编码大约15kDa和大约45kDa的杀虫蛋白质的植物最优化的多核苷酸的制作方法

文档序号:560500阅读:318来源:国知局
专利名称:编码大约15kDa和大约45kDa的杀虫蛋白质的植物最优化的多核苷酸的制作方法
背景技术
昆虫和其它害虫使农民每年的作物损失和控制这些害虫的花费达亿万美元。昆虫害虫造成的农业生产环境的损失包括作物产量的减少、作物质量的降低和收获成本的提高。
化学杀虫剂已经提供了控制害虫的有效方法;然而,公众已经开始担心可能在食品、地下水和环境中发现的化学品残留量。因此,合成的化学杀虫剂正日益受到仔细考查,尤为正确的是考查其潜在的毒性环境后果。合成的化学杀虫剂可以毒害土壤和下伏含水层,因径流而污染地面水,并且破坏非目标生命形式。合成的化学控制剂的另一个缺点是,当它们施用于宠物、农畜或儿童可能与其接触的区域时,会引起公共安全方面的危害。它们还可能对施用者的健康造成危害,尤其是在没有遵循正确的施用方法时。全世界的管理部门都在限制和/或禁止使用许多杀虫剂,特别是那些在环境中持久而且进入生物链的合成化学杀虫剂。广泛应用的合成化学杀虫剂的实例包括有机氯类,例如DDT、灭蚁灵、开蓬、林丹、艾氏剂、氯丹、涕灭威和狄氏剂;有机磷酸酯类,例如毒死蜱、对硫磷、马拉硫磷和二嗪磷;以及氨基甲酸酯类。对使用杀虫剂的严格的新限制以及从市场上淘汰某些有效的杀虫剂都可能限制对控制代价高的害虫的经济而有效的选择。
鉴于与使用合成化学杀虫剂有关的问题,显然需要限制这些作用剂的使用而且需要确定其它的控制剂。取代合成化学杀虫剂,或组合应用这些作用剂和生物杀虫剂,可以降低环境中毒性化学品的水平。
正日益普及应用的一种生物杀虫剂是土壤微生物苏云金芽孢杆菌(Bacillus thuringiensis)(B.t.)。该土壤微生物苏云金芽孢杆菌(B.t.)是一种革兰氏阳性、产芽孢杆菌。B.t.的大多数菌株不显示杀虫活性。一些B.t.菌株产生伴胞晶状蛋白质包含体,并且可以伴胞晶状蛋白质包含体作为其特征。这些一般具有特异性的杀虫活性的“δ-内毒素”不同于那些具有非特异性的宿主范围的外毒素。这些包含体在显微镜下观察时经常表现为独特形状的晶体。这些蛋白质对害虫可以是高度毒性的并且在其毒性活性方面是特异性的。
多年来,使用苏云金芽孢杆菌库尔斯塔克亚种(B.thuringiensissubsp.kurstaki)的芽孢和晶体的制剂作为鳞翅目害虫的商用杀虫剂。例如,苏云金芽孢杆菌库尔斯塔克变种HD-1(B.thuringiensisvar.kurstaki HD-1)产生一种对许多鳞翅目昆虫的幼虫有毒的晶状δ-内毒素。
早于十五年之前,出版的文献中就描述了B.t.晶状蛋白质基因在大肠杆菌(Escherichia coli)中的克隆化和表达(Schnepf,H.E.,H.R.WhiteleyPro.Natl.Acad.Sci.USA78:2893-2897.)。美国专利No.4,448,885和美国专利No.4,467,036都公开了B.t.晶状蛋白质在大肠杆菌中的表达。基于重组DNA的B.t.产物已生产出来并得到批准使用。
最初,B.t.杀虫剂的商业使用被限制于窄范围的鳞翅目(毛虫)害虫。然而,近期研究者已发现了对范围宽得多的害虫有特异性的B.t.杀虫剂。例如,B.t.的其它种,即,以色列种(israelensis)和莫里逊种(morrisoni)(a.k.a.tenebrionis,a.k.a.B.t.M-7)已经分别在商业上用于控制双翅目和鞘翅目的昆虫(Gaertner,F.H.“Cellular Delivery Systems forInsecticidal Proteins:Living and Non-Living Microorganisms”,参见Controlled Delivery of Crop Protection Agents,R.M.Wilkins,编辑,Taylor and Francis,New York and London,1990,pp.245-255)。
现已鉴定了B.t.的新亚种,并对负责活性δ-内毒素蛋白质的基因进行了分离和测序(Hfte,H.,H.R.WhiteleyMicrobiological Reviews 52(2):242-255)。Hfte和Whiteley将B.t.晶状蛋白质基因分成四大类。这四类是cryⅠ(鳞翅目特异性的)、cryⅡ(鳞翅目和双翅目特异性的)、cryⅢ(鞘翅目特异性的)和cryⅣ(双翅目特异性的)。已报道过发现了对其它害虫有特异性毒性的菌株(Feitelson,J.S.,J.Payne,L.KimBio/Technology10:271-275)。例如,已经为新的两组线虫活性毒素提出了CryⅤ和CryⅥ命名。
