发光器件及其制造方法

文档序号:7163331阅读:365来源:国知局
专利名称:发光器件及其制造方法
技术领域
本发明涉及一种具有发光元件的发光器件及该发光器件的制造方法,当在该发光元件的一对电极上施加电场时,发光元件发射荧光或磷光,该对电极夹有包含有机化合物的层(在下文称为有机化合物膜)。在本说明书中,术语发光器件包括图象显示器件、发光器件和光源(包括照明器件)。而且,在发光器件的定义中还包括下列模块把连接器如FPC(柔性印刷电路;终端部分)、TAB(柔性带自动连接)带、或者TCP(带状载体封装)连接到发光器件上所形成的模块,在TAB带或TCP的末端提供印刷电路板的模块和通过COG(玻璃上芯片)系统直接把IC(集成电路)装配到发光元件的模块。
背景技术
利用有机化合物作为发光成分的发光元件,特征在于它们的厚度薄、重量轻、快速响应和直流低电压驱动,预期可用来开发下一代平板显示器。在显示器件中,由将发光元件排列成矩阵形状的显示器件由于视角宽、可视性好,被认为尤其比传统的液晶显示器件优越。
发光元件的发光机理为在夹有有机化合物层的一对电极之间加电压时,从阴极注入的电子和从阳极注入的空穴在有机化合物层的发光中心复合形成分子激子,分子激子返回基态,释放能量导致发光元件发光。众所周知,激发态是单重激发态和三重激发态,可认为能通过两种激发态的任何一种导致发光。
这些将发光元件排列成矩阵的发光器件能使用无源矩阵驱动(简单的矩阵发光器件)、有源矩阵驱动(有源矩阵发光器件)、或者其它驱动方法。然而,如果象素密度增加,其中每个象素(或者每个点)都有开关的有源矩阵发光器件被认为具有优越性,因为它们能被低电压驱动。
形成包含有机化合物的层(严格地讲,发光层)的有机化合物,其是发光元件的中心,分为低分子量材料和聚合(聚合物)材料。两类材料都被研究,但聚合材料由于比低分子量材料更容易处理和具有较高的耐热性,更引人注目。
传统的有源矩阵型发光器元件的结构是包括一发光元件,其中与衬底上的TFT电连接的电极形成阳极,其上形成有机化合物层,然后在其上形成阴极。在TFT侧通过是透明电极的阳极能够观察到有机化合物层产生的光。
该结构中存在一个问题,是当清晰度提高时,象素部分的开口比受TFT和布线排列的限制。

发明内容
因此,本发明是制造具有称为向上发射结构的结构的发光元件的有源矩阵发光器件。在向上发射结构中,与衬底上的TFT电连接的TFT侧电极作为阳极,在阳极上形成包含有机化合物的层,并且在包含有机化合物的层上形成是透明电极的阴极。
与向下发射结构相比,向上发射结构中从包含有机化合物的层中发射的光通过的材料层数较少,具有不同折射系数的材料层之间所引起的杂散光也相应减少。
并不是所有的在有机化合物层中产生的光都从用作阴极的透明电极向TFT的方向取出。例如,横向(平行于衬底表面方向)发射的光就不取出,因此是一种损失。本发明的目的是提供一种发光器件,结构为可以提高在从发光元件发射后在特定方向取出的光的量,以及这种发光器件的制造方法。
向上发射结构的问题是它的透明电极的薄膜电阻高。当透明电极的厚度减小时,该薄膜电阻甚至更高。当用作阳极或阴极的透明电极的薄膜电阻高时,电压降使面内电势分布不均匀,亮度在发光元件间起伏。因此,本发明的另一个目的是提供一种降低发光元件的透明电极的薄膜电阻的发光器件结构,以及这种发光器件的制造方法。此外,本发明再一目的是提供一种使用该发光器件作为其显示单元的电器。
在本发明中,第一电极是由金属层的叠层形成,该第一电极的边缘被绝缘体(也称为堤坝或者隔墙)覆盖。用该绝缘体作为掩模,利用自对准方式刻蚀第一电极的中心,使得中心被减薄,同时一部分绝缘体也被刻蚀掉在边缘形成水平差。该刻蚀的结果是,第一电极的中心获得薄且平坦的表面,由绝缘体覆盖的第一电极的边缘比中心厚,从而使第一电极成凹状。在第一电极上,形成一层包含有机化合物的层和第二电极以完成发光元件。
本发明是通过反射或收集沿着第一电极的台阶部分构成的斜坡的横向方向发射的光,来增加在特定方向(光通过第二电极的方向)发出的光量。
相应地,构成斜坡的部分优选用反射光的金属制成,例如,一种主要包含铝或银的材料,而与包含有机化合物的层相接触的中心部分由具有大的功函数的阳极材料形成或具有小的功函数的阴极材料形成。
此处公开的本发明第一种结构是一种发光器件,包含下列几部分与具有绝缘表面的衬底上的薄膜晶体管相连的第一电极;覆盖该第一电极边缘的绝缘体;包含有机化合物并与第一电极的上表面相接触的层;以及与该层的上表面相接触的第二电极,特征在于第一电极从其边缘向其中心倾斜呈斜面,并且该斜面反射从包含有机化合物的层发射的光。
本发明的第二种结构是一种发光器件,包含下列几部分与具有绝缘表面的衬底上的薄膜晶体管相连的第一电极;覆盖该第一电极边缘的绝缘体;包含有机化合物并与第一电极的上表面相接触的层;以及与该层的上表面相接触的第二电极,其特征在于第一电极的中心比边缘薄,以便形成凹状。
本发明的第三种结构是一种发光器件,包含下列几部分与具有绝缘表面的衬底上的薄膜晶体管相连的第一电极;覆盖该第一电极边缘的绝缘体;包含有机化合物并与第一电极的上表面相接触的层;以及与该层的上表面相接触的第二电极,其特征在于第一电极具有多层结构和边缘的层数多于中心的层数。
本发明使位于象素之间的绝缘体具有特殊形状(称为堤坝、隔墙、隔板诸如此类)以避免当用高分子量有机化合物膜形成绝缘体时覆盖不充分。上述结构特征在于绝缘体的上边缘部分呈弯曲具有曲率半径,曲率半径设为0.2-3μm。绝缘体的锥角设为35-55°。
通过使边缘部分具有曲率半径,很好地覆盖了水平差,绝缘体上形成的包含有机化合物的层和其它薄膜可以制造得非常薄。
上述结构的特征在于第一电极是向其中心倾斜的,斜面的倾角(也称为锥角)大于30°且小于70°,优选地小于60°。必须适当设置倾角、有机化合物层的材料和厚度以及第二电极的材料和厚度,以防被第一电极的斜面反射的光在层间被散射或杂散。
上述结构的特征在于第二电极是透射光的导电薄膜,例如,薄金属膜或透明导电薄膜。
