一种金属纳米粒子的水相制备方法
【专利摘要】本发明涉及一种金属纳米粒子的制备方法。在水溶液中,利用聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物作为还原剂和保护剂,通过反应条件的控制可以制备得到不同组分和形貌的单金属、合金以及核壳结构的金属纳米粒子(至少含有一种贵金属组分),它们在包括燃料电池催化剂在内的诸多领域有广泛的应用前景。本发明采用的制备方法无需有机溶剂,反应条件温和,产物的形貌和组分可控,因而是一种简便、高效、环境友好的金属纳米粒子制备方法。
【专利说明】 一种金属纳米粒子的水相制备方法
【技术领域】
[0001]本发明涉及一种单金属、合金和核壳结构纳米粒子的水相制备方法。
【背景技术】
[0002]纳米金属粒子是指粒径小于IOOnm的金属颗粒,由于纳米尺寸效应,它们具有与非纳米粒子非常不同的性质,在催化剂、电磁功能材料、光电功能材料、生物医用材料等方面具有广泛的用途。
[0003]金属纳米粒子的制备方法包括气相法、固相法和液相法。气相法通常是将金属原料加热蒸发而后冷凝得到金属纳米粒子,该方法通常需要复杂的设备,生产技术要求严格,成本较高。而固相法难以制备IOnm以下的纳米粒子,而且产物的纯度不高,颗粒分布也不均匀。另外,气相法和固相法仅适合简单的单一金属或特定合金的制备,难以制备特殊结构和形貌的纳米粒子。液相法是在还原剂或外加能量(声、光、电、热等)作用下,将金属前躯体还原为单质金属。相比之下,液相法可以在原子水平上进行物质装配与控制,通过反应条件的控制调控产物的粒径、组分和形貌,还具有通用性、可操作性和相对简单等优点,因而获得了广泛的研究。根据溶剂体系的不同,纳米粒子的液相制备法可以是在水相、有机相或微乳相中进行。其中,有机相和微乳相均涉及到大量有机溶剂的使用,环境污染较为严重,因而从清洁、环保的角度出发,水相合成金属纳米粒子具有更长远的意义。
[0004]迄今为止,于水相中制备金属纳米粒子多在还原剂(水合肼、抗坏血酸、甲酸、柠檬酸、硼氢化钠、甲醛等)与保护剂(聚乙烯吡咯烷酮、聚丙烯酸、季铵盐类阳离子表面活性齐U、磺酸及硫酸类阴离子表面活性剂等)的共同作用下进行,如果能够将保护剂与还原剂合二为一必将简化制备工艺。中国专利(申请号:CN200810057101.7)公开了一种方法用聚乙二醇同时作为还原剂和保护剂制备贵金属纳米粒子,但是该专利并未证明该方法可以用于合金、核壳结构纳米粒子的制备以及粒子的形貌控制。文献报道十六烷基三甲基氯化铵同时作为还原剂和保护剂可以制备AuOPd核壳结构纳米粒子(Lee et al., J.Am.Chem.Soc., 2009, 131,17036),但是该反应需要在水热条件下进行,且反应时间长(48h)。另夕卜,聚乙烯吡咯烷酮(PVP)同时作为保护剂和还原剂可用用于Pt-Pd合金的制备(Lim etal., Angew.Chem.-1nt.Edit., 2009, 48, 6304.),然而吸附在纳米粒子表面的PVP的去除十分困难,且残余的PVP会覆盖催化剂的活性位点,严重影响其催化活性(Long,N.V.,etal.,Colloid Polym.Sc1.,2011,289,1373)。
[0005]由聚氧乙烯(PEO)和聚氧丙烯(PPO)组成的三嵌段共聚物PE0-PP0-PE0,具有良好的水溶性,可以用作纳米粒子的保护剂,而且其中的PEO段在水中可以形成类冠醚结构,因而具有还原性。鉴于此,本发明利用PE0-PP0-PE0三嵌段共聚物同时作为还原剂和保护剂,在水溶液中通过调控反应体系的温度、pH、结构导向剂、还原剂浓度以及各种金属前躯体的浓度和比例,可以得到多种粒径、组分与形貌可控的单金属、合金和核壳结构纳米粒子。PE0-PP0-PE0聚合物价格低廉、无毒,且易于去除,因此本发明采用的制备方法是一种简便、高效、绿色的纳米粒子制备方法。
【发明内容】
