显性抑制突变体f427d作为炭疽芽孢杆菌毒素抑制剂及疫苗的应用的制作方法

文档序号:566757阅读:199来源:国知局

专利名称::显性抑制突变体f427d作为炭疽芽孢杆菌毒素抑制剂及疫苗的应用的制作方法
技术领域
:本发明涉及动物细菌学与人畜共患传染病学
技术领域
。具体涉及一种显性抑制突变体F427D作为炭疽芽孢杆齒毒素抑制剂及疫苗的应用。
背景技术
:炭疽(anthrax)是由炭疽芽孢杆菌引起的人畜共患的一种急性、热性、败血性传染病。以突然高热和死亡、可视黏膜发绀和天然孔流出煤焦油样血液为特征。OIE将其列为B类疫病和国家法定报告疾病。炭疽杆菌是需氧芽孢杆菌属中的一种长而粗的大杆菌,无鞭毛不能运动,革兰氏染色阳性。有繁殖体和芽孢两种形式,在有充足的氧气和适当的温度下能形成具强大抵抗力的炭疽芽孢。由于炭疽易于生产和制备,其孢子状态可以长期稳定存在,对恶劣的环境有极强的抵抗力而且炭疽芽孢的吸入致死量很低,长期以来炭疽芽孢杆菌都被用作首选的生化武器。强毒炭疽杆菌主要致病因子包括细菌荚膜和炭疽毒素。炭疽荚膜能保护炭疸杆菌逃避巨噬细胞的吞噬(Guidi-Rontani等〃Thealveolarmacrophage:theTroj肌horseofBacillusanthracis.〃TrendsMicrobiol10(9):405-9)。炭疽毒素蛋白包括三种成分保护性抗原(protectiveantigen,简称PA)、致死因子(lethalfactor,简称LF)和水肿因子(edemafactor,简称EF)。炭疽毒素是A-B型毒素,它的B部分PA是炭疽毒素的运输结构,它能挑选细胞与易感细胞上的PA受体结合,转运炭疽毒素的A部分LF或EF到细胞质中杀死细胞。PA是一个83kDa的蛋白含有有弗林蛋白酶(furin)的切割位点,细胞受体结合位点和LF及EF的结合转运位点;PA与易感细胞受体结合后被细胞上的蛋白酶切割去掉N端20kDa的片段,留下63kDa的PA(PA63)结合在细胞受体上,PA63在细胞表面聚合成为内孔封闭的七聚体(PA63)7。LF或EF与七聚体上的接合位点结合形成复合物后被细胞吞噬形成吞噬小体进入细胞质。细胞质内的酸性环境促使七聚体封闭的内孔打开,LF或EF就通过这个内孔被转运到细胞质中。将PA基因的第397赖氨酸突变为天冬氨酸(K397D),第425位天冬氨酸突变为赖氨酸(D425K),第427位苯丙氨酸突变为丙氨酸(F427A)或删除PA蛋白的结构域二后,这些PA突变体(MPA)不但活性丢失而且将其与野生型PA(简称WPA)混合时能抑制其活性,这种突变体的抑制活性称为显性抑制活性(DoniinatNegative,DN)'这些突变体PA称为显性抑制突变体(DNPA)(Sellman等,"Dominant-negativemutantsofatoxinsubunit:anapproachtotherapyofanthrax."Science292(5517):695-7)(Ahuja等,"Deletionmutantsofprotectiveantigenthatinhibitanthraxtoxinbothinvitro肌dinvivo."BiochemBiophysResCommun307(3):446-50)。DNPA能与WPA聚合形成杂合的PA七聚体,阻止WPA对底物EF和LF的转运,使得转运到细胞内的EF和LF大大减少,抑制炭疽毒素对细胞的毒性。其中PA基因中的第427位氨基酸在PA七聚体中间微孔的打开和LF/EF的转运中发挥着关键的作用。野生型PA中第427位氨基酸是苯丙氨酸,PA聚合形成七聚体后苯丙氨酸被聚合在微孔中间,七个苯丙氨酸的七个苯环在微孔内形成^嵌的结构。小嵌的作用就像伴侣分子,当PA底物LF或EF通过微孔时它能抓住底物上的疏水位点促使底物从七聚体微孔中转运(Krantz等,~Aphenylalanineclampcatalyzesproteintranslocationthroughtheanthraxtoxinpore.〃Science309(5735):777-81)。将PA第427位的苯丙氨酸突变为11种其它的氨基酸时,这些427的突变体有的不能正常的转运底物,有的影响PA七聚体内孔的打开,但这些突变体都具有显性抑伟隨性(Sun等,〃Phenylalanine-427ofanthraxprotectiveantigenfunctionsinbothporeformationandproteintranslocation-"ProcNatlAcadSciUSA105(11):4346-51)PA蛋白作为炭疸毒素蛋白的转运载体在炭疸毒素发挥其活性的过程中发挥着关键作用。