上述结构的特征在于第一电极呈凹状,该电极利用绝缘体作为掩模以自对准方式形成。相应地,为形成第一电极形状不需要新的掩模。第一电极的阶形部分(斜面部分的上边缘部分)几乎与绝缘体的侧面齐平,并且为了很好地覆盖水平差,优选第一电极的斜面与绝缘体的侧面倾角相同。
上述结构的特征在于第一电极是阳极而第二电极是阴极。或者,上述结构的特征在于第一电极是阴极而第二电极是阳极。
上述结构中每种结构的发光器件的特征在于包含有机化合物的层由发射白光的材料形成并且该层与提供在密封件中的滤色器结合在一起使用。或者,上述结构中每种结构的发光器件的特征在于包含有机化合物的层由发射单色光的材料形成并且该层与提供在密封件中的颜色转换层或颜色层结合在一起使用。
在本发明中,为了减少用作阴极的电极(透射光的电极)的薄膜电阻,在形成第一电极中的水平差以后,可在位于象素电极之间的绝缘体上利用蒸发掩模通过蒸发形成布线(也称为辅助布线或第三电极)。本发明的特征还在于使用该辅助布线形成引出线以获得与下面层中的其它布线的连接。
对于获得第一、二、三结构的本发明的结构,本发明提供一种具有发光元件的发光器件的制造方法,该发光元件包括阳极、包含有机化合物的层和阴极,包含有机化合物的层与阳极相接触,阴极与包含有机化合物的层相接触,该方法的特征在于包括以下几部分形成绝缘体以覆盖为金属层的叠层的第一电极边缘的步骤;用绝缘体作掩模通过刻蚀减薄第一电极的中心,以便沿着第一电极的边缘露出一个斜面的步骤;形成包含有机化合物的膜的步骤;以及在包含有机化合物的膜上由透射光的薄金属膜形成第二电极的步骤。
涉及制造方法的上述结构特征在于第一电极是反射光的金属层和作为刻蚀停止层的金属层的叠层,为了露出斜面上反射光的金属材料,该反射光的金属层被刻蚀。
第一电极的刻蚀结果是,作为刻蚀停止层的金属层表面可被轻微刻蚀。
涉及制造方法的上述结构特征在于第一电极是阳极,并由功函数比第二电极大的金属层形成。
涉及制造方法的上述结构特征在于第一电极是叠层结构,第一金属层包含钛,第二金属层包含氮化钛或氮化钨,第三金属层包含铝以及第四金属层包含氮化钛。
对于第一金属层,金属材料与硅有良好的欧姆接触(典型地如钛)是合适的,因为第一金属层与TFT的源区或漏区相接触。作为阳极的第二金属层优选具有大的功函数的材料。用于反射发光元件的光的第三金属层优选具有高的光反射系数的材料。第四金属层优选能防止第三金属层的小丘和晶须以及能够避免第三金属层的镜面反射的金属材料(氮化钛或钛)。
第一电极并不局限于上述的四层结构,而是还可以有任何叠层结构,只要包括两层或更多层,即至少有一金属层作为阳极和一金属层具有反射发光元件的光的斜面。
图12所示为包含有少量Ti的铝膜的反射系数和TiN膜(100nm)的反射系数。氮化钛是能防止镜面反射的材料。当氮化钛用作阳极时,几乎不反射光,因此发光元件的返回的光不会产生干涉,相应地,器件可以是不需要圆偏振片的平板结构。
例如,第一电极可以有六层结构,第一金属层是钛膜,第二金属层是氮化钛膜,第三金属层是含铝金属膜,第四层是氮化钛薄膜,第五金属层是含铝金属膜,第六金属层是氮化钛薄膜。在此六层结构中,第四金属层作为阳极,第五金属层在其斜面反射来自发光元件的光。由于含铝金属膜位于阳极下,因此可以降低整体第一电极的电阻。对于发光显示器件具有大的单元象素面积(发光区域)或大屏幕时该六层结构尤其有效。
在涉及制造方法的上述结构中,通过在臭氧气氛中进行紫外射线辐射处理作为阳极的金属层功函数可以增加(称为UV-臭氧处理)。图13所示为功函数随UV-臭氧处理时间变化的测试结果。如图13所示,氮化钛的初始功函数为4.7eV,被UV处理(6分钟)后增加至5.05eV。应当指出,类似地,氮化钽的功函数呈增加趋势。在涉及制造方法的上述结构中,通过用选自由N2、O2、Ar、BCl和Cl2组成的气体组的一种或者多种气体进行等离子体处理,作为阳极的金属层的功函数可能增加。
图13中,功函数是在大气下测试光电子能谱得到的,使用“AC-2光电子分光镜”,RIKEN KEIKI有限公司的产品。
如果在减薄第一电极的中心的步骤中应用等离子刻蚀,以便通过运用绝缘体作为掩模进行刻蚀暴露出沿第一电极的边缘的斜面,则一些刻蚀气体在减薄中心同时能增加作为阳极的金属层的功函数。
涉及制造方法的上述结构的特征在于覆盖第一电极的边缘部分的绝缘体的上边缘部分是弯曲的具有曲率半径并且曲率半径被设为0.2-3μm。
EL元件中具有含有机化合物层,在施加电场时该有机化合物层能发光(电致发光)(此后称为EL层),以及阳极和阴极。从有机化合物获得的发光分为从单重激发态返回基态时的光发射(荧光)和从三重激发态返回基态的光发射(磷光)。在根据本发明制造的发光器件中可以采用两种类型的光发射。
含有EL层的发光元件(EL元件)的结构是一对电极中夹有EL层。通常,EL层是叠层结构。该叠层结构的典型实例是包括空穴输运层、发光层和电子输运层的结构。该结构有非常高的发光效率,被应用于当前正在开发的大多数发光器件中。
叠层结构的其它实例还有,在阳极上依此顺序层叠空穴注入层、空穴输运层、发光层、和电子输运层的结构,在阳极上依此顺序层叠空穴注入层、空穴输运层、发光层、电子输运层和电子注入层的结构。发光层可能被掺杂荧光色素等。这些层可以都由低分子量材料形成或者都由高分子量材料形成。在本说明书中,位于阴极和阳极之间的所有层一起组成EL层。相应地,EL层包括上述空穴注入层、空穴输运层、发光层、电子输运层和电子注入层。
本发明提供的发光器件中,屏幕显示是如何驱动的并不作具体限制。例如,点顺序制驱动方法、线顺序制驱动方法、面顺序制驱动方法等都能应用。典型地是,线顺序制驱动方法被应用和时间比灰度级驱动方法或面积比灰度级驱动方法被适当选择。输入发光器件源极线的视频信号可以是模拟信号或数字信号而驱动电路和其它电路依照信号的类型设计为宜。


附图包括图1A和1B所示为实施模模式1的视图;图2A和2B所示为实施例1的视图;图3A至3C所示为实施例1的视图;图4A和4C所示为实施模式3的视图;图5A至5C所示为实施模式2的视图;图6A和6B所示为实施例2的视图;图7所示为实施例2的视图;图8所示为实施例2的视图;图9A和9B所示为实施例3的视图;图10A至10F所示为电子设备实例的视图;图11A至11C所示为电子设备实例的视图;图12所示为包含少量钛的铝薄膜的反射系数和TiN薄膜(100nm)的反射系数曲线;图13所示为功函数随UV-臭氧处理时间变化的曲线。