Hfte和Whiteley的1989年命名法和分类方案基于推断的氨基酸序列和毒素的宿主范围这两者。该系统适合于概括14种不同类型的毒素基因,它们被分成五个大类。目前,测序过的苏云金芽孢杆菌晶状蛋白质基因的数量在50个以上。已经提出过一种修订过的命名方案,它仅基于氨基酸同一性(Crickmore等,Society forInvertebrate Pathology,29th Annual Meeting,Ⅲrd InternationalColloquium on Bacillus thuringiensis,University ofCordoba,Cordoba,Spain,September1-6,1996,abstract)。对于除cytA和cytB(它们保持为单独的一类)之外的所有毒素基因都保留了助记的“cry”。在第一等级中已经把罗马数字换成了阿拉伯数字,在第三等级中已经除去了括弧。原始名称中有许多已被保留,尽管有一些已被重新分类。
采用遗传工程技术,正在开发用于把B.t.毒素释放到农业环境的新方法,包括应用用B.t.毒素基因(用于昆虫抗性)遗传工程处理的植物和应用稳定化的微生物细胞作为B.t.毒素的释放载体(Gaertner,F.H.,L.KimTIBTECH6:S4-S7)。因此,分离的B.t.内毒素基因正变得有商业价值。
通过修饰B.t.毒素和/或它们的基因已经取得了各种改善。例如,美国专利No.5,380,831和No.5,567,862涉及生产在植物中的表达得以改善的合成杀昆虫晶状蛋白质基因。
对B.t.毒素的成功农业应用的障碍包括昆虫对B.t.毒素的抗性的形成。此外。某些昆虫是B.t.的作用难以控制的。后者包括诸如棉象虫和小低虎这样的昆虫以及至今没有表现出对B.t.δ-内毒素的明显显著敏感性的大多数种的成虫。
因此,B.t.植物技术中的抗性控制策略已经引起极大关注,而且迫切需要新的毒素基因。例如,WO97/40162(公开的PCT申请)公开了从B.t.分离菌PS80JJ1和PS149B1得到的15kDa和45kDa的鞘翅目活性蛋白质。
由于深入的研究和资源投入,继续颁发了有关新的B.t.分离菌、毒素和基因的专利以及有关B.t.分离菌的新用途的专利。参见Feitelson等人的综述(上文)。美国专利No.5,589,382公开了B.t.分离菌PS80JJ1具有抗线虫活性。美国专利No.5,632,987公开了B.t.分离菌PS80JJ1具有抗南瓜十二星叶甲活性。然而,发现新的B.t.分离菌和发现已知B.t.分离菌的新用途仍然是凭经验的、不可预见的技术。
仍迫切需要这样的新的毒素基因,它们能在植物中以有效控制昆虫和其它害虫的方式、以足够的水平成功地表达。
发明简述本发明涉及用于控制害虫、尤其是植物害虫的材料和方法。更具体地说,本发明提供了编码杀虫蛋白质的新颖的、植物最优化的多核苷酸序列。本发明的多核苷酸序列与野生型序列相比具有使它们特别适合于在植物中最佳化表达的某些修饰。利用本领域技术人员已知的方法,可以使用本文描述的多核苷酸序列完成植物的转化,从而赋予所述植物害虫抗性。在一个优选的实施方案中,本发明提供了编码大约15kDa和大约45kDa的杀虫蛋白质的植物最优化的多核苷酸序列。
序列描述序列1是称作80JJ1-15-PO5的基因的多核苷酸序列,它针对在玉米中的表达进行过最优化。该基因编码大约15kDa的蛋白质。该基因和蛋白质公开于WO97/40162。
序列2是称作80JJ1-15-PO7的基因的新的多核苷酸序列,它针对在玉米中的表达进行过最优化。这是编码大约15kDa的蛋白质的一个备选基因。
序列3是由称作80JJ1-15-P07的基因编码的新的杀虫活性蛋白质的氨基酸序列。
序列4是称作80JJ1-45-PO的基因的多核苷酸序列,它针对在玉米中的表达进行过最优化。该基因编码大约45kDa的蛋白质。该基因公开于WO97/40162。
序列5是称作149B1-15-PO的基因的新的多核苷酸序列,它针对在玉蜀黍(Zea mays)中的表达进行过最优化。该基因编码大约15kDa的蛋白质,该蛋白质得自公开于WO97/40162的PS149B1。