针对PA的特异性抗体能阻止PA对LF和EF的转运,从而中和水肿毒素和致死毒素的毒性,因此一直以来PA都被用作炭疽疫苗的主要成分。在美国FDA批准的唯一人用炭疽疫苗,它的主要成分就是PA蛋白。但由于人自然感染炭疽的病例较少发生,所以一般情况下都不会对人群进行炭疽疫苗的常规免疫。但是如果在炭疽的急性暴发时再进行炭疽的紧急疫苗接种,疫苗中的PA蛋白就可能与感染的炭疽杆菌释放的LF蛋白结合转运导致炭疽疫情加重,此时就需要一种安全的没有活性的炭疽疫苗。使用活性丢失但仍然保持免疫原活性的突变体PA做为炭疽疫苗是现在炭疽疫苗的研究方向之一。Aulinger等人将PA显性抑制的双突变体K397D和D425K与炭疽的荚膜蛋白混合免疫小鼠,他们发现双突变DNPA比WPA能激发更强的小鼠免疫反应(Aulinger等,"Combininganthraxvaccineandtherapy:adominant-negativeinhibitorofanthraxtoxinisalsoapotentandsafeimmunogenforvaccines."InfectI咖un73(6):3408-14)。Yan等将DNPA与其它PA的功能突变体与DNPA进行比较发现DNPA比其它所有的突变体的免疫活性更强,且DNPA能激发比WPA更长久的免疫反应(Yan等,"Selectionandevaluationofthei咖unogenicityofprotectiveantigenmutantsasanthraxvaccinecandidates.〃Vaccine25(16):3111-4)。PA基闵的第427位氨基酸作为PA活性的关键氨基酸其显性抑制活性已得到了充分的认识,但这些突变体没有在炭疽疫苗的和毒素抑制中得到应用。
发明内容本发明的目的在于克服现有炭疽疫苗在紧急免疫时可能与环境中污染的致死因于或水肿因子结合,引起机体不良反应的不足,获得一种显性抑制突变体F427D,利用该突变体作为炭疽芽孢杆菌毒素抑制剂及疫苗的应用。本发明通过以下技术方案实现-本发明实施的关键,是本申请人通过定点饱和突变技术得到的一株炭疽芽孢杆菌保护性抗原PA的显性抑制突变体F427D。该突变体已经被克隆到原核表达载体pGEX-KG中构建成重组载体pGEX-KG-PA(F427D)。该重组载体已被克隆到大肠杆菌中,包含该重组质粒pGEX-KG-PA(F427D)的大肠杆菌被命名为(EscnerichiacoliDH5a/)pGEX-KG-PA(F427D),该重组大肠杆菌(EscnerichiacoliDH5a/)pGEX-KG-PA(F427D),已于2008年10月16日送交湖北省武汉市武汉大学内的中国典型培养物保藏中心(CCTCC)保藏,保藏编号为CCTCCNO:M208158。本发明的优点是1、本发明所表达的基因是炭疽芽孢杆菌的保护性抗原PA的突变体F427D,申请人的研究资料表明,该基因表达成蛋白后较野生型的PA蛋A具有更好的免疫原性'进而展示了其作为炭疽疫苗广阔的开发应用前景。2、本发明是所表达的是一种重组蛋白不含外源的核酸物质,进入动物体内后安全有效,不存在潜伏感染的危险,具有更高的生物安全性。3、本发明的基因是炭疽毒素的一部分,表达成蛋白后单独存在时对机体是没有炭疽毒素的活性的。4、由于突变了野生型PA的关键氨基酸位点使得其活性丢失,因此突然爆发炭疽疫情时即使有外源的炭疽毒素存在时,本发明的突变体F427D不仅不会协助与炭疽毒素致死因子和水肿因子发挥毒性,反而因会抑制野生型PA的活性,而抑制炭疽毒素的毒性。该突变体不仅可用作炭疽疫苗还可用作炭疽毒素抑制剂在炭疽疫情中用于紧急预防接种和免疫。更详细的技术方案见《具体实施方式》所述。图1:是本发明的重组原核表达载体pGEX-KG-PA的构建图谱图2:重组原核表达载体pGEX-6P-l-LF的构建图谱图3:PA基因的电泳图谱图3(A):电泳鉴定PCR扩增的PA基因,Ml:DNAmarker(DL2000);M2:DNAmarker(DL15000);1,2:从无荚膜炭疽芽孢苗PCR扩增2.2kb的PA基因图3(B):重组质粒pGEX-KG-PA的酶切鉴定,M:DNAmarker(DL15000);1:空载体pGEX-KG和J力oI双酶切;2:pGEX-KG-PAfe/zffl和双酶切图4:LF基因的电泳图谱图4(A)电泳鉴定PCR扩增的LF基因,Ml:DNAmarker(DL2000);M2:DNAmarker(DL15000);1:从无荚膜炭疽芽孢苗PCR扩增2.3kb的LF基因图4(B)重组质粒pGEX-6