具体实施例方式
下面详述本发明的实施模式。
实施模式1图1A所示为一个有源矩阵发光器件(一个象素的一部分)的截面图。此处描述的实例是一个发光元件,该元件使用由发射白光的高分子量材料形成的包含有机化合物的层作为其发光层。
图1A中,位于具有绝缘表面的衬底10上的TFT(p沟TFT),是控制流入发射白光的EL层20的电流的元件。13和14所指的区域,一个是源区,另一个是漏区。基底绝缘薄膜11(此处为作为下层的绝缘氮化物膜和作为上层的绝缘氧化物膜的叠层膜)在衬底10上形成。栅绝缘膜12位于TFT的栅电极15和有源层之间。16a所指的是层间绝缘膜,由有机材料或无机材料形成。标记16b代表的是保护薄膜,由氮化硅、氧氮化硅、氮化铝或氧氮化铝形成。尽管图中没有示出,一个象素除该TFT外还有另一或更多的TFT(n沟TFT或p沟TFT)。此处的TFT有一个沟道形成区域。然而,沟道形成区域的数目并不受具体限制,该TFT可以有一个以上的沟道。
标记18a至18d指的是第一电极即有机发光元件的阳极(或阴极)的各层,而21指的是由导电薄膜形成的第二电极,即有机发光元件的阴极(或阳极)。此处,标记18a指的是钛薄膜,18b指的是氮化钛薄膜,18c指的是主要包含铝的薄膜,18d指的是氮化钛薄膜。这些膜按次序层叠,其中与包含有机化合物的层20相接触的18b作为阳极。电源线17由同样的叠层结构形成。由于上述叠层结构包括主要包含铝的薄膜,所以可获得低阻布线,同时形成源极布线22和其它布线。
为了使包含有机化合物的层20发射白光,聚(亚乙基二氧基噻吩)/聚(苯乙烯磺酸酯)(PEDOT/PSS)水溶液被涂敷在整个表面和烘烤形成作为空穴注入层的薄膜。然后,掺有发光中心色素(例如1,1,4,4-四苯基-1,3-丁二烯(TPB)1,1,4,4-tetraphenyl-1,3-butadiene(TPB),4-二氰基亚甲基-2-甲烷基-6-(p-二甲胺基-苯乙烯基)-4H-吡喃(DCM1)4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran(DCM1),尼罗(nile)红,或者香豆素6)的聚乙烯咔唑(PVK)溶液被涂在整个表面,并烘烤形成作为发光层的薄膜。PEDOT/PSS的溶剂是水,PEDOT/PSS不溶解于有机溶剂。因此,空穴注入层上涂有PVK时空穴注入层不会回到熔解状态。由于PEDOT/PSS和PVK溶剂不同,它们最好在不同的薄膜形成室中形成薄膜。包含有机化合物的层20可改为单层膜。在此情况下,能输运电子的1,3,4-恶二唑衍生物(PBD)1,3,4-oxadiazole derivative被分散在能输运空穴的聚乙烯咔唑(PVK)中。获得白光发射的另一个方法是分散30wt%的作为电子输运媒介物的PBD并以适当量分散四种色素(TPB,香豆素6,DCM1和尼罗红)。
或者,适当选择包含发射红光的有机化合物的薄膜、包含发射绿光的有机化合物的薄膜和包含发射蓝光的有机化合物的薄膜,组合一起,以便相互重叠并混合它们的颜色,从而获得白光发射。
对于第二电极21,通过蒸发形成1-10nm厚的CaF2薄膜,然后通过溅射或蒸发形成约10nm厚的Al薄膜作为阴极。阴极的材料和厚度必须适当选择以透射来自包含有机化合物的层20的光。在本说明书中,术语阴极不仅包括具有小功函数的材料的单层,而且包括具有小功函数的材料的薄膜和导电薄膜的叠层。
用Al薄膜作为第二电极21意味着不是氧化物的材料与包含有机化合物的层20相接触。结果提高了发光器件的可靠性。代替Al薄膜,透明导电薄膜(例如ITO(氧化铟-氧化锡合金)薄膜、In2O3-ZnO(氧化铟-氧化锌(zing oxide)合金)薄膜、或者ZnO(氧化锌)薄膜)可被用作第二电极21。CaF2层可被薄金属层(典型的合金薄膜如MgAg,MgIn,或AlLi)替换。
第一电极18的两端部分和中间区域被覆盖绝缘体19(也称为隔板或堤坝)。在本发明中,绝缘体19的截面形状是重要的。绝缘体19经刻蚀处理形成,通过该方法得到第一电极18的凹状形状。如果绝缘体19的上边缘部分不弯曲,薄膜形成缺陷有可能发生,不希望的凸起部分在绝缘体19的上边缘形成。因此,本发明使用刻蚀处理使绝缘体19的上边缘部分弯曲具有曲率半径,以沿着局部暴露的第一电极的层18c和18d的弯曲表面形成斜面,并在作为发光区域的区域中暴露第一电极层18b。第一电极层18b的暴露表面可经CMP或其它处理使之水平。曲率半径优选设为0.2-3μm。本发明可给有机化合物薄膜和金属薄膜很好的覆盖。绝缘体19表面的倾角等于第一电极层18c和18d的斜面的锥角,被设为45°±10°。
例如,当绝缘体19由正性丙烯酸树脂形成时,第一电极层18a是60nm厚的Ti薄膜,第一电极层18b是100nm厚的TiN薄膜,第一电极层18c是350nm厚的Al-Ti薄膜,第一电极层18d是100nm厚的Ti薄膜,刻蚀条件包括采用ICP刻蚀设备,利用反应气体BCl3和Cl2比例为60(sccm)∶20(sccm),在1.9Pa的气压下施加450W的RF(13.56MHz)功率到线绕电极上。同时,衬底侧(样品台)也施加100W的RF(13.56MHz)功率为了进行干法刻蚀。在Al-Ti层(第一电极层18c)被刻蚀之后,经过15秒的过刻蚀TiN层(第一电极层18b)被暴露出。
本发明的特征在于从有机化合物层20发射的光被第一电极层18c和18d的斜面反射以增加在图1A中箭头指示的方向取出的光的总量。
如图1B所示,辅助电极23可被提供在导电薄膜21上以便降低导电薄膜(阴极)21的电阻。辅助电极23通过用蒸发掩模蒸发被选择形成。
尽管图中没有示出,保护薄膜优选形成在第二电极21上以便增加发光器件的可靠性。此保护薄膜是绝缘膜主要包含氮化硅或氧氮化硅并通过溅射形成(DC方法或RF方法),或是主要包含碳的薄膜。氮化硅薄膜能用硅靶在包含氮气和氩气的气氛中形成。氮化硅靶可代替硅靶使用。保护薄膜也可用使用远程等离子体(remote plasma)的薄膜形成设备形成。保护薄膜被制备的尽可能薄使发射的光能穿过保护薄膜。