序列6是称作149B1-45-PO的基因的新的多核苷酸序列,它针对在玉蜀黍中的表达进行过最优化。该基因编码大约45kDa的蛋白质,该蛋白质得自公开于W097/40162的PS149B1。
发明的详细公开本发明涉及用于控制害虫、尤其是植物害虫的材料和方法。更具体地说,本发明提供了编码杀虫蛋白质的新颖的、植物最优化的多核苷酸序列。本发明的多核苷酸序列与野生型序列相比具有使它们特别适合于在植物中最佳化表达的某些修饰。利用本领域技术人员已知的方法,可以使用本文描述的多核苷酸序列完成植物的转化,从而赋予所述植物害虫抗性。在一个优选的实施方案中,本发明提供了编码大约15kDa和大约45kDa的杀虫蛋白质的植物最优化的多核苷酸序列。
利用诸如计算机或软件辅助序列对比这样的方法,就可以注意到本发明的植物最优化基因与野生型基因相比或与以前已知的基因相比在核苷酸序列方面的区别。与此类似,也可以注意到本发明与野生型毒素相比或与以前已知的毒素相比在特有氨基酸序列方面的区别。
对本领域技术人员而言显而易见的是,如果给出本文所述的基因的序列,就可以通过数种手段获得本发明的基因。在优选的实施方案中,本发明的基因可以通过合成法构建,例如使用基因合成仪。本文例举的具体基因也可以根据本发明的教导通过修饰某些得自某些分离菌(如下文所述保藏在培养物保藏单位)的野生型基因(例如,通过点突变技术)而获得。
本申请中讨论的某些培养物已经保藏在农业研究机构专利培养物保藏中心(NRRL),Northern Regional Research Center,1815NorthUniversity Street,Peoria,Illinois61604,USA。下文列出的保藏菌株公开于如上文“发明背景”部分讨论的专利文献中。
应该理解的是,可获得保藏物并不构成部分废除政府行为授予的专利权而许可实施本发明。
基因和毒素。在优选的实施方案中,本发明包括针对在植物中的表达进行过最优化的多核苷酸序列,其中所述序列选自序列2、序列5和序列6。序列2编码序列3中所示的优选蛋白质。
本发明的多核苷酸可用于形成完整的“基因”以在所需宿主细胞中编码蛋白质或肽。例如,如技术人员能轻易认识到的那样,序列2、序列5和序列6是没有终止密码子而显示的。正如本领域轻易已知的那样,序列2、序列5和/或序列6在目的宿主中可以被适当地置于启动子控制之下。
正如技术人员轻易地认识到的那样,DNA可以双链形式存在。在这种结构中,一条链与另一条链互补,反之亦然。本领域中经常用“编码链”指具有一系列密码子的链(一个密码子是可以一次读三个而产生一个特定氨基酸的三个核苷酸),该链可以作为可读框(ORF)阅读而形成目的蛋白质或肽。为了在体内表达一种蛋白质,通常将一条DNA链翻译成一条RNA互补链,它用做蛋白质的模板。当DNA在例如植物中复制时,产生附加的、DNA互补链。因此,本发明包括所附序列表中表示的例举性多核苷酸或互补链的应用。那些功能上等价于具体例举的新的DNA分子的RNA和PNA(肽核酸)包括在本发明之内。
本文已具体例举了本发明的某些DNA序列。这些序列是本发明的示范。应该显而易见的是,本发明不仅包括本文具体例举的基因和序列,而且包括其等价物和变体(例如,突变体、融合体、嵌合体、截断物、片段和更小的基因),所述等价物和变体与本文具体公开的那些基因和序列相比,在植物中表达毒素方面表现出相同或相近的特征。本文所用的“变体”和“等价物”是指这样的序列,它们具有不显著影响主题基因在植物中的表达和所得杀虫活性的核苷酸(或氨基酸)置换、缺失(内部的和/或末端的)、添加或插入。保留杀虫活性的多核苷酸蛋白质的片段以及全长蛋白质的“杀虫部分”也包括在该定义之内。
应用标准技术,可以对基因进行修饰,也可以轻易地构建基因的变化形式。例如,制造点突变的技术是本领域公知的。此外,可以根据标准方法使用可商购的外切核酸酶或内切核酸酶,而且可以使用酶(例如Bal31)或定点诱变从这些基因的末端系统性地切掉核苷酸。也可应用各种限制酶获得有用的基因。
应注意的是,等价基因将编码那些与主题基因编码的毒素有高度氨基酸同一性或同源性的毒素。在毒素的关键区域氨基酸同源性将是最高的,这些关键区域引起生物活性或与三维构型(它最终决定生物活性)的确定有关。关于这一点,某些置换是可接受的而且是可以预期的,如果这些置换处于对活性而言不关键的区域或者这些置换是不会影响分子的三维构型的保守性氨基酸置换的话。例如,氨基酸可以分为以下几类非极性的,不带电的极性的,碱性的和酸性的。保守性置换(其中一种类型的一个氨基酸被同一类型的另一个氨基酸取代)落在本发明的范围之内,只要这种置换不显著改变化合物的生物活性即可。表1提供了属于每一类型的氨基酸实例的一览表。