P-1-LF的酶切鉴定,Ml:DNAmarker(DL2000);M2:DNAmarker(DL15000);l:pGEX-6P-1-LF勘WI和双酶切;2:pGEX_6P-1-LF"湖HI单酶切图5:PA蛋白的纯化步骤图6:PA蛋白的SDS-PAGE检测图6(A):PA蛋白表达条件的优化,M:蛋白分子量标准;1:IPTG诱导9小时;2:IPTG诱导6小时;3:IPTG诱导3小时;4:IPTG诱导前对照图6(B):M:蛋白分子量标准;1:纯化的PA蛋白图6(C):M:蛋白分子量标准;1:PA蛋白的Western-blot检测图7:PA蛋白的纯化步骤图8:LF蛋白的SDS-PAGE检测图8(A):LF蛋白表达条件的优化,M:蛋白分子量标准;1:IPTG诱导2小时;2:IPTG诱导4小时;3:IPTG诱导6小时;4:IPTG诱导8小时图8(B):M:蛋白分子量标准;1:纯化的LF蛋白;2:菌液裂解后的上清;3:菌液裂解后的沉淀;4:诱导的空载体对照图9:WPA及F427D的细胞毒性实验图10:WPA及3株保持活性的PA突变体的细胞毒性实验图11:16种活性丢失的突变体PA蛋白体外抑制炭疽致死毒素的活性图12:WPA和F427D蛋白诱导小鼠IgG抗体滴度图13:WPA和F427D蛋白诱导小鼠IgGl(A)和IgG2a(B)抗体滴度图14:图中A:是本发明F427D蛋白30ug与炭疽致死毒素混合静脉注射小鼠10天后小鼠脾脏的病理切片(服染色,放大倍数40倍),箭头对应的是相应小鼠的脾脏照片及脾重;图中B:是本发明F427D蛋白免疫小鼠第3次免疫后1周静脉注射炭疸致死毒素,10天后小鼠脾脏的病理切片(HE染色,放大倍数40倍),箭头对应的是相应小鼠的脾脏照片及脾重;图中C:是本发明F427D蛋白5ixg与炭疽致死毒素混合静脉注射小鼠10天后小鼠脾脏的病理切片(HE染色,放大倍数40倍),箭头对应的是相应小鼠的脾脏照片及脾重。具体实施方式实施例l目的基因的克隆(一)炭疽芽孢杆菌保护性抗原PA基因的克隆1、PCR引物设计与合成根据Genbank中报道的PA基因序列〔Genbank登录号No.AF065404)设计上下游引物。上游引物引入^SsMH酶切位点(如引物中的下划线所示),设计4个保护碱基ACTA,下游引物引入酶切位点(如引物中的下划线所示),外加4个保护碱基GTAT。本发明的引物由上海生工生物工程技术有限公司合成。PA上游引物5'-ACTAGGATCCGAAGTTMACAGGAGAACC-3'PA下游引物5'-GTATCTCGAGCTATTATCCTATCTCATAGCCT_3'2、PA蛋白质编码基因扩增与处理将无荚膜炭疽芽孢苗(商业微生物制剂,无菌株编号,购自新疆天康畜生物技术股份有限公司)无菌接种于5mL液体LB中于37'C,200rpm/min过夜培养。次日于12,000rpm离心lmin收集细菌后加入IOOul灭菌双蒸水煮沸10min裂解菌体,离心后取上清液作为PCR模板。PCK扩增反应体系为10XPyrobestBufferII5.0w1,25mmol/LMgCl21.0u1'2咖ol/LdNTPs1.5u1,20umol/L上、下游引物各l.Oul,PyrobestDNA聚合酶0.5u1,模板3lU,无菌双蒸水加至50n1。PCR反应条件95。C变性4min,进入30个循环(95'C变性30sec,52。C复性30sec,72'C延伸2min),最后72'C延伸10min。扩增的PCR产物经0.8W琼脂糖凝胶电泳分析,一条大小2.2kb的PA基因片段(如附图3,A所示)。使用DNA凝胶快速回收试剂盒(购自上海生工生物工程技术有限公司)纯化PA基肉片段。3、重组大肠杆菌^sc力eri乙'力i'acoh'DH5a/pGEX-KG-PA的构建将PCR产物进行回收纯化后,用^MH和7力o1双酶切。将表达载体pGEX-KG同样用和屈ol双酶切。于37'C水浴4小时后用DNA凝胶快速回收试剂盒(购5上海生丄生物工程技术有限公司,回收步骤参见该公司试剂盒说明书)纯化回收,然后用T4连接酶(宝生物工程(大连)有限公司)连接进行粘末端连接,16。C水浴过夜,转化DH5a感受态细菌,37'C培养,挑菌,提取重组质粒,酶切鉴定(如附图3,B所示)。该重组表达质粒被命名为PGEX-KG-PA。pGEX-KG-PA重组表达质粒的构建过程见附图1。(二)炭疽芽孢杆菌致死因子LF的克隆1、炭疽芽孢杆菌致死因子LF蛋白cNDA序列的克隆(1)PCR引物设计与合成根据Genbank中LF基因序列(Genbank登录号No.AF065404)设计上、下游引物。