[0006]本发明的目的在于提出一种简便、高效、绿色的纳米粒子水相制备方法,能够通过反应条件的控制,得到粒径、组分与形貌可控的单金属、合金和核壳结构纳米粒子。
[0007]本发明包含以下步骤:
[0008](1)在5~100° C下将作为还原剂和保护剂的聚氧乙烯(PEO)-聚氧丙烯(PPO)-聚氧乙烯(PEO)三嵌段共聚物溶解在去离子水中,充分搅拌使其完全溶解,得到质量分数为
0.1%~10%的聚合物溶液;所述的三嵌段共聚物记为ΡΕ0-ΡΡ0-ΡΕ0,其中PEO= (-CH2-CH2-O-)η, η=6 ~120 ;PP0= (-CH2-CH(CH3)-O-)m, m=20 ~120 ;例如商品化的Pluronif 系列聚合物,包括 L43、L44、L62、L64、P65、F68、P84、P85、F88、P103、P104、P105、F108、P123 以及 F127中的一种。
[0009](2)在上述溶液中加入结构导向剂,充分搅拌使其完全溶解;所述的结构导向剂为柠檬酸、溴化钾、碘化钾、草酸钠、十六烷基三甲基溴化铵或十六烷基三甲基氯化铵中的一种或两种以上;
[0010]每一种结构导向剂与体系中总金属元素的摩尔比为10: 1- 100:1。
[0011](3)调节溶液的pH至某一特定值,该特定值在1-14之间,优选:3-10 ;调节pH所用的酸为盐酸、硫酸、硝酸或醋酸中的一种;调节PH所用的碱为氢氧化钠、氢氧化钾或氨水中的一种。
[0012](4)将含一种或两种以上金属前躯体的水溶液加入至上述溶液中,在5_100°C下反应l_12h,期间保证不停的搅拌;或者,将两种以上含不同金属前躯体的水溶液先后加入至前述溶液中,每加入一次金属前躯体溶液后,均在5-100°C下反应l_12h,期间保证不停的搅拌;
[0013]所述的金属前躯体为Pt、Pd、Au、Ag、Ir、Ru、Fe、Co、Ni或Cu的水溶性硫酸盐、硝酸盐、卤化物、络合物、氢卤酸或氢卤酸盐中的一种或两种以上;加入的前躯体中至少包含一种贵金属元素(包括Pt、Pd、Au、Ag、Ir或Ru)的前躯体;在金属前躯体全部加入反应体系后,反应体系中金属元素总摩尔浓度为10mmol/L ;其中,所有贵金属元素(包括Pt、Pd、Au、Ag、Ir或Ru)的物质的量占总金属元素物质的量的比例为10%~100%。
[0014](5)反应结束后,将反应体系冷却至室温,充分洗涤除去杂质。
[0015](6)为便于应用,可以制备担载型纳米粒子;方法是事先将载体在无水乙醇中分散均匀,形成悬浊液,载体在悬浊液中的浓度为2~5mg/mL ;然后将该悬浊液加入到制备好的纳米粒子的溶胶中,搅拌至少2h,使得纳米粒子沉积到载体上,而后分离、洗涤、干燥;所述的载体包括导电碳材料、陶瓷材料或聚合物材料;金属占载体和金属总质量的比例为I~90%。
[0016]本发明的创新性在于首次利用ΡΕ0-ΡΡ0-ΡΕ0聚合物同时作为还原剂和保护剂,在水溶液中和较低的反应温度下,即可得到金属纳米粒子。通过控制反应条件,如温度、pH、反应物的种类和浓度,可以得到多种粒径、组分与形貌可控的单金属、合金和核壳结构纳米粒子。ΡΕ0-ΡΡ0-ΡΕ0是商品化的聚合物,成本低,无毒,且不易在产物表面残留。反应过程无需高温、高压,避免了大量有机溶剂的使用。因此,本发明提出的方法是一种简便、高效、绿色的纳米粒子制备方法。【专利附图】
【附图说明】
[0017]图1为实施例1制备的担载型的Pt纳米粒子(Pt/C)的TEM照片。Pt纳米粒子的粒径分布在l_3nm之间,且在碳载体上分散均匀。
[0018]图2为实施例2制备的Pd纳米粒子的TEM照片。图中显示得到的Pd纳米粒子的平面投影呈现规则的菱形形貌,其每边长度约为10nm。
[0019]图3为实施例3制备的Pd纳米粒子的TEM照片。图中显示得到的Pd纳米粒子的平面投影呈现规则的六边形形貌,其边长为8-12nm。
[0020]图4为实施例4制备的Pd纳米粒子的TEM照片。Pd纳米粒子的平面投影呈现菱形和三角形的混合形貌。