在某些情况下,也可以进行非保守性置换。关键因素是这些置换不能显著有损于植物表达主题DNA序列的能力或有损于毒素的生物活性。
本文提到“分离的”多核苷酸和/或“纯化的”毒素时是指这些分子,这时它们不与其它分子结合;所述“其它分子”原本与“这些分子”共同存在于自然界中并且原本包括它们在植物中的应用。因此,提到“分离的”和/或“纯化的”时表示包括本文所述的“人工”。
重组宿主。可以将本发明的毒素编码基因导入各种微生物或植物宿主中。在本发明的一些实施方案中,经转化的微生物宿主可用于制备前体的初步步骤中,例如,该前体将在一些优选实施方案中最终用于转化植物细胞和植物,以便它们表达由本发明的基因编码的毒素。以这种方式转化和使用的微生物属于本发明的范围。重组微生物例如可以是B.t.、大肠杆菌或假单胞菌属(Pseudomonas)。转化可由本领域技术人员使用标准方法进行。这些转化所需的材料公开于本文或者是本领域技术人员容易获得的。
因此,在一些优选的实施方案中,本发明基因的表达直接或间接导致目的蛋白质的胞内产生和维持。当转化的植物被害虫摄食时,害虫将摄食毒素。其结果是对害虫的控制。
B.t.毒素基因可通过适宜的载体导入宿主、优选是植物宿主。有许多目的植物,例如玉米、小麦、稻、棉花、大豆和向日葵。本发明的基因特别适合于在转化的植物中提供表达多肽杀虫剂的基因的稳定维持和表达,而且,最好能更好地保护杀虫剂免受环境降解和失活。
因此,本发明包括重组宿主,它们包含针对在植物中的表达进行过最优化的多核苷酸序列,其中所述序列选自序列2、序列5和序列6。例如,重组宿主可以是植物细胞。包含主题多核苷酸的完整植物也在本发明的范围之内。在特别优选的实施方案中,可以使一种植物对南瓜十二星叶甲损伤有抗性,方法是,将其转化以表达编码大约15kDa蛋白质的一种多核苷酸(例如序列2)以及编码45kDa蛋白质的第二种多核苷酸(例如序列4)。同样,也可以在一种启动子或独立的多个启动子(例如泛素启动子)的控制下一同使用序列5和序列6。例如,在这方面,序列2和序列6的多核苷酸可以一同使用,或者,可使用序列4和序列5。
尽管本发明提供了合成的基因的具体实施方案,但功能上等价于本文例举的基因的其它基因也可用于转化宿主、优选是植物宿主。有关生产合成的基因的其它指导可参见例如美国专利No.5,380,831。
本文参考或引用的所有公开出版物和专利文献在此全文并入本文作参考,只要它们不与本说明书的明确教导相矛盾即可。
以下是阐述实施本发明的程序的实施例。该实施例不能被视为限制性的。实施例1-将毒素基因插入植物本发明的一个方面是用编码杀虫毒素的主题多核苷酸序列转化植物。经转化的植物对靶害虫的攻击有抗性。本发明的基因针对在植物中的应用进行过最优化。
显然,能够在植物中表达该基因的启动子区域是需要的。因此,对植物内(in planta)表达而言,本发明的DNA在适宜的启动子区域的控制之下。采用这类构建物获得植物内表达的方法是本领域已知的。用于表达15kDa和45kDa转基因两者的一个优选启动子区域是玉蜀黍泛素启动子加玉蜀黍外显子1和玉蜀黍内含子1(Christensen,A.H.等人,1992 Plant Mol.Biol.18:675-689)。对两个转基因而言,一个优选的转录终止子是马铃薯蛋白酶抑制剂Ⅱ(PinⅡ)终止子(An,G.等人,1989 Plant Cell 1:115-22)。
可以用本领域公知的各种方法将本文公开的编码杀虫毒素的基因插入植物细胞。例如,在一些优选的实施方案中,基本上如Klein等人(1987)所述,使用Bio-Rad生产的BiolisticsòPDS-100He粒子枪,通过微粒轰击法获得含有14kDa和44kDa转基因的玉米植物。
在准备将外源基因插入高等植物时,可得到许多克隆用载体,它们包含一个在大肠杆菌中的复制系统和一个允许选择转化过的细胞的标记。例如,这些载体包括pBR322、pUC系列、M13mp系列、pACYC184等。于是,可以将编码B.t.毒素的序列在适宜的限制位点插入载体。所得质粒用于转化到大肠杆菌中。将大肠杆菌细胞在适宜的营养培养基中培养,然后收获并裂解。将质粒回收。作为分析方法,通常进行序列分析、限制酶切分析、电泳以及其它生物化学-分子生物学方法。在每个操作之后,将所用DNA序列切割并连接到下一个DNA序列上。每个质粒序列可以克隆在同一质粒或其它质粒中。