上游引物引入fe通I酶切位点(如引物中的下划线所示),设计5个保护碱基GTTCA。下游引物引入yfeil酶切位点,设计5个保护碱基GTTCA(如引物中的下划线所示)。本发明的引物由上海生工生物技术有限公司合成。LF上游引物5,-GTTCAGGATCCGCGGGCGGTCATGGTGAT-3,LF下游引物5,-GCTGAGCGGCCGCTCATTATGAGTTAATMTGAACTTMTC-3'(2)LF蛋白质编码基因扩增与处理将无莢膜炭疽芽孢苗(商业微生物制剂,无菌株编号,购自新疆天康畜生物技术股份有限公司)无菌接种于5ml液体LB中于37'C,200rpm/min过夜培养。次日于12,OOOrpm离心1min收集细菌后加入100Ul灭菌双蒸水煮沸10min裂解菌体,离心后取上清液作为PCR模板。PCR扩增反应体系为10XPyrobestBufferII5.0u1,25画1线0121.0u1,2mmol/Ld酵s1.5u1,20umol/L上、下游引物各l.Oul,PyrobestDNA聚合酶0.5"1,模板3ul,无菌双蒸水加至50ul。PCR反应条件95。C变性4min,进入30个循环(95。C变性30sec,52。C复性30sec,72'C延伸2rain),最后72。C延伸10min。扩增的PCR产物经0.8%琼脂糖凝胶电泳分析,一条大小2.3kb的LF基因片段(如附图4,A所示)。使用DNA凝胶快速回收试剂盒纯化LF基因片段。2、炭疽芽孢杆菌致死因子LF基因原核表达载体的构建将PCR产物进行回收,纯化后,用feffiHI和他fl双酶切。将表达载体pGEX-6P-1同样用和AbZ"I双酶切。于37"C水浴4小时后用DNA凝胶快速回收试剂盒(购自上海生工生物工程技术有限公司)纯化回收,然后用T4连接酶(宝生物工程(大连)有限公司)连接进行粘末端连接,16'C水浴过夜,转化DH5ci感受态细菌,37i:培养,挑菌,提取重组质粒,酶切鉴定正确(如附图4,B所示)后送菌样测序。该重组表达质粒被命名为pGEX-6P-l-LF。pGEX-6P-l-LF重组表达质粒的构建图谱见附图2。实施例2保护性抗原PA第427位氨基酸的定点饱和突变及突变体的克隆1、炭疸芽孢杆菌保护性抗原PA基因第427位苯丙氨酸定点饱和突变为其它19种天然存在的氨基酸(1)PCR引物设计与合成根据Genbank中PA基因序列(Genbank登录号No.AF065404)设计PA第427位氨基酸定点饱和突变上下游引物。上下游引物中将苯丙氨酸的密码子TTC设计为随机合成的碱基NNN(如引物中的下划线所示)。本发明的引物由上海生工生物工程技术有限公司合成。F427N上游引物5'-CGCATTAMTGCACMGACGATNNNAGTTCTACTCC-3':(N=A,T,G,C)F427N下游引物5'CATTGTAATTGGAGTAGAACTNNNATCGTCTTGTGC-3'(N=A,T,G,C)(2)用定点饱和突变PCR技术对PA第427位氨基酸定点饱和突变将pGEX-KG-PA重组质粒稀释10倍作为PCR模板。应用长片断PCR技术对PA第427氨基酸进行定点突变,50微升PCR扩增反应体系为1XPrimeSTARBuffer,10倍稀释的pGEX-KG-PA模板2ul(约20ng模板DNA),2raM的dNTPmixture2u1,10nmol/L上、下游引物各1.0u1,PriraeSTARHSDNA聚合酶0.5Hi,无菌双蒸水加至50ul。PCR的反应条件98°C预变性30s,进入15个循环98°C变性IOs,53°C退火15s,.68°C延伸8min,最后再72°C延伸5min.反应结束后用QIA快速PCR纯化试剂盒(QIAGENco.,Ltd,操作步骤参见说明书)回收PCR产物。(3)19株PA突变体的克隆加入1U的甲基化内切酶于回收PCR产物中,于37°C水浴1h去除模板DNA。将处理好的PCR产物转化商品化DH5a感受态细胞(宝生物工程(大连)有限公司)。37。C培养,挑菌,送菌液测序。通过测序筛选得到PA427位突变为其它19种天然存在的氨基酸的突变体。这些突变体只有第427位氨基酸发生突变而其PA基因上的其它碱基没有其它突变。根据这些突变体第427位氨基酸突变后的氨基酸简写被命名为pGEX-KG-PA(F427X)。