这里该中间层的粉末涂敷可通过常用的方法如丝网印刷(Siebd ruck)进行。
在下一步骤中,在该阳极-电解质-中间层复合体上以平均粒度d50小于2μm,特别是粒度d50为0.6-0.8μm的粉末状涂敷阴极。所有前述的具有A-位亚化学计量的含铁和钴或含铜的阴极材料均适合作为粉末材料。接着在在950-1150℃下烧结该阴极材料,这时可根据阴极材料选用尽可能小的烧结温变。以此法得到孔隙度通常为20-40%,特别是25-35%的阴极。这时平均粒度为0.4-1.0μm,特别是0.6-0.8μm。平均粒度为0.8μm是特别有利的。这里用于阴极层的粉末涂敷也可通过常用的方法如丝网印刷进行。
具体描述部分下面以附图和实施例详细阐明本发明,但并不是由此限制本发明。
本发明阴极的阴极材料由Ln1-x-yMyFe1-zCzO3-δ组成,其0.02≤x≤0.05,0.1≤y≤0.6和0.1≤z≤0.3。其中Ln=镧系元素,M=锶或钙和C=钴或铜。
特别是由具有组成范围La0.4-0.75Sr0.3-0.5Fe0.8C0.2O3-δ的钙钛矿组成,其x=0.02-0.05。
作为特别合适的实施例还有组成为La0.58Sr0.4Fe0.8Co0.2O3-δ的阴极材料。
基于与电解质材料和高的热膨胀系数的化学相容性可出现的问题通常按如下避免·在阴极和电解质之间应用由Ce0.8Gd0.2O2-δ制成的中间层。通过反应物的空间隔离降低了机械应力和减少了SrZrO3的形成。
·应用具有A-位亚化学计量(x>0)的阴极材料。由于较高的烧结活性,该阴极的烧结温度通常可低于1100℃。这一方面阻止了由于在热膨胀系数的差别的剥落,并且另一方面通过形成SrZrO3的中间层阻止了锶的扩散。在此还可通过该亚化学计量材料对Sr-去除有更高的稳定性来阻止该锶的扩散。含钴的和特别是化学计量的钙钛矿通常在化学上是不完全稳定的。在有反应-共组分(parther)(这里为YSZ)存在下,该材料易于产生锶贫化。这种效应也可称为Sr-去除或锶-贫化。
用于制备高温-燃料电池的特别有利的措施列于下面。作为原料使用·阳极-电解质-复合体,如从DE 19543759 C1已知;·Ce0.8Gd0.2O2-δ粉末(CGO),其平均粒度d50<0.8μm,特别是d50=0.2μm;·具有A-位亚化学计量的其平均粒度d50<2μm,特别是d50为0.6-0.8μm的含铁和含钴或含铜的阴极材料(如La0.58Sr0.4Fe0.8Co0.2O3-δ)。
通过丝网印刷或类似方法将该材料涂于阳极-电解质-复合体上。接着该两层即中间层和阴极的烧结一方面需在足够低的温度下进行,以避免与YSZ电解质的反应,而另一方面需在足够高的温度下进行,以导致足够的材料烧结。该CGO-层的烧结温度为1250-1350℃,特别是约1300℃,阴极的烧结温度为950-1150℃,特别是约1080℃。结果得到具有例如如图2b所示的微观结构的中间层和阴极。对高的功率密度是特别重要的是CGO-层的孔隙度要尽可能低,在任何情况下均低于30%。此外,该经烧结的阴极的孔隙度应为20-40%,并且平均粒度为0.4-1.0μm,特别是0.8μm。
烧结温度对阴极材料的微结构的影响示于

图1和图2。
在图1中使用市售的(La,Sr)MnO3阴极材料,并在下同的温度下烧结。接着将该阴极装入高温-燃料电池中,并在标准条件(阴极大小40×40mm2,750℃,0.7V电池电压,气体流入平行于电极表面)试验。
该试验参数是图1a1200℃下烧结,功率0.26W/cm2图1b1150℃下烧结,功率0.30W/cm2图1c1100℃下烧结,功率0.35W/cm2可看出,在基于锰的阴极中,烧结温度下降100℃使该功率密度增加约30%。
图2中使用本发明的阴极材料(La0.58Sr0.4Fe0.8Co0.2O3-δ),并且也在不同温度下烧结,接着在高温-燃料电池中于标准条件下试验。
该试验参数是图2a1120℃下烧结,功率0.53W/cm2图2b1080℃下烧结,功率1.01W/cm2图2c1040℃下烧结,功率0.89W/cm2这些图表明,烧结温度下降仅40℃即变为1080℃可使该功率密度几乎增加1倍。这种效应不只是仅由于改进的微结构。另外较低的烧结温度通常也导致较小的形成SrZrO3倾角并产生剥落。原料的A-位亚化学计量对阴极功率的影响示于图3a-3c中。
在图3a中示出市售含锰阴极材料(La0.65Sr0.3MnO3-δ)和本发明阴极材料(La0.58Sr0.4Fc0.8Co0.2O3-δ)的比较。在标准条件下,该具有含锰阴极的燃料电池达到近于0.7A/cm2,而本发明的阴极几乎达到其高2倍以上。在0.7V电池电压下1.43A/cm2相应于功率密度约为1W/cm2。该功率密度也明显高干另一些制造商的基于锰的电池[3]。
在图3b和3c中,将具有由亚化学计量的阴极材料(La,Sr)(Fe,Co)O3制成的阴极的燃料电池和具有由化学计量的阴极材料制成的阴极的燃料电池在标准条件下进行比较。
在图3b中,将由化学计量的(La0.6Sr0.4Fe0.8Co0.2O3-δ)作为阴极材料制成的阴极与A-位上2%的亚化学计量的(La0.58Sr0.4Fe0.8Co0.2O3-δ)作为阴极材料制成的阴极和A-位上5%的亚化学计量的(La0.55Sr0.4Fe0.8Co0.2O3-δ)作为阴极材料制成的阴极进行比较。该5%的亚化学计量导致明显的功率增加即大于约35%,而该2%的亚化学计量甚至功率增加大于70%。