根据将所需基因插入植物的方法,可能需要其它DNA序列。例如,如果用Ti或Ri质粒转化植物细胞,则必须将Ti或Ri质粒T-DNA的至少右缘、但通常将其右和左缘作为待插入基因的侧翼区连接。用T-DNA转化植物细胞已得到深入研究并作过充分描述,参见EP 120516;Hoekema(1985),The Binary Plant Vector System,Offset-durkkerij Kanters B.V.,Alblasserdam,第5章;Fraley等人,Crit.Rev.Plant Sci.4:1-46;以及An等人(1985)EMBOJ.4:277-278。
一旦插入的DNA整合在基因组中,它就较稳定地存在,而且通常不再出来。它通常含有选择标记,该选择标记赋予转化过的植物细胞抗杀生物剂或抗生素的抗性,例如,特别是卡那霉素、G418、博来霉素、潮霉素或氯霉素。相应地,该各自使用的标记应允许选择转化过的细胞而不是不含插入的DNA的细胞。
将DNA插入植物宿主细胞的技术有很多。那些技术包括使用根癌土壤杆菌(Agrobacterium tumefaciens)或发根土壤杆菌(Agrobacterium rhizogenes)作为转化剂用T-DNA进行转化、融合、注射、biolistics(微粒轰击)或电穿孔以及其它可能的方法。如果用土壤杆菌进行转化,必须将待插入的DNA克隆入特殊的载体,即,或者克隆入中间载体或者克隆入双元载体。鉴于那些与T-DNA中的序列同源的序列,可以通过同源重组将中间载体整合入Ti或Ri质粒。Ti或Ri质粒也包含转移T-DNA所必需的vir区域。中间载体不能在土壤杆菌中自己复制。可借助辅助质粒(接合)将中间载体转入根癌土壤杆菌。双元载体可以在大肠杆菌中和在土壤杆菌中自己复制。它们包含一个选择标记基因和一个接头或多接头(它们由右和左T-DNA边缘区域框住)。可以将它们直接转化入土壤杆菌中(Holsters等人Mol.Gen.Genet.163:181-187)。用做宿主细胞的土壤杆菌要包含一个携带vir区域的质粒。该vir区域是将T-DNA转入植物细胞所必需的。可包含附加的T-DNA。将如此转化的细菌用于转化植物细胞。为了将DNA转入植物细胞,可以有利地将植物外植体与根癌土壤杆菌或发根土壤杆菌一起培养。然后,可以将完整植物从适宜培养基中的感染植物材料(例如,叶片、茎的片段、根,还有原生质体或悬浮培养的细胞)中再生,所述培养基可能含有用于进行选择的抗生素或杀生物剂。接着,可测试这样获得的植物是否存在插入的DNA。在注射和电穿孔的情形中,对质粒没有特殊要求。使用普通的质粒是可能的,例如pUC衍生物。
经转化的细胞按常规的方式在植物内部生长。它们可形成生殖细胞并将经转化的性状传给子代植物。这样的植物可按正常方式生长,并且与具有相同的转化遗传因子或其它遗传因子的植物杂交。所得杂交个体具有相应的表型特性。
应理解的是,本文所述的实施例和实施方案只是阐述性的,根据它们的各种修饰或变化是对本领域技术人员的提示并且包含在本申请和以下的权利要求书的实质和范围之内。
序列表<110>Mycogen Corporation<120>编码大约15kDa和大约45kDa的杀虫蛋白质的植物最优化的多核苷酸<130>MA723/4x<140><141><150>60/105,408<151>1998-10-23<150>60/105,359<151>1998-10-23<160>6<170>PatentIn Ver.,21<210>1<211>357<212>DNA<213>人工序列<220><223>人工序列描述合成的苏云金芽孢杆菌毒素基因<400>1atgtccgccc gcgaggtgca catcgagatc aacaacaaga cccgccacac cctccagctc 60gaggacaaga ccaagctctc cggcggcagg tggcgcacct ccccgaccaa cgtggcccgc 120gacaccatca agacgttcgt ggcggagtcc cacggcttca tgaccggcgt cgagggcatc 180atctacttct ccgtgaacgg cgacgccgag atctccctcc acttcgacaa cccgtacatc 240ggctccaaca