实施例3蛋白的表达与纯化(一)炭疽芽孢杆菌保护性抗原PA基因的克隆及在在重组大肠杆菌中表达并纯化的制备方法1、重组大肠杆菌Esc力er/c力/aBL21/pGEX-KG-PA的构建将序列鉴定正确的重组表达载体pGEX-KG-PA转化至CaCl2法制备的大肠杆菌BL21(DE3)(由本室保存)感受态细胞,涂布平皿,挑选平皿上单个阳性菌落(BL21/pGEX-KG-PA),接入LB液体培养基中37'C振荡培养至(0D6W=1.0),向培养基中加入异丙基硫代-e-D-半乳糖苷(IPTG)诱导表达,然后进行SDS-PAGE和Western-blot检测(萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T主编,分子克隆实验指南,金冬雁,黎孟枫等译,第二版,科学出版社,北京,1992版)。2、炭疽芽孢杆菌保护性抗原PA的原核诱导表达(1)保护性抗原PA基因的小量诱导表达挑取单个重组大肠杆菌i""力e/"ic/L^BL21/pGEX-KG菌落至5mLLB培养基,加氨苄青霉素至终浓度为50pg/mL,37'C摇床培养过夜。次日将培养好的菌液按l:100(w/w)的比例转接到含50ng/mL氨苄青霉素的LB培养置37'C摇床培养至0D600达到l.0时加入诱导剂异丙基硫代-P-D-半乳糖苷(IPTG)至终浓度为0.4咖ol/L,于28'C诱导表达,分别在诱导后第O、3、6、9小时取1mL细菌培养物,12,000g离心lmin收集菌体,PBS缓冲液(PBS缓冲液配方:NaCl8.Og,KC10.2g,,040.24g,Na馬X12H203.628g,溶于800ml蒸馏水中,用盐酸调pH值为7.4,蒸馏水定容至1000ml,121。C高压灭菌20min,室温保存)漂洗沉淀并用50W重悬,加入50(iL2X十二烷基磺酸钠(SDS)上样缓冲液(2X上样缓冲液配方100mra/LTris-Cl(p朋.8),200mm/L二硫苏糖醇,4%SDS,0.2%溴酚蓝,20%甘油)。100。C煮沸10min,取20进行SDS-PAGE电泳分析(如附图6,A所示)。根据PA蛋白表达情况确定PA的诱导表达条件为IPTG终浓度为O.4mmol/L于28。C诱导表达3小时。(2)炭疽芽孢杆菌保护性抗原PA的大量诱导表达和蛋A纯化从平皿上挑取上述步骤(1)得到的菌落至5mLLB培养基,使氨苄青霉素至终浓度为50pg/raL,37'C摇床培养过夜。次日取该菌液5mL加入1LLB培养基中,置37'C摇床培养至OD600=1.0,加入诱导剂IPTG至终浓度为0.4咖ol/L,转入28。C继续诱导培养3h。诱导的菌体经离心、用50mLPBS缓冲液重悬菌体后用弗氏高压细胞破碎仪破碎细菌,4'C、12,OOOg离心20min,收集上清。首先用Gutathione(GSH)-S印harose亲和柱纯化蛋白,用缓冲液PBS平衡柱,样品1mL/min上样。用150mLPBS缓冲液洗涤杂蛋白。加入20U的凝血酶(Thrombin,购自Sigma公司)于亲和柱中,封闭亲和柱出样孔,于4'C中酶切16h后用10mLPBS洗脱,收集洗脱液。含PA的洗脱液用Millipore超滤管(截留分子量30000)浓縮,用葡聚糖凝胶G200(S卯erdex200)进行精纯,用10mMTris缓冲液(Tris缓冲液配方lOmMTris碱,用HCl调节pH值到8.0)洗脱PA蛋白并保存。获得的PA蛋白分装后置-80。C保存备用。对纯化的蛋白进行SDS-PAGE(如附图6,B所示)和westernblot(如附图6,C所示)分析,证实该重组大肠杆菌可以特异性地表达炭疽芽孢杆菌保护性抗原PA,蛋白可部分表达在上清中,且具有免疫学活性。PA蛋白的纯化步骤参见附图5。(二)炭疽芽孢杆菌致死因子LF的克隆及在重组大肠杆菌中表达并纯化的制备方法1、重组大肠杆菌^c力eric力i'aco/iBL21/pGEX-6P-1-LF的构建将重组表达载体pGEX-6P-1-LF转化至CaCl2法制备大肠杆菌BL21(DE3)感受态细胞,涂布氨苄青霉素平皿,挑选单个单菌落放入5mLLB液体培养基中37°0培养振荡培养至00600=0.8后,用异丙基硫代-e-D-半乳糖苷(IPTG)诱导表达,然后进行SDS-PAGE和Western-blot检测。2、致死因子LF基因的小量诱导表达从步骤1中转化的平皿挑取单个重组大肠杆菌EscherichiacoliBL21/pGEX-6P_l-LF菌落至5raLLB培养基,加氨苄青霉素至终浓度为50pg/mL,37'C摇床培养过夜。次日,按1:100(w/w)比例重新接种于用含50pg/mL氨苄青霉素的新鲜LB培养基中,置37'C摇床继续培养,当培养至OD600=0.8后,加入诱导剂异丙基硫代-P-D-半乳糖苷(IPTG)至终浓度为0.2隱ol/L,加入IPTG后菌液转入28'C培养,分别于2,4,6,8h等量取样进行SDS-PAGE检测。根据LF蛋白表达情况确定LF的诱导表达条件为IPTG终浓度为0.2咖ol/L于28。