本发明的特征在于主要包含碳的薄膜是3-50nm厚的DLC(类金刚石碳)薄膜。按近程有序的观点,DLC薄膜的碳间经SP3键结合。宏观上看,DLC薄膜有无定型结构。DLC薄膜包括70-95原子%的碳和5-30原子%的氢,使薄膜硬度高和绝缘性能好。这种DLC薄膜的特征在于如蒸气和氧气气体的透过率低。而且,众所周知通过显微硬度测试仪测试DLC薄膜的硬度为15-25GPa。
DLC薄膜通过等离子体CVD(典型地,RF等离子体CVD,微波CVD,或电子回旋共振(ECR)CVD)或溅射形成。任何薄膜形成方法都能提供附着好的DLC薄膜。在形成DLC薄膜过程中,衬底被设为阴极。或者,致密的和硬质DLC薄膜通过应用负偏压和利用一定程度的离子轰击来形成。
用来形成薄膜的反应气体是氢气和碳氢-基气体(如,CH4,C2H2或C6H6)并通过辉光放电离子化。离子被加速碰撞施加负的自偏压的阴极。用这种方法,得到致密的,平坦的和平滑的DLC薄膜。DLC薄膜是对于可见光透明或半透明的绝缘薄膜。
在本说明书中,对于可见光透明意思是可见光的透射率为80%-100%,而对于可见光半透明意思是可见光透射率为50%-80%。
此处给出的描述以顶部栅TFT作为实例。然而,本发明可应用于任何TFT结构。例如,该发明可应用于底部栅(反相交错)TFT和正向交错TFT。
实施模式2下面将参照图5A描述一种组合发白光元件和滤色器的方法(此后,称为滤光器方法)。
滤色器方法是指形成具有显示白光发光的有机化合物的发光元件,其发出的白光通过滤色器从而获得红、绿和蓝光的系统。
尽管有多种获得白光发光的方法,此处要描述的情况是使用包括可通过涂覆形成的高分子材料的发光层。在此情况下,彩色色素掺到高分子材料构成发光层能通过配置溶液的方法实施且与实施常规的掺杂多种彩色色素的气相淀积的气相淀积方法的相比极容易实现。
具体说来,在包括具有大的功函数的金属(Pt,Cr,W,Ni,Zn,Sn,In)的阳极的整个表面上,将聚(亚乙基二氧基噻吩)/聚(苯乙烯磺酸酯)(PEDOT/PSS)水溶液涂覆和烘烤作为空穴注入层后,再后将掺有发光中心色素(例如1,1,4,4-四苯基-1,3-丁二烯(TPB),4-二氰基亚甲基-2-甲烷基-6-(p-二甲胺基-苯乙烯基)-4H-吡喃(DCM1),尼罗红,或者香豆素6等)的聚乙烯咔唑(PVK)溶液在整个表面上涂覆烘干作为发光层,在其上叠层形成包含包括具有小的功函数的金属(Li,Mg,Cs)的薄膜和透明导电薄膜(ITO(氧化铟氧化锡合金)、氧化铟氧化锌合金(In2O3-ZnO)、氧化锌(ZnO)等)的叠层的阴极。此外,PEDOT/PSS用水作溶剂,它不溶于有机溶剂。因此,即使在其上涂覆PVK时,没有再次溶解的问题。此外,PEDOT/PSS和PVK的溶剂的种类各不相同,因此,优选的方法是不使用相同的薄膜形成室。
此外,尽管上面描述的实例中给出的是叠层有机化合物层的实例,但是也能构成有机化合物层的单层。例如,可将具有输运电子性能的1,3,4-恶二唑衍生物(PBD)分散到能输运空穴的聚乙烯咔唑(PVK)中。此外,获得白光发射的另一个方法是分散3 0wt%的作为电子输运媒介物的PBD并以适当量分散四种色素(TPB,香豆素6,DCM1和尼罗红)。
此外,在阳极和阴极之间形成有机化合物薄膜并且通过在有机化合物薄膜上复合从阳极注入的空穴和从阴极注入的电子,在有机化合物薄膜中获得白光。
此外,通过适当选择实现发红光的有机化合物薄膜、实现发绿光的有机化合物薄膜、实现发蓝光的有机化合物薄膜,并将这些薄膜层叠混合颜色,也可作为整体实现发白光。
如上面所描述的形成的有机化合物薄膜能够作为一个整体获得白光。
通过形成滤色器,该滤色器在沿着有机化合物发出白光的方向分别配备有吸收除了红光以外的其它光的色彩层(R),吸收除了绿光以外的其它光的色彩层(G)和吸收除了蓝光以外的其它光的色彩层(B),从发光元件发出的白光能分别被分离以获得红光、绿光和蓝光。此外,在有源矩阵类型的情况中,所构成的结构中TFT在衬底和滤色器之间形成。
此外,从最简单的条形图案开始,偏斜镶嵌对准,三角镶嵌对准,RGBG四象素对准或者RGBW四象素对准可用于色彩层(R,G,B)。
构成滤色器的色彩层是通过使用包括用色素分散的有机光敏材料的阻色材料(color resist)形成的。此外,白光的色品坐标是(x,y)=(0.34,0.35)。已知有效地保证了作为全色的色彩再现性能。
此外,在此情况下,即使当获得光的颜色不同,用所有显示白光的有机化合物薄膜形成结构时,不必形成有机化合物薄膜以覆盖划分各种发光颜色。此外,用于防止镜面反射的圆偏振光的偏振器并不特别需要。
下面,通过组合具有发蓝光有机化合物薄膜的蓝光发射元件和荧光色彩转换层实现CCM(色彩转换媒介)的方法将参照图5B予以描述。
依照CCM方法,荧光色彩转换层被蓝光发光元件发射的蓝光激励而且颜色被每个色彩转换层转换。具体地,通过色彩转换层(B→R)从蓝色转换成红色,通过色彩转换层(B→G)从蓝色转换成绿色,通过色彩转换层(B→B)从蓝色转换成蓝色(此外,从蓝色转换成蓝色可以不进行)被实现以获得红光、绿光和蓝光。也在CCM方法的情况下,在有源矩阵类型的情况下其中TFT被形成在衬底和色彩转换层之间的结构被构成。
此外,在此情况下,也不必形成有机化合物薄膜以覆盖来划分。此外,用于防止镜面反射的圆偏振光的偏振器也不特别需要。
此外,当运用CCM方法时,由于色彩转换层是荧光的(florescent),色彩转换层受外部光激励并引起对比度减少的问题,如图5C所示,通过安装滤色器使对比度突出。
此外,本实施模式能与实施模式1组合。
实施模式3此处,整个EL模块和干燥剂的放置将参照图4描述。图4A是EL模块的俯视图。图4B是截面图的一部分。