agtgcgacgg ctcctccgac aagcccgagt acgaggtgat cacccagtcc 300ggctccggcg acaagtccca cgtgacctac accatccaga ccgtgtccct ccgcctc357<210>2<211>357<212>DNA<213>人工序列<220><223>人工序列描述合成的苏云金芽孢杆菌毒素基因<400>2atgtccgccc gcgaggtgca catcgagatc aacaacaaga cccgccacac cctccagctc 60gaggacaaga ccaagctctc cggcggcagg tggcgcacct ccccgaccaa cgtggcccgc 120gacaccatca agacgttcgt ggcggagtcc cacggcttca tgaccggcgt cgagggcatc 180atctacttct ccgtgaacgg cgacgccgag atctccctcc acttcgacaa cccgtacatc 240ggctccaaca agtccgacgg ctcctccgac aagcccgagt acgaggtgat cacccagtcc 300ggctccggcg acaagtccca cgtgacctac accatccaga ccgtgtccct ccgcctc357<210>3<211>119<212>PRT<213>人工序列<220><223>人工序列描述由合成的苏云金芽孢杆菌基因编码的毒素<400>3Met Ser Ala Arg Glu Val His Ile Glu Ile Asn Asn Lys Thr Arg His1 5 10 15Thr Leu Gln Leu Glu Asp Lys Thr Lys Leu Ser Gly Gly Arg Trp Arg20 25 30Thr Ser Pro Thr Asn Val Ala Arg Asp Thr Ile Lys Thr Phe Val Ala35 40 45Glu Ser His Gly Phe Met Thr Gly Val Glu Gly Ile Ile Tyr Phe Ser50 55 60Val Asn Gly Asp Ala Glu Ile Ser Leu His Phe Asp Asn Pro Tyr Ile65 70 75 80Gly Ser Asn Lys Ser Asp Gly Ser Ser Asp Lys Pro Glu Tyr Glu Val85 90 95Ile Thr Gln Ser Gly Ser Gly Asp Lys Ser His Val Thr Tyr Thr Ile100 105 110Gln Thr Val Ser Leu Arg Leu115<210>4<211>1155<212>DNA<213>人工序列<220><223>人工序列描述合成的苏云金芽孢杆菌毒素基因<400>4atgctcgaca ccaacaaggt gtacgagatc tccaacctcg ccaacggcct ctacacctcc 60acctacctct ccctcgacga ctccggcgtg tccctcatgt ccaagaagga cgaggacatc 120gacgactaca acctcaagtg gttcctcttc ccgatcgaca acaaccagta catcatcacc 180tcctacggcg ccaacaactg caaggtgtgg aacgtgaaga acgacaagat caacgtgtcc 240acctactcct ccaccaactc cgtgcagaag tggcagatca aggccaagga ctcctcctac 300atcatccagt ccgacaacgg caaggtgctc accgcgggcg tgggccagtc cctcggcatc 360gtgcgcctca ccgacgagtt cccggagaac tccaaccagc aatggaacct caccccggtg 420cagaccatcc agctcccgca gaagccgaag atcgacgaga agctcaagga ccacccggag 480tactccgaga ccggcaacat caacccgaag accaccccgc agctcatggg ctggaccctc 