C诱导表达4小时(如附图8,A所示)。5、炭疽芽孢杆菌致死因子LF的大量诱导表达和蛋白纯化从步骤1中转化的平皿挑取单个菌落至5mLLB培养基,氨苄青霉素至终浓度为50pg/inL,37'C摇床培养过夜。次日取该菌液5mL加入1LLB培养基中,置37'C摇床培养至OD600=0.8,加入诱导剂IPTG至终浓度为0.2咖ol/L,转入28。C继续诱导培养4h。诱导的菌体经离心、用50mLPBS重悬菌体后用弗氏高压细胞破碎仪细菌,4°C、12000g离心20min,收集上清。用Gutathione(GSH)-S印harose亲和柱一步纯化蛋白,首先用5,0mLPBS平衡柱,在将含GST-LF的上清样品1mL/min上样。用150mLPBS缓冲液洗涤杂蛋白。加入100U的GST-3C蛋白酶于亲和柱中,封闭亲和柱出样孔,于4'C中酶切16h。用10mLPBS缓冲液洗脱,收集洗脱液。含LF的洗脱液用Millipore超滤管(截留分子量30000)浓縮后置-80。C保存备用。对纯化的蛋白进行SDS-PAGE分析(如附图8,B所示),证实该重组大肠杆菌可以特异性地表达炭疸芽孢杆菌保护性抗原LF,蛋白表达在上清中,且具有免疫学活性。LF蛋白的纯化步骤参见附图7。(三)炭疽芽孢杆菌保护性抗原PA基因突变体F427X的克隆及在在重组大肠杆菌中表达并纯化1、重组大肠杆菌fscAeri'c/^aBL21/pGEX_KG-PA(F427X)的表达将序列鉴定正确的19种重组表达载体pGEX-KG-PA(F427X)转化至CaCl2法制备的大肠杆菌BL21(DE3)感受态细胞,涂布平皿,从平皿上挑取单个菌落至5mLLB培养基,氨苄青霉素至终浓度为50ng/mL,37'C摇床培养过夜。次日取该菌液5mL加入1LLB培养基中,置37。C摇床培养至0D600=1.0,加入诱导剂IPTG至终浓度为0.4mmol/L,转入28'C继续诱导培养3h。诱导的菌体经离心、用50niLPBS重悬菌体后用弗氏高压细胞破碎仪破碎细菌,4'C、12,000g离心20min,收集上清。2、19种突变体蛋白F427X的纯化首先用Gutathione(GSH)-S印harose亲和柱纯化蛋白,用PBS缓冲液平衡柱,离心后的上清1ml/min上样。用150mlPBS洗涤杂蛋白。加入20U的凝血酶于亲和柱中,封闭亲和柱出样孔,于4匸中酶切16h。用10mLPBS洗脱,收集洗脱液。含PA的洗脱液用Millipore超滤管(截留分子量30000)浓缩,用葡聚糖凝胶G200(Superdex200)进行精纯,用10mMTris缓冲液洗脱突变体蛋白。获得的F427X突变体蛋白分装后置-8(TC保存备用。3、19种突变体蛋白M27X的蛋白定量及纯度分析将突变体蛋白用12%的SDS-PAGE跑胶鉴定后用BandScan软件分析纯化的突变蛋白的纯度,纯化的蛋白纯度均在92%以上。使用BCA蛋白浓度测定试剂盒(购自碧云天试剂公司,操作步骤参加公司试剂盒说明书)方法对突变体蛋白的浓度进行定量分析,同时用商品化的牛血清白蛋白(BSA)作为蛋白浓度的标准曲线。测定蛋白浓度后计算到每升诱导的菌液能提纯得到2rag的突变体蛋白。实施例4PA突变体F427X的抑制炭疽毒素的活性(一)体外抑制炭疽毒毒素的活性1、小鼠巨噬细胞RAW264.7的培养小鼠巨噬细胞RAW264.7(中国科学院典型培养物保藏委员会细胞库)于含10%新生牛血清(购自杭州四季清生物工程材料有限公司)的DMEM中置37。C,5%〔02培养箱中培养。2、细胞毒性实验PA与LF结合称为致死毒素(lethaltoxin,LT),在体外可导致敏感细胞(如小鼠巨噬细胞RAW264.7)的死亡。实验前16小时,将RAW264.7以3X104个/孔接种于96孔培养板中,细胞长至90%满时吸弃96孔板中培养基加入新鲜的含lHg/mLLF和浓度分别为20,10,5,2.5,1.25,0.625,0.3125,0.15625,0.078,0.039,0.02ug/mLWA或F427X的DMEM于各孔中,终体积为100pl/孔。同时设不加蛋白的细胞孔做活细胞对照。37'C培养细胞4h,加入IOuLalamarBlue染料(BioSourceInternational,Inc)。设无细胞只加IOliLalamarBlue和100uL培养基孔做染料本底荧光读数对照,37'C继续孵育4h后于多功能酶标仪上测定荧光值Ex530,Em590,光敏感度为35。每个蛋白浓度重复3个孔取平均数计算结果。细胞活率的计算(实验孔荧光值_染料本底荧光值)/(活细胞荧光值-染料本底荧光值)X100%。