配备多个TFT的衬底(也称TFT衬底)配备有用于显示的象素部分40,驱动象素部分的各象素的驱动电路41a和41b,为了连接配备在EL层上的电极和延伸布线的连接部分,为了粘合连接外部电路的FPC和干燥剂44的终端部分42。此外,可以放置干燥剂使得干燥剂隐蔽了整个驱动电路,如图4C所示,尽管在图4A和图4B中干燥剂布置为覆盖部分驱动电路。此外,该构造是被用于密封EL元件的衬底和密封件49气密密封的。此外,图4B是该构造沿图4A中B-B′点划线切开的截面图。
象素被大量地有规律地放置在象素部分40处并按R,G,B的顺序沿X方向放置,尽管此处没有图示。
此外,如图4B所示,密封件49粘合密封衬底48保持约2-30μm的间隔并且所有的发光元件被气密密封。在密封衬底48处通过喷砂方法等形成凹进部分,凹进部分放置干燥剂。此外,密封件49优选由窄框构成以覆盖部分驱动电路。在密封件49粘合密封衬底48之前优选立刻在真空进行退火处理实现除气。此外,当密封衬底48被粘合时,粘合优选在包含惰性气体(稀有气体或氮气)的气氛下实现。
此外,本实施模式能与实施模式1或实施模式2自由组合。
本发明将用下列实施模式详细描述。
实施例1在本实施例中,依照本发明参照图2A到3C关于形成发光元件的工序实例给出简要的描述。
首先,底部绝缘薄膜31在具有绝缘表面的衬底30上形成。
底部绝缘薄膜31是叠层膜并且第一层是氮氧化硅膜厚度为10-200nm(优选厚度是50-100nm),用等离子体CVD方法制备,反应气体为SiH4,NH3,和N2O。此处,氮氧化硅膜(组分比例Si=32%,O=27%,N=24%,H=17%)厚度为50nm。底部绝缘薄膜的第二层是氮氧化硅厚度为50-200nm(优选厚度是100-150nm)用等离子体CVD方法制备,反应气体为SiH4和N2O。此处,氮氧化硅薄膜(组分比例Si=32%,O=59%,N=7%,H=2%)厚度为100nm。尽管底部绝缘薄膜31在本实施例中包含两层结构,但是单层或超过两层的上述绝缘膜的叠层薄膜可以替代。
接着,在基底上形成半导体层。作为TFT有源层的半导体层通过用已知方法形成无定形结构半导体薄膜(溅射、LPCVD,等离子体CVD等),该薄膜经已知的晶化处理(激光晶化,热晶化,用镍或其它催化剂进行热晶化等),然后将获得的结晶半导体膜图形化为成预期的形状获得。半导体层的厚度被设为25-80nm(优选厚度为30-60nm)。结晶半导体薄膜的材料不限于但是优选材料为硅,锗硅合金等。
当激光晶化被用来形成结晶半导体薄膜时,应用脉冲振荡类型或连续波准分子激光器,YAG激光器或YVO4激光器。从这些激光振荡器之一发射的激光在照射半导体薄膜前被光学系统聚集成线性形状。晶化条件被选择以适合各种情况。然而,当应用准分子激光器时,脉冲振荡频率被设为30Hz,激光能量密度被设为100-400mJ/cm2(典型是200-300mJ/cm2)。当应用YAG激光器时,应用它的二次谐波,脉冲振荡频率被设为1-10kHz,激光能量密度被设为300-600mJ/cm2(典型是350-500mJ/cm2)。激光被聚集成100-1000μm,例如,400μm,宽度的线性形状,衬底的整个表面被用该线性激光照射激光重叠率为80-98%。
接着,半导体层的表面用包含氢氟酸的刻蚀剂清洗以形成覆盖半导体层的栅绝缘薄膜33。栅绝缘薄膜33是包含硅的绝缘薄膜,用等离子体CVD或溅射方法形成厚度为40-150nm。在本实施例中,氮氧化硅薄膜(组分比例Si=32%,O=59%,N=7%,H=2%)用等离子体CVD方法形成,厚度为115nm。当然,栅绝缘薄膜不限于氮氧化硅薄膜,而可以是包含硅的其它的绝缘膜的单层或叠层膜。
清洗栅绝缘薄膜33的表面,然后形成栅电极。
接着,半导体层适当掺杂给予半导体p型导电类型的杂质元素,此处是硼(B),以形成源区32和漏区32。在掺杂后,为了激活杂质元素半导体层经热处理,强光照射,或激光照射。杂质元素被激活的同时,栅绝缘薄膜的等离子损伤和栅绝缘薄膜和半导体层之间界面的等离子损伤被修复。具体有效的激活杂质元素的方法是在从室温到300℃下通过用YAG激光器的二次谐波从前边或后边照射衬底。YAG激光器是优选激活方法因为它需要很少的维护。
后续的工艺包括用有机或无机材料(应用氧化硅薄膜,PSG(掺磷玻璃),BPSG(掺硼磷玻璃)等)形成层间绝缘膜35,氢化半导体层,形成到源区或漏区的接触孔。然后,源极电极(布线)和第一电极(漏极电极)36被形成以完成TFT(p沟TFT)。
尽管在本实施例的描述中使用p沟TFT,n沟TFT能被形成,如果n型杂质元素(如P或As)代替p型杂质元素使用的话。
本实施例中给出的描述以顶部栅TFT作为实例。然而,本发明可应用于任何TFT结构。例如,该发明可应用于底部栅(反相交错)TFT和正向交错TFT。
通过以上工艺形成的是TFT(图中只示出漏区32),栅绝缘薄膜33,层间绝缘膜35和第一电极的层36a到36d(图3A)。
本实施例中第一电极的层36a到36d分别是主要包含选自Ti,TiN,TiSiXNY,Al,Ag,Ni,W,WSiX,WNX,WSiXNY,Ta,TaNX,TaSiXNY,NbN,MoN,Cr,Pt,Zn,Sn,In和Mo构成的组的元素的膜,或主要包含上述元素的合金或化合物材料的薄膜,或这些薄膜的叠层膜。层36a到36d的总厚度被设为100nm到800nm之间。
具体地,与漏区32相接触的第一电极的层36a优选由可与硅形成欧姆接触的材料形成,典型的是钛,并给出10到100nm的厚度。对于第一电极的层36b,优选具有大的功函数的材料形成薄膜(TiN,TaN,MoN,Pt,Cr,W,Ni,Zn,Sn),并且该层的厚度被设为10到100nm。对于第一电极的层36c,优选反射光的金属材料,典型的是主要包含Al或Ag的金属材料并且层的厚度被设为100到600nm。第一电极的层36b也作为阻挡层为了防止第一电极的层36c和36a形成合金。对于第一电极的层36d,优选能够防止第一电极的层36c被氧化和侵蚀以及避免凸起的材料(典型的是金属氮化物如TiN或WN),并且该层的厚度被设为20到100nm。