540gtgccgtgca tcatggtgaa cgactccaag atcgacaaga acacccagat caagaccacc 600ccgtactaca tcttcaagaa atacaagtac tggaacctcg ccaagggctc caacgtgtcc 660ctcctcccgc accagaagcg cagctacgac tacgagtggg gcaccgagaa gaaccagaag 720accaccatca tcaacaccgt gggcctgcag atcaacatcg actcggggat gaagttcgag 780gtgccggagg tgggcggcgg caccgaggac atcaagaccc agctcaccga ggagctgaag 840gtggagtact ccaccgagac caagatcatg accaagtacc aggagcactc cgagatcgac 900aacccgacca accagccgat gaactccatc ggcctcctca cctacacctc cctcgagctg 960taccgctaca acggcaccga gatcaagatc atggacatcg agacctccga ccacgacacc 1020tacaccctca cctcctaccc gaaccacaag gaggcgctgc tgctgctgac caaccactcc 1080tacgaggagg tggaggagat caccaagatc ccgaagcaca ccctcatcaa gctcaagaag 1140cactacttca agaag 1155<210>5<211>369<212>DNA<213>人工序列<220><223>人工序列描述合成的苏云金芽孢杆菌毒素基因<400>5atgtccgccc gcgaggtgca catcgacgtg aacaacaaga ccggccacac cctccagctg 60gaggacaaga ccaagctcga cggcggcagg tggcgcacct ccccgaccaa cgtggccaac 120gaccagatca agaccttcgt ggccgaatcc aacggcttca tgaccggcac cgagggcacc 180atctactact ccatcaacgg cgaggccgag atcagcctct acttcgacaa cccgttcgcc 240ggctccaaca aatacgacgg ccactccaac aagtcccagt acgagatcat cacccagggc 300ggctccggca accagtccca cgtgacctac accatccaga ccacctcctc ccgctacggc 360cacaagtcc 369<210>6<21l>1149<212>DNA<213>人工序列<220><223>人工序列描述合成的苏云金芽孢杆菌毒素基因<400>6atgctcgaca ccaacaaggt gtacgagatc agcaaccacg ccaacggcct ctacgccgcc 60acctacctct ccctcgacga ctccggcgtg tccctcaga acaagaacga cgacgacatc 120gacgactaca acctcaagtg gttcctcttc ccgatcgacg acgaccagta catcatcacc 180tcctacgccg ccaacaactg caaggtgtgg aacgtgaaca acgacaagat caacgtgtcc 240acctactcct ccaccaactc catccagaag tggcagatca aggccaacgg ctcctcctac 300gtgatccagt ccgacaacgg caaggtgctc accgccggca ccggccaggc cctcggcctc 360atccgcctca ccgacgagtc ctccaacaac ccgaaccagc aatggaacct gacgtccgtg 420cagaccatcc agctcccgca gaagccgatc atcgacacca agctcaagga ctacccgaag 480tactccccga ccggcaacat cgacaacggc acctccccgc agctcatggg ctggaccctc 