[0021]图5 Ca)为实施例5制备的Pd纳米粒子的TEM照片;(b)为PdOPt纳米粒子的TEM照片;(C)为PdOPt纳米粒子中Pt、Pd元素的线性分布曲线,证明了 PdOPt纳米粒子具有Pd核Pt壳的结构。
[0022]图6为Plur0nic'R; F127和PdOPt的傅里叶变换红外光谱图,PdiPt没有出现Pluronie? F127对应的吸收峰,证明PdOPt表面没有Pluronie? F127残留。
[0023]图7为实施例6制备的担载型PdPt合金(PdPt/C)的TEM照片。
[0024]图8为实施例7制备的Pt纳米粒子的TEM照片。图中显示得到的Pt纳米粒子呈现多足的特殊形貌。
[0025]图9为实施例8制备的PdAuOPt纳米粒子的TEM照片,Pt呈岛状生长在PdAu粒
子表面。
【具体实施方式】
[0026]实施例1:
[0027]1.将Pluronicf F127溶解在80°C的去离子水中,得到质量分数为10%的F127溶液。
[0028]2.将19.lmmol/L的K2PtCl4水溶液加入到上述溶液中,使得Pt元素的摩尔浓度为2.0mmol/L,在80°C搅拌反应3h,冷却至室温,得到棕黑色的Pt纳米粒子溶胶。
[0029]3.将4倍于Pt质量的Vulcan XC-72R炭黑在无水乙醇中分散均匀,形成悬浊液,炭黑在悬池液中的浓度为4.5mg/mL ;然后将该炭黑悬池液加入到上述Pt纳米粒子溶I父中,并在室温下搅拌12h。
[0030]4.随后将上述混合物离心分离,用去离子水洗涤:T5次,最后于60°C真空下烘干,得到担载型的Pt纳米粒子(Pt/C)。
[0031]图1为担载型的Pt纳米粒子的TEM照片。
[0032]实施例2:
[0033]1.将PluronieR' F127溶解在80°C的去离子水中,得到质量分数为10%的F127溶液。
[0034]2.称取柠檬酸加入到步骤I所述的溶液中,使之充分溶解,使得柠檬酸在该溶液中的摩尔浓度为53.5mmol/L0
[0035]3.将34.2mmol/L的Na2PdCl4水溶液加入到步骤2所述的溶液中,使得Pd元素的摩尔浓度为7.6mmol/L,在80°C搅拌反应2h,冷却至室温,得到棕黑色的Pd纳米粒子溶胶。
[0036]图2为得到的Pd纳米粒子的TEM照片。
[0037]实施例3:
[0038]1.将Pluronie? F127溶解在40°C的去离子水中,得到质量分数为10%的F127溶液。
[0039]2.称取柠檬酸加入到步骤I所述的溶液中,使之充分溶解,使得柠檬酸在该溶液中的摩尔浓度为53.5mmol/L0
[0040]3.将34.2mmol/L的Na2PdCl4水溶液加入到步骤2所述的溶液中,使得Pd元素的摩尔浓度为3.8mmol/L,在40°C搅拌反应2h,冷却至室温,得到棕黑色的Pd纳米粒子溶胶。[0041 ] 图3为得到的Pd纳米粒子的TEM照片。
[0042]实施例4:
[0043]1.将Pluroni^ F127溶解在100°C的去离子水中,得到质量分数为2%的F127溶液。
[0044]2.称取柠檬酸加入到步骤I所述的溶液中,使之充分溶解,使得柠檬酸在该溶液中的摩尔浓度为53.5mmol/L0
[0045]3.将34.2mmol/L的Na2PdCl4水溶液加入上述溶液中,使得Pd元素的摩尔浓度为3.8mmol/L,在100°C搅拌反应2h,冷却至室温,得到棕黑色的Pd纳米粒子溶胶。
[0046]图4为得到的Pd纳米粒子的TEM照片。
[0047]实施例5:
[0048]1.将Plm.0nif F127溶解在80°C的去离子水中,得到质量分数为10%的F127溶液。
[0049]2.将34.2mmol/L的Na2PdCl4水溶液加入步骤I所述溶液中,使得Pd元素的摩尔浓度为3.8mmol/L,在80°C搅拌反应2h,得到棕黑色的Pd纳米粒子溶胶。
[0050]3.将19.lmmol/L的K2PtCl4水溶液加入到上述Pd纳米粒子溶胶中,使得Pt与Pd元素的摩尔比为1:2,在801:搅拌反应3h,冷却至室温,得到棕黑色的核壳结构PdOPt纳米粒子溶胶。