在形成其它布线如源极布线34和电源线的同时形成第一电极的层36a到36d。相应的,工艺需要较少的光刻掩模(总共七个掩模半导体层的图形化掩模(掩模1),栅布线的图形化掩模(掩模2),选择性掺杂n型杂质元素的掺杂掩模(掩模3),选择性掺杂p型杂质元素的掺杂掩模(掩模4),形成到达半导体层的接触孔的掩模(掩模5),第一电极、源极布线和电源线的图形化掩模(掩模6),形成绝缘体的掩模(掩模7)。在现有的工艺中,第一电极形成在与源极布线和电源线被形成的层不同的层上,因此需要单独形成第一电极的掩模,从而要求的掩模的数目总共是8个。当第一电极的层36a到36d和布线同时形成时,期望设置布线的总电阻低。
接着,绝缘体(被称为堤坝、隔墙、隔板等)被形成以覆盖第一电极的边缘(与漏区32相接触的部分)(图3B)。绝缘体是薄膜或无机材料(如氧化硅、氮化硅和氮氧化硅)和光敏或非光敏有机材料(如聚酰亚胺、丙烯酸、聚酰胺、聚酰亚胺酰胺、抗蚀剂和苯并环丁烯)的叠层。在本实施例中采用光敏有机树脂。如果正性光敏丙烯酸被用作绝缘体的材料,例如,它是优选只在绝缘体的上边缘部分弯曲以具有曲率半径。在光照下变成不溶于刻蚀剂的负性光敏材料和在光照下变成溶于刻蚀剂的正性光敏材料,二者都可用于绝缘体。
如图3C所示绝缘体被刻蚀,同时第一电极的层36c和36d被部分去除。刻蚀薄膜是重要的使得在第一电极的层36c露出的表面处形成斜面而第一电极的层36b获得平坦的露出表面。该刻蚀用干法刻蚀或湿法刻蚀,并在一步工艺完成或分成几步工艺完成。选择的刻蚀条件是使第一电极的层36b和第一电极的层36c之间的选择比高。优选的方法是,绝缘体的上边缘部分的最终的曲率半径是0.2到3μm。向下向第一电极的中心的斜面的最终倾角(倾角或锥角)大于30°且小于70°,这样斜面反射以后形成的包含有机化合物的层发射的光。
接着,通过蒸发或涂覆形成包含有机化合物的层38。当选择蒸发时,例如,为了蒸发薄膜形成室被抽真空直到真空度达到5×10-3Torr(0.665Pa)或者更低,优选10-4-10-6Pa。在蒸发前,有机化合物通过电阻加热蒸发。当为了蒸发打开挡板时被蒸发的有机化合物飞向衬底。被蒸发的有机化合物向上飞然后通过金属掩模中形成的开口淀积在衬底上。通过蒸发形成包含有机化合物的层以致发光元件作为整体发射白光。
例如,Alq3薄膜,部分掺杂发红光色素尼罗红的Alq3薄膜,Alq3薄膜,p-EtTAZ薄膜和TPD(芳族二胺)薄膜按此顺序叠层获得白光。
另一方面,当包含有机化合物的层用旋转涂敷方法形成时,涂覆后的该层优选通过真空加热烘烤。例如,聚(亚乙基二氧基噻吩)/聚(苯乙烯磺酸酯)(PEDOT/PSS)水溶液被涂覆在整个表面,烘干形成作为空穴注入层的薄膜。然后,掺有发光中心色素(例如1,1,4,4-四苯基-1,3-丁二烯(TPB),4-二氰基亚甲基-2-甲烷基-6-(p-二甲胺基-苯乙烯基)-4H-吡喃(DCM1),尼罗红,或者香豆素6)的聚乙烯咔唑(PVK)溶液被涂在整个表面,烘烤形成作为发光层的薄膜。
尽管上述实例中有机化合物层是叠层,但是也能构成单层有机化合物层。例如,将能输运电子的1,3,4-恶二唑衍生物(PBD)分散到能输运空穴的聚乙烯咔唑(PVK)中。获得白光发射的另一个方法是分散30wt%的作为电子输运媒介物的PBD并以适当量分散四种色素(TPB,香豆素6,DCM1和尼罗红)。还有,有机化合物层可以是高分子量材料层和低分子量材料层的叠层。
下一步工艺是形成包含有具有小的功函数的金属(如MgAg,MgIn,AlLi,CaF2,或CaN的合金薄膜,或者通过共蒸发属于周期表中1族或2族的元素和铝形成的薄膜)的薄膜,通过蒸发在其上形成薄导电膜(此处为铝膜)39(图2B)。铝膜能高度阻挡湿气和氧气,因此是导电薄膜39的优选材料用于提高发光器件的可靠性。图2B是沿着图2A中的点划线A-A′分开的截面图。该叠层膜足够薄能让发射的光通过,并在本实施例中作为阴极。该薄导电膜能被透明导电薄膜(如ITO(氧化铟-氧化锡合金)薄膜,In2O3-ZnO(氧化铟氧化锌合金)薄膜或者ZnO(氧化锌)薄膜)替代。在导电薄膜39上,辅助电极可以被形成以便降低阴极的电阻。通过电阻加热使用蒸发掩模蒸发阴极被选择性形成。
这样获得的发光元件沿着图2B中箭头指示的方向发射白光。横向发射的光被第一电极的层36c的斜面反射,从而增加沿箭头方向发射的光的量。
由此完成直到形成第二电极(导电薄膜39)在该制造工序之后,在衬底30上形成的发光元件通过使用密封剂粘结密封衬底(透明衬底)密封。树脂薄膜形成的隔离物可以被配备以保持密封衬底和发光元件之间的空隙。密封剂环绕的空间充满氮气或其它惰性气体。基于环氧化合物的树脂是密封剂的优选材料。期望尽可能少密封剂材料尽可能少地透过的湿气和氧气。有吸收氧气和湿气作用的物质(如干燥剂)可以被放置在密封剂环绕的空间中。
通过把发光元件封装进上述的空间中,发光元件能与外部完全隔开,那些加速有机化合物层老化的外界物质,如湿气和氧气,能被防止进入发光元件。相应的,获得了高可靠性的发光器件。
实施例2本实施例参照图6A到8描述一种其中形成辅助电极的发光器件的实例。
图6A是象素的俯视图和图6B是沿着点划线A-A′形成的截面图。
在本实施例中,直到形成绝缘体67的工艺与实施例1中的一致因此此处省略描述。图2B中的绝缘体37与图6B中的绝缘体67相对应。
遵循实施例1中的描述,底部绝缘薄膜、漏区62、栅绝缘薄膜63、层间绝缘膜65、第一电极层66a到66d和绝缘体67在具有绝缘表面的衬底上形成。
接着,包含有机化合物的层68被选择形成。本实施例采用用蒸发掩模的蒸发或喷墨选择性形成包含有机化合物的层68。
然后,通过用蒸发掩模蒸发将辅助电极60选择性形成在绝缘体67上。辅助电极60的厚度被设为0.2-0.5μm。在本实施例给出的实例中,辅助电极60在图6A中所示的Y方向放置。然而辅助电极的排列不特别地受到限制,如图7所示,可以使用在X方向放置的辅助电极70。沿着图7中点划线A-A′形成的截面图与图2B一致。
图8是图7所示平板的外部图。辅助电极(辅助布线)70被引出如图8所示并与引出布线87相接在象素部分82和源极侧驱动电路83之间的区域中。在图8中,参考标记82指的是象素部分,83是源极侧驱动电路,84和85是栅极侧驱动电路以及86是电源线。第一电极形成的同时形成电源线86、引出布线87和源极布线。在图8中,用于与FPC连接的终端电极形成的同时形成栅极布线。