540gtgccgtgca tcatggtgaa cgacccgaac atcgacaaga acacccagat caagaccacc 600ccgtactaca tcctcaagaa gtaccagtac tggcagaggg ccgtgggctc caacgtcgcg 660ctccgcccgc acgagaagaa gtcctacacc tacgagtggg gcaccgagat cgaccagaag 720accaccatca tcaacaccct cggcttccag atcaacatcg acagcggcat gaagttcgac 780atcccggagg tgggcggcgg taccgacgag atcaagaccc agctcaacga ggagctcaag 840atcgagtact cccacgagac gaagatcatg gagaagtacc aggagcagtc cgagatcgac 900aacccgaccg accagtccat gaactccatc ggcttcctca ccatcacctc cctggagctc 960taccgctaca acggctccga gatccgcatc atgcagatcc agacctccga caacgacacc 1020tacaacgtga cctcctaccc gaaccaccag caggccctgc tgctgctgac caaccactcc 1080tacgaggagg tggaggagat caccaacatc ccgaagtcca ccctcaagaa gctcaagaag 1140tactacttc 1149
权利要求
1.一种多核苷酸,它具有选自序列2、序列5和序列6的核苷酸序列。
2.根据权利要求1的多核苷酸,其中所述核苷酸序列是序列2。
3.根据权利要求1的多核苷酸,其中所述核苷酸序列是序列5。
4.根据权利要求1的多核苷酸,其中所述核苷酸序列是序列6。
5.一种重组宿主,它表达根据权利要求1的多核苷酸。
6.根据权利要求5的宿主,其中所述核苷酸序列是序列2。
7.根据权利要求5的宿主,其中所述核苷酸序列是序列5。
8.根据权利要求5的宿主,其中所述核苷酸序列是序列6。
9.根据权利要求5的宿主,其中所述宿主是植物细胞。
10.根据权利要求5的宿主,其中所述宿主是植物。
11.根据权利要求5的宿主,其中所述宿主是玉米。
12.一种生产权利要求5的重组宿主的方法。
13.根据权利要求12的方法,其中所述宿主是植物细胞。
14.根据权利要求12的方法,其中所述宿主是植物。
15.根据权利要求12的方法,其中所述宿主是玉米。
16.一种控制植物害虫的方法,其中所述方法包括将所述害虫与由权利要求1的多核苷酸编码的第一种蛋白质接触,其中所述第一种蛋白质是由表达所述多核苷酸的重组宿主生产的。
17.根据权利要求16的方法,其中所述宿主是植物。
18.根据权利要求16的方法,其中所述宿主是玉蜀黍植物。
19.根据权利要求18的方法,其中所述核苷酸序列是序列2。
20.根据权利要求18的方法,其中所述核苷酸序列是序列5。
21.根据权利要求18的方法,其中所述核苷酸序列是序列6。
22.根据权利要求19的方法,其中所述方法进一步包括将所述害虫与大约45kDa的第二种蛋白质接触。
23.根据权利要求20的方法,其中所述方法进一步包括将所述害虫与大约45kDa的第二种蛋白质接触。
24.根据权利要求21的方法,其中所述方法进一步包括将所述害虫与大约15kDa的第二种蛋白质接触。
25.一种具有序列3的氨基酸序列的杀虫蛋白质。
全文摘要
本发明提供了编码杀虫毒素的新颖的、植物最优化的多核苷酸序列。本发明的多核苷酸序列与野生型序列相比具有某些修饰,例如那些使它们特别适合于在植物中最佳化表达的修饰。利用本领域技术人员已知的方法,可以使用本文描述的多核苷酸序列完成植物的转化,从而赋予所述植物害虫抗性。在优选的实施方案中,本发明提供了编码大约15kDa和大约45kDa的杀虫蛋白质的植物最优化的多核苷酸序列。
文档编号C12N1/21GK1324407SQ99812497
公开日2001年11月28日 申请日期1999年10月21日 优先权日1998年10月23日
发明者G·A·卡迪尼奥, S·J·斯蒂尔曼, K·E·纳瓦 申请人:麦考根公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1