结果如图10显示,在固定LF终浓度为1ng/mL时,WPA加入浓度0.078ug/mL时巨噬细胞仅有33.9%的存活。当加入WA浓度在0.625Pg/mL时巨噬细胞几乎全部死亡(细胞存活率为1.3%)。所有的突变体的活性相对WPA活性都不同程度的降低,其中有16株突变体(包括突变体F427D,如图9所示)完全没有活性,当它们使用高至20ug/mL时未见细胞存活率降低,细胞存活率仍为100%。另外3株突变体苯丙氨酸突变为亮氨酸(F427L),苯丙氨酸突变为异亮氨酸(F427Y),苯丙氨酸突变为酪氨酸(F427W)还保持有部分活性,但这3株突变体相对PA的活性都有降低。蛋白浓度为2.5yg/ml时'F427W,F427L,F427Y和WPA的细胞存活率分别为:33.01±1.96%,26.93±1.44%,93.99±6.52%,and-0.79±5.03%(结果如图IO所示)。3、细胞毒性抻制活性最强的突变株的筛选将由细胞毒性实验筛选出的活性完全丢失的16株PA突变体MPA(即突变体PA)与炭疽致死毒素混合,计算细胞存活率。观察这16株突变体对WPA的显性抑制活性。细胞毒性抑制实验参照细胞毒性实验操作步骤,只是固定LF和WPA的终浓度为1ug/mL,16株F427X分别为2,1,0.5,0.25,0.125,0.0625,0、03125ug/mL加入各细胞孔中计算加入F427X不同浓度下的细胞存活率。WPA的浓度与F427X浓度比分别为1:2,1:1,2:1,4:1,8:1禾tl16:1,固定WPA的浓度,依次降低突变体PA的浓度。如附图ll所示,当突变体蛋白MPA与WPA的浓度比值为1:2,1:l时,所有的16株突变体蛋白都能保护细胞100%的存活。其中F427D和F427N的抑制活性最强。当F427D的量为WPA量的1/6时就可以保护细胞百分之百的存活。结果如附图11所示。(二)小鼠体内抑制活性1、实动物验分组6-8周龄雌性BALB/c鼠32只,平均分为8组,4只/组。2、小鼠静脉注射炭疽致死毒素小鼠静脉注射炭疽致死毒素25ugLF+60ugWPA,其中五组小鼠分别混合注射60,30,15,7.5,5lig的F427D。同时设三个对照组一组为单独注射60ugWPA,一组为单独注射25ugWLF,另一组为25ugLF+60ug歸。3、F427D对小鼠的保护力'小鼠静脉注射后观察10天,注射炭疽毒素的小鼠12小时开始死亡到静脉注射后24小时4只小鼠全部死亡。混合注射5ug和7.5ligF427D组的小鼠静脉注射后4小时开始出现轻微的类似感冒症状,小鼠精神抑郁,被毛粗糙,蜷缩打颤。2天后大部分小鼠赖过,但混合注射5ugF427D组有两只小鼠死亡。其余各组的小鼠静脉注射后均百分之百存活。结果见表1所示。小鼠观察10天后拉颈处死存活的小鼠,取出小鼠脾脏立刻称重并观察脾脏变化,部分存活的小鼠脾脏有不同程度的肿大(见表1和附图14)。但可以明显的观察到随着F427D混合注射的剂量的加大小鼠的脾脏肿大越不明显。表1本发明制备的突变体F427D在小鼠体内抑制炭疽毒素毒性注射蛋白量(yg)存活数/攻毒数脾肿大<table>tableseeoriginaldocumentpage11</column></row><table><table>tableseeoriginaldocumentpage12</column></row><table>实施例5突变体F427D的免疫活性试验1、重组蛋白疫苗的制备分别将重组蛋白PA和F427D与弗氏完全/不完全佐剂等体积混合乳化,使疫苗中每种抗原蛋白终浓度200ug/ml。首次免疫使用弗氏完全佐剂,第二次和第三次免疫使用弗氏不完全佐剂。2、实验分组及免疫6-8周龄雌性BALB/c鼠24只,平均分为3组、WPA免疫组,F427D免疫组及PBS对照组,每组8只。皮下多点注射免疫,每2周免疫1次,共3次,免疫剂量为0.lml/只,免疫前及每次免疫后一周采血,用于血清特异性抗体的监测。3、血清特异性IgG及IgG亚类抗体滴度的检测使用纯化的WPA蛋白1ug/100ul丁-4°C过夜包被酶联板,1%BSA37°C封闭lh,洗涤液洗板3次后加入待检小鼠血清,待检血清用洗涤液倍比稀释倍比稀释,第一孔按l:100稀释,加入100ul/孔。37°C反应30min。洗板3次后加入1:5,000稀释的羊抗鼠IgG(H+L)-朋P,37°C反应30min。洗板5次后加入100u1底物液(含1mg/mlTMB和0.03%HA),避光显色i0min后加入0.25%HF终止反应,于630nm读数。取免疫后OD值/免疫前OD值〉2的血清最大稀释倍数作为血清抗体滴度。