[0051]图5 Ca)为得到的Pd纳米粒子的TEM照片,(b)为PdOPt纳米粒子的TEM照片,(c)为PdOPt纳米粒子中Pt、Pd元素的线性分布曲线,证明了 Pd核Pt壳的结构。
[0052]图6为Pluronie" F127和PdiPt的傅里叶变换红外光谱图,PdiPt没有出现Pluronie? F127对应的吸收峰,证明PdOPt表面没有Pluronk? F127残留。
[0053]实施例6:
[0054]1. 将Pluronie15 F127溶解在80°C的去离子水中,得到质量分数为10%的F127溶液。
[0055]2.将一定量同时含有Na2PdCl4和K2PtCl4的水溶液(Pd与Pt元素总摩尔浓度为27mmol/L,Pd与Pt的摩尔比为2:1)加入步骤I所述溶液中,使得Pt和Pd元素的总摩尔浓度为5.7mmol/L,在80°C搅拌反应3h,冷却至室温,得到棕黑色的PdPt合金纳米粒子溶胶。
[0056]3.将与Pt和Pd总质量相同的Vulcan XC-72R炭黑在无水乙醇中分散均匀,形成悬浊液,炭黑的浓度为2.5mg/mL ;然后将该炭黑悬浊液加入到上述PdPt纳米粒子溶胶中,并在室温下搅拌12h。[0057]4.随后将上述混合物离心分离,用去离子水洗涤:1-5次,最后于60°C真空下烘干,得到担载型的PdPt合金纳米粒子(PdPt/C)。
[0058]图7 (a)为 PdPt/C 的 TEM 照片。
[0059]实施例7:
[0060]1.将Pluronicf F127溶解在100°C的去离子水中,得到质量分数为2%的F127溶液。
[0061]2.将38mmol/L的H2PtCl6水溶液加入步骤I所述溶液中,使得Pt元素的摩尔浓度为3.8mmol/L,此时体系的pH值在3左右。在80°C搅拌反应12h,冷却至室温,得到棕黑色的Pt纳米粒子溶胶。
[0062]图8为得到的Pt纳米粒子的TEM照片。
[0063]实施例8:
[0064]1.将Pluronif F127溶解在80°C的去离子水中,得到质量分数为10%的F127溶液。
[0065]2.将一定量同时含有Na2PdCl4和HAuCl4的水溶液(Pd与Au元素总摩尔浓度为20mmol/L, Pd与Au的摩尔比为1:9)加入步骤I所述溶液中,使得Pd和Au元素的总摩尔浓度为3.8mmol/L,在80°C搅拌反应2h,得到PdAu合金纳米粒子溶胶。
[0066]3.将19.lmmol/L的K2PtCl4水溶液加入到上述PdAu纳米粒子溶胶中,使得Pd和Au元素之和与Pt的摩尔比为2: 1,在80°C搅拌反应3h,冷却至室温,得到棕黑色的核壳结构PdAuOPt纳米粒子溶胶。
[0067]图9 为 PdAuOPt 的 TEM 照片。
[0068]实施例9:
[0069]1.将Piuronicli Fios溶解在80°c的去离子水中,得到质量分数为10%的Fios溶液。
[0070]2.将12.2mmol/L的H2IrCl6水溶液加入到上述溶液中,使得Ir元素的摩尔浓度为9.5mmol/L,在80°C搅拌反应6h,冷却至室温,得到棕黑色的Ir纳米粒子溶胶。
[0071]实施例10:
[0072]1.将PluronieK F68溶解在90°C的去离子水中,得到质量分数为15%的F68溶液。
[0073]2.将20mmol/L的RuCl3水溶液加入到上述溶液中,使得Ru元素的摩尔浓度为1.2mmol/L,在90°C搅拌反应3h,冷却至室温,得到棕黑色的Ru纳米粒子溶胶。
[0074]实施例11:
[0075]1.将Pluronif P123溶解在80°C的去离子水中,得到质量分数为10%的P123溶液。
[0076]2.用2mol/L的NaOH水溶液调节溶液的pH为10。