在图3c中示出化学计量的(La0.8Sr0.2Fe0.8Co0.2O3-δ)阴极和另一些本发明的亚化学计量的阴极(La0.78Sr0.2Fe0.8Co0.2O3-δ)的比较。这里锶含量仅选为图3b实施例中的一半。这里A-位上2%的亚化学计量也已导致功率改进大于30%。
与上述的现有技术相比,由于改进的氧还原特性,本发明阴极的高电化学活性可使SOFC-燃料电池在较低温度即750℃或更低温度下运行,尽管如此也达到高的功率密度,特别是在0.7V下可达高于1W/cm2。
为了能比较不同阴极材料的功率,应在相同条件下进行试验,特别是在相应于燃料电池堆中使用的条件下试验。为此,例如不应低于电池的最小尺寸即40×40mm2。此外,应使气体流入平行于电极表面。在确定的电池电压下提供的功率测量也是重要的。为此特别地提供0.7V的电池电压。偏离这些测量条件可部分导致较高的功率密度[4],[5]。但这种测量条件通是与应用无关的。在较小的电极表面情况下,机械应力不易导致失效,而在燃料电池堆不可实现的垂直气体流入中通常导致较高的气体交换和由此导致较高的功率密度。此外,那里所述的电池不可在低于0.7V的电池电压下有害地长期运行,因为其危险在于阳极的镍会发生氧化。
在专利申请中引用的文献[1]G.Stochniol,E.Syskakis,A.Nauomidis;J.Am.Ce-ram.Soc,78(1995)929-932.S.P.Simner,J.F.Bonnett,N.L.Canfield,K.D.Meinhardt,J.P.Shelton,V.L.Sprenkle,J.W.Ste-venson;Journal of power Sources 4965(2002)1-10.C.Christianse,S.Kristensen,H.Holm-Larsen,P.H.Larsen,M.Mogensen,P.V.Hendriksen,S.LinderothinSOFC-VIII(eds.S.C.Singhal,M.Dokiya)PV2003-07,p.105-112,The Electrochemical SocietyProceedings,Pennigton,NJ(2003).J.W.Kim,A.V.Virkar,K.-Z.Fung.K.Metha,S.C.Simghal;J.Electrochimem.Soc.,146(1999)69-78.S.de Souza,S.J.Visco,L.C.De Jonghe;J.Elec-trochem.Soc.,144(1997)L35-L37.
权利要求
1.用于高温燃料电池的阴极,其包含式为Ln1-x-yMyFe1-zCzO3-δ的化学组成的阴极材料,其中0.02≤x≤0.05,0.1≤y≤0.6,0.1≤z≤0.3,0≤δ≤0.25和Ln=镧系元素,M=锶或钙和C=钴或铜,该阴极的平均粒度为0.4-1.0μm。
2.权利要求1的阴极,其中,0.3≤y≤0.5,特别是y=0.4。
3.权利要求1-2之一的阴极,其中,0.15≤z≤0.25,特别是z=0.2。
4.权利要求1-3之一的阴极,其中,Ln=镧。
5.权利要求1-4之一的阴极,其中,M=锶。
6.权利要求1-5之一的阴极,其中,C=钴。
7.权利要求1-6之一的阴极,其中,其包含La0.58Sr0.4Fe0.8Co0.2O3-δ,La0.55Sr0.4Fe0.8Co0.2O3-δ,La0.78Sr0.2Fe0.8Co0.2O3-δ,或La0.58Sr0.4Fe0.8Cu0.2O3-δ。
8.权利要求1-7之一的阴极,其中,该阴极的平均粒度为0.6-0.8μm。
9.权利要求1-8之一的阴极,其中,其孔隙度为20-40%,特别是25-35%。
10.一种用于制备权利要求1-9之一的阴极的方法,其具有下列步骤·在阳极-电解质-层复合体上涂敷平均粒度小于0.8μm的(Ce,Gd)O2-δ-粉末并烧结,其中形成(Ce,Gd)O2-δ-中间层,·在该中间层上以平均粒度小于2μm的粉末涂敷和烧结式为Ln1-x-yMyFe1-zCzO3-δ的化学组成的阴极材料,其中0.02≤x≤0.05,0.1≤y≤0.6,0.1≤z≤0.3,0≤δ≤0.25和Ln=镧系元素,M=锶或钙和C=钴或铜。
11.权利要求10的方法,其中,该阴极材料以平均粒度为0.6-0.8μm的粉末涂敷。
12.权利要求1-9之一的阴极在燃料电池中的应用,其中,安置在邻近于(Ce,Gd)O2-δ-中间层的阴极的孔隙度小于30%。
全文摘要
本发明涉及一种阴极材料,特别是适用于高温-燃料电池的阴极材料,其包含亚化学计量的Ln
文档编号H01M4/86GK1902778SQ200480039884
公开日2007年1月24日 申请日期2004年11月4日 优先权日2003年11月7日
发明者H·P·布赫克勒默, F·蒂茨, A·麦, D·施特弗 申请人:于利奇研究中心有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1