由附图12可见,WPA和F427D对都有强的免疫原性,小鼠的抗体滴度随着免疫次数的增加而升高。第三次免疫后一周WPA免疫的小鼠的IgG抗体滴度可升高到1:409,600,F427D免疫的小鼠抗体滴度则达到了1:512,000显示了比WPA更强的免疫原性(P=0.012)。进一步检测IgG亚类IgGl和IgG2a抗体滴度的检测方法同IgG抗体滴度的检测,只是加入二抗时加入HRP-IgGl或冊P-IgG2a。在诱导强的TH2(IgGl)也就是体液免疫的同时也能诱导较强的TH1反应(细胞免疫反应,IgG2a)但WPA和F427D免疫的小鼠都主要以体液免疫为主。(如附图13所示〉。4、免疫鼠攻毒后保护情况第二次免疫后一周对WPA免疫小鼠8只,F427D免疫小鼠8只及PBS对照小鼠8只静脉注射炭疽致死毒素'观察WPA和F427D对小鼠的免疫保护力。免疫小鼠静脉注射25ugLF+60"gWPA(5XLD50'小鼠的5倍半数致死量)。静脉注射后小鼠后观察IO天。PBS对照免疫组小鼠从攻毒后12小时开始死亡,到24小时8只小鼠已全部死亡。而WPA和F427D免疫小鼠静脉注射炭疽致死毒素后观察10天'小鼠全部存活,蛋白免疫对小鼠的保护率均为W0%。结果见表2所示。表2WPA及F427D对免疫小鼠的保护力<table>tableseeoriginaldocumentpage13</column></row><table>实施例6攻毒后小鼠脾脏组织病理变化混合注射F427D和炭疽致死毒素的小鼠与蛋白苗免疫组小鼠静脉攻毒炭疽致死毒素10天后,拉颈处死存活的小鼠。分离小鼠脾脏后称重,用10%的福尔马林固定脾脏48小时后经石蜡包埋,切片,苏木精和伊红染色(服染色)后于镜下观察小鼠脾脏的病理变化。结果如图11,C所示,当5ug的F427D与炭疽致死毒素混合静脉注射小鼠时,10天后4只小鼠仍然有两只存活但小鼠脾脏发生了明显的肿大,脾重是正常小鼠的5倍左右。病理切片显示小鼠的脾脏中细胞大大减少,脾脏固有结构消失红白髓消失。如图11,A所示,当30UgF427D与炭疽致死毒素混合静脉注射小鼠时,i0天后4只小鼠全部存活,小鼠脾脏外观正常,病理切片显示小鼠的脾脏细胞没有减少,红白髓结构明显。如图11,B所示,免疫了F427D蛋白的小鼠静脉注射炭疽毒素10天后8只免疫小鼠全部存活,小鼠脾脏病理切片显示小鼠脾脏中淋巴细胞正常,红白髓结构明显,且如该图中箭头所示在脾小体中心可见明显的免疫反应-生发中心的出现。权利要求1、一种重组大肠杆菌(Escherichiacoli)DH5α/pGEX-KG-PA(F427D),保藏在中国典型培养物保藏中心(CCTCC),保藏编号为CCTCCNOM208158。2、包含重组质粒pGEX-KG-PA(F427D)的重组大肠杆菌Esc/eWc/z/aco//DH5a/pGEX-KG-PA(F427D),保藏在中国典型培养物保藏中心(CCTCC),保藏编号为CCTCCNO:M208158。3、由权利要求2所述的重组大肠杆菌表达的炭疽芽孢杆菌抗原蛋白。4、权利要求3所述的炭疽芽孢杆菌抗原蛋白制备的炭疽毒素抑制剂。5、权利要求3所述的炭疽芽孢杆菌抗原蛋白制备的炭疽毒素亚单位疫苗。6、权利要求2所述重组大肠杆菌在制备炭疽毒素抑制剂中的应用。7、权利要求2所述重组大肠杆菌在制备炭疽毒素亚单位疫苗中的应用。8、权利要求3所述的炭疽芽孢杆菌抗原蛋白在制备炭疽毒素抑制剂中的应用。9、权利要求3所述的炭疽芽孢杆菌抗原蛋白在制备炭疽毒素亚单位疫苗中的应用。全文摘要本发明涉及动物细菌学与人畜共患传染病学
技术领域
。具体涉及一种显性抑制突变体F427D作为炭疽芽孢杆菌毒素抑制剂及疫苗的应用。本发明通过炭疽芽孢杆菌致死毒素基因的克隆,蛋白表达与纯化,基因定点饱和突变等方法,得到炭疽芽孢杆菌保护性抗原蛋白(即显性抑制突变体F427D),该突变体已成功地克隆到原核表达载体pGEX-KG中,构建了重组质粒pGEX-KG-PA(F427D)。包含该重组质粒的大肠杆菌被命名为EscherichiacoliDH5α/pGEX-KG-PA(F427D),保藏在中国典型培养物保藏中心,保藏编号为CCTCC-M208158。本发明还公开了制备该抗原蛋白的方法,利用该抗原蛋白制备炭疽毒素抑制剂和亚单位疫苗及其应用。文档编号C12N1/21GK101392232SQ20081019755公开日2009年3月25日申请日期2008年11月7日优先权日2008年11月7日发明者刘子铎,张承才,莎曹,谭亚娣,郭爱珍,陈焕春申请人:华中农业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1