[0077]3.将一定量同时含有Na2PdCl4和CuCl2的水溶液(Pd与Cu元素总摩尔浓度为50mmol/L, Pd与Cu的摩尔比为1:3)加入步骤2所述溶液中,使得Pd和Cu元素的总摩尔浓度为3.8mmol/L,在80°C搅拌反应2h,冷却至室温,得到PdCu合金纳米粒子溶胶。其形貌与图5 (a)所示的纳米粒子形貌相似。
【权利要求】
1.一种金属纳米粒子的水相制备方法,其特征在于:在水溶液中,以聚氧乙烯(PEO)-聚氧丙烯(PPO)-聚氧乙烯(PEO)三嵌段共聚物作为还原剂,还原金属前躯体;PE0-PP0-PE0三嵌段共聚物同时作为纳米粒子的保护剂; 具体的反应步骤为, (1)将PE0-PP0-PE0三嵌段共聚物溶解在去离子水中,充分搅拌使其完全溶解,得到聚合物溶液; (2)在上述溶液中加入结构导向剂,充分搅拌使其完全溶解; (3)调节溶液的pH至某特定值,该特定值在f14之间; (4)将含一种或二种以上金属前躯体的水溶液加入至上述溶液中,在5~100°C下反应f24h,期间保证不停的搅拌; 或者,将二种以上含不同金属前躯体的水溶液先后加入至前述步骤的溶液中,每加入一次金属前躯体后,均在5~100°C下反应f24h,期间保证不停的搅拌; 在加入的前躯体中至少包含一种贵金属前躯体; (5)反应结束后,将反应体系冷却至室温,充分洗涤除去杂质。
2.根据权利要求1所述的制备方法,其特征在于:所述的PE0-PP0-PE0三嵌段共聚物同时作为还原剂和保护剂;其中 PEO= (-CH2-CH2-O-)n,n=6 ~120 ;PP0= (-CH2-CH(CH3)-O-)m, m=20~120。
3.根据权利要求1或2所述的制备方法,其特征在于:所述的PE0-PP0-PE0三嵌段共聚物为商品化的Pluronie?系列聚合物,包括 L43、L44、L62、L64、P65、F68、P84、P85、F88、P103、P104、P105、F108、P123 以及 F127 中的一种。`
4.根据权利要求1所述的制备方法,其特征在于:步骤(1)所述的PE0-PP0-PE0聚合物溶解温度为5~100°C,聚合物溶液中聚合物的质量分数为0.19^10%。
5.根据权利要求1所述的制备方法,其特征在于:步骤(2)中使用的结构导向剂为柠檬酸、溴化钾、碘化钾、草酸钠、十六烷基三甲基溴化铵或十六烷基三甲基氯化铵中的一种或二种以上,每一种结构导向剂与体系中总金属元素的摩尔比为10: f 100:1。
6.根据权利要求1所述的制备方法,其特征在于:步骤(3)中所述的溶液的pH在:TlO之间; 调节PH所用的酸为盐酸、硫酸、硝酸或醋酸中的一种;调节pH所用的碱为氢氧化钠、氢氧化钾或氨水中的一种。
7.根据权利要求1所述的制备方法,其特征在于:步骤(4)中使用的金属前躯体为Pt、Pd、Au、Ag、Ir、Ru、Fe、Co、Ni或Cu等的水溶性硫酸盐、硝酸盐、卤化物、络合物、氢卤酸或氢卤酸盐中的一种或二种以上; 金属前躯体全部加入后,溶液中金属元素总摩尔浓度为f 10mmol/L ; 其中,所有贵金属元素(包括Pt、Pd、Au、Ag、Ir或Ru)的物质的量占总金属元素物质的量的比例为10%~100%。
8.根据权利要求1所述的制备方法,其特征在于:步骤(4)中每加入一次金属前躯体后反应时间为广12h。
9.根据权利要求1所述的制备方法,其特征在于:为便于应用,可以制备担载型纳米粒子;方法是事先将载体在无水乙醇中分散均匀,形成悬浊液,载体在悬浊液中的浓度为2飞mg/mL ;然后将该悬浊液加入到步骤(4)得到的纳米粒子溶胶中,搅拌至少2h,使得纳米粒子沉积到载体上,而后分离、洗涤、干燥。
10.根据权利要求9所述的制备方法,其特征在于:所述的载体包括导电碳材料、陶瓷材料或聚合物材料 ,金属占载体和金属总质量的比例为广90%。
【文档编号】B22F9/24GK103658672SQ201210334858
【公开日】2014年3月26日 申请日期:2012年9月11日 优先权日:2012年9月11日
【发明者】邵志刚, 张耕, 秦晓平, 鲁望婷, 肖辉, 衣宝廉 申请人:中国科学院大连化学物理研究所