与实施例1相似,下一步工艺是形成包含有具有小的功函数的金属的薄膜(如MgAg,MgIn,AlLi,CaF2,或CaN的合金薄膜,或者通过共蒸发属于周期表中1族或2族的元素和铝形成的薄膜),和通过蒸发在其上形成导电薄膜(此处为铝膜)69。此叠层膜足够薄能让发射的光通过并且在本实施例中作为阴极。该导电薄膜能被透明导电薄膜(如ITO(氧化铟-氧化锡合金)薄膜,In2O3-ZnO(氧化铟氧化锌合金)薄膜或者ZnO(氧化锌)薄膜)替代。在本实施例中,辅助电极60在绝缘体67上形成使得辅助电极60与导电薄膜69相接触以便降低阴极的电阻。
这样形成的发光元件沿着图6B中箭头指示的方向发射白光。横向发射的光被第一电极的层66c的斜面反射,从而增加沿箭头方向发射的光的量。
本实施例也可适用于有大尺寸的象素部分的发光器件,由于通过形成辅助电极60或70阴极电阻被降低。
在本实施例所示的实例中,辅助电极60在含有机化合物的层68形成之后形成。然而,它们以何种顺序形成并不特别受限制,含有机化合物的层可以在辅助电极60形成之后形成。
本实施例能与实施模式1到3和实施例1中的任一种自由组合。
实施例3此外,有源矩阵类型发光设备的外部图参照图9被描述。此外,图9A是示出发光设备的俯视图,图9B是图9A沿着线A-A′形成的截面图。用虚线指定参考数字901的是源极信号驱动线路,数字902指定的是象素部分,以及数字903指定的是栅极信号线驱动线路。此外,数字904指定的是密封衬底,数字905指定的是密封剂以及被密封剂905环绕构成的内侧构成了空间907。
此外,参考数字908指定的是传输输入到源极信号线驱动线路901和栅极信号线驱动线路903的信号的布线用于接收来自构成外部输入终端的FPC(软性印刷电路)909的视频信号或时钟信号。此外,尽管此处只图示出FPC,此FPC可以和印刷电路板(PWB)联接在一起。本说明书中发光设备不但包括发光设备的主体而且包括FPC或PWB被联接在其上的情况。
接着,将要参照图9B描述截面结构。驱动电路和象素部分在衬底910上形成而且此处示出作为驱动电路的源极信号线驱动电路901和象素部分902。
此外,源极信号线驱动线路901由组合n沟道类型TFT923和p沟道类型TFT924的CMOS电路形成。此外,形成驱动电路的TFT可以用众所周知的CMOS电路、PMOS电路或NMOS电路形成。此外,尽管依照本实施例,所示为由驱动电路形成的在衬底上的集成类型驱动器,该集成类型驱动器不是必须的,该驱动电路可以不在衬底上形成而是在衬底外部形成。
此外,象素部分902由多个象素形成,每个象素包括开关TFT911和电连接到它的漏极上的第一电极(阳极)913。
此外,绝缘层914在第一电极(阳极)913的两端形成,部分第一电极沿着绝缘层914的侧面形成斜面。第一电极的斜面形成同时绝缘层914形成。含有机化合物的层915产生的光被斜面反射为了增加沿图9中箭头指示的方向发光的量。
含有机化合物的层915在第一电极(阳极)913上选择性形成。此外,第二电极(阴极)916在有机化合物层915上形成。从而,包括第一电极(阳极)912、有机化合物层915和第二电极(阴极)916的发光元件918被形成。此处,发光元件918给出的是发白光的实例,因此配备包括颜色层931和BM932(为简单起见,此处没有图示覆盖层)的滤色器。
实施例2中示出的结构的一部分的第三电极(辅助电极)917,在绝缘层914上形成以实现第二电极有较低的电阻。第二电极(阴极)916也作为所有象素的公用布线,与FPC909经第三电极917和连接线908电连接。
此外,为了密封在衬底910上形成的发光元件918,密封衬底904被密封剂905粘结。此外,可提供包括树脂薄膜的隔离物用于保证密封衬底904和发光元件918之间的间隔。此外,在密封剂905的内侧的空间907被氮气等惰性气体填充。此外,优选使用环氧类树脂的密封剂905。此外,密封剂905的优选材料是尽可能少渗透湿气或氧气的材料。此外,空间907的内部可以包括有吸收水的氧气作用的物质。
此外,依照本实施例,作为构成密封衬底904的材料,除了玻璃衬底或石英衬底之外,可以使用塑料衬底包括FRP(玻璃纤维-增强塑料)、PVF(聚四氟乙烯)、聚酯薄膜、聚酯或丙烯酸树脂。此外,有可能用密封剂905粘附密封衬底904,其后用密封剂密封以覆盖侧面(暴露面)。
通过把发光元件封装进上述的空间907中,发光元件能与外部完全隔开,那些外界的加速有机化合物层的退化的物质如湿气或氧气,能被防止从外部侵入。因此,可提供高可靠的发光设备。
此外,本实施例能自由地与实施模式1到3和实施例1、2组合。
实施例4通过实施本发明,所有的与具有有机发光元件的模块(有源矩阵类型EL模块)集成在一起的电子设备被完成。
所指出的这些电子设备是摄像机、数码相机、头戴式显示器(护目镜型显示器)、汽车导航设备、投影仪、汽车立体声、个人计算机、便携式信息终端(移动计算机、便携式电话或电子书)等。图10和11示出这些实例。
图10A是个人计算机,包括主体2001、图象输入部分2002、显示部分2003和键盘2004。
图10B是摄像机。包括主体2101、显示部分2102、声音输入部分2103、操作开关2104、电池2105、图象接收部分2106。
图10C是移动计算机,包括主体2201、照相机部分2202、图象接收部分2203、操作开关2204和显示部分2205。
图10D是护目镜型显示器,包括主体2301、显示部分2302和镜臂部分2303。
图10E是使用记录程序的记录媒介(在下文中,称为记录媒介)的播放器,包括主体2401、显示部分2402、扬声器部分2403、记录媒介2404和操作开关2405。此外,该播放器用DVD(数字通用光盘)或CD作为记录媒介并能够欣赏音乐、欣赏电影、进行游戏和上网。
图10F是数码相机,包括主体2501、显示部分2502、目镜部分2503、操作开关2504和图象接收部分(没有图示)。
图11A是便携式,电话包括主体2901、语音输出部分2902、语音输入部分2903、显示部分2904、操作开关2905、天线2906和图象输入部分(CCD、图象传感器)2907。
图11B是便携式图书(电子书),包括主体3001、显示部分3002和3003、记录媒介3004、操作开关3005、天线3006。
图11C是显示器,包括主体3101、支撑基座3102和显示部分3103。
相关地,图11C所示的显示器是中等尺寸或小尺寸或大尺寸屏幕,例如,5-20英寸的屏幕尺寸。此外,为了形成这种尺寸的显示部分,优选使用有1m衬底边长的显示部分通过获得许多荧光屏实现批量生产。在形成中等尺寸或小的尺寸或大的尺寸的屏幕的情况下,优选形成实施例2或实施例3所示的辅助电极。
如上所述,本发明的应用范围是极宽的,并适用于所有领域的电子设备的制造方法。此外,本实施例的电子设备能通过使用包括实施模式1到3和实施例1到3的任何组合的构成来实现。
依照本发明,部分由含有机化合物的层发射的沿横向发射(平行于衬底表面的方向)的光被第一电极的台阶部分形成的斜面反射,从而增加沿着特定定方向(光通过第二电极的方向)取出的光的总量。总之,可获得散射光和其它类型的光发射损失较少的发光器件。
而且,本发明的结构在其整个制造工序中所需的掩模较少。
权利要求
1.一种发光器件,包括在具有绝缘表面的衬底上与薄膜晶体管相连的第一电极;覆盖该第一电极边缘部分的绝缘体;在第一电极上形成的包含有机化合物的层;以及在该层上的的第二电极,特征在于第一电极从其边缘部分向其中心倾斜呈斜面,并且该斜面反射从包含有机化合物的层发射的光。
2.一种发光器件,包括在具有绝缘表面的衬底上与薄膜晶体管相连的第一电极;覆盖该第一电极边缘部分的绝缘体;在第一电极上形成的包含有机化合物的层;以及在该层上的第二电极,其特征在于第一电极的中心比边缘部分薄,以便形成凹陷形状。
3.一种发光器件,包括与具有绝缘表面的衬底上的薄膜晶体管相连的第一电极;覆盖该第一电极边缘部分的绝缘体;在第一电极上形成的包含有机化合物的层;以及在该层上的第二电极,其特征在于第一电极具有多层结构并且边缘部分的层数多于中心的层数。
4.根据权利要求1的发光器件,其中第二电极是透射导电膜。
5.根据权利要求2的发光器件,其中第二电极是透射导电膜。
6.根据权利要求3的发光器件,其中第二电极是透射导电膜。
7.根据权利要求1的发光器件,其中第一电极呈凹状且用绝缘体作为掩模以自对准方式形成。
8.根据权利要求2的发光器件,其中第一电极呈凹状且用绝缘体作为掩模以自对准方式形成。
9.根据权利要求3的发光器件,其中第一电极呈凹状且用绝缘体作为掩模以自对准方式形成。
10.根据权利要求1的发光器件,其中第一电极是阳极而第二电极是阴极。
11.根据权利要求2的发光器件,其中第一电极是阳极而第二电极是阴极。
12.根据权利要求3的发光器件,其中第一电极是阳极而第二电极是阴极。
13.根据权利要求1的发光器件,其中第一电极是阴极而第二电极是阳极。
14.根据权利要求2的发光器件,其中第一电极是阴极而第二电极是阳极。
15.根据权利要求3的发光器件,其中第一电极是阴极而第二电极是阳极。
16.根据权利要求1的发光器件,其中第一电极向其中心倾斜并且斜面的倾角是大于30°且小于70°。
17.根据权利要求2的发光器件,其中第一电极向其中心倾斜并且斜面的倾角是大于30°且小于70°。
18.根据权利要求3的发光器件,其中第一电极向其中心倾斜并且斜面的倾角是大于30°且小于70°。
19.根据权利要求1的发光器件,其中覆盖第一电极的边缘部分的绝缘体的上边缘部分被弯曲具有曲率半径并且曲率半径设为0.2-3μm。
20.根据权利要求2的发光器件,其中覆盖第一电极的边缘部分的绝缘体的上边缘部分被弯曲具有曲率半径,曲率半径设为0.2-3μm。
21.根据权利要求3的发光器件,其中覆盖第一电极的边缘部分的绝缘体的上边缘部分被弯曲具有曲率半径并且曲率半径设为0.2-3μm。
22.根据权利要求1的发光器件,其中含有机化合物的层由发射红光、绿光或蓝光的材料制成。
23.根据权利要求2的发光器件,其中含有机化合物的层由发射红光、绿光或蓝光的材料制成。
24.根据权利要求3的发光器件,其中含有机化合物的层由发射红光、绿光或蓝光的材料制成。
25.根据权利要求1的发光器件,其中含有机化合物的层由发射白光的材料制成,并与密封件中配备的滤色器相结合。
26.根据权利要求2的发光器件,其中含有机化合物的层由发射白光的材料制成,并与密封件上配备的滤色器相结合。
27.根据权利要求3的发光器件,其中含有机化合物的层由发射白光的材料制成,并与密封件上配备的滤色器相结合。
28.根据权利要求1的发光器件,其中含有机化合物的层由发射单色光的材料制成,并与色彩转换层和密封件中配备的彩色层之一相结合。
29.根据权利要求2的发光器件,其中含有机化合物的层由发射单色光的材料制成,并与色彩转换层和密封件中配备的彩色层之一相结合。
30.根据权利要求3的发光器件,其中含有机化合物的层由发射单色光的材料制成,并与色彩转换层和密封件中配备的彩色层之一相结合。
31.根据权利要求1的发光元件,其中发光器件是摄像机、数码相机、护目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子游戏机和便携式信息终端中的任何一种。
32.根据权利要求2的发光元件,其中发光器件是摄像机、数码相机、护目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子游戏机和便携式信息终端中的任何一种。
33.根据权利要求3的发光元件,其中发光器件是摄像机、数码相机、护目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子游戏机和便携式信息终端中的任何一种。
34.一种制造包括发光元件的发光器件的方法,该发光元件具有阳极;与阳极相接触的含有机化合物的层;和与含有机化合物的层相接触的阴极,包括形成覆盖为金属层的叠层的第一电极的边缘的绝缘体的工艺步骤;用绝缘体作掩模通过刻蚀减薄第一电极的中心以便沿着第一电极的边缘暴露出斜面的工艺步骤;形成含有机化合物的膜的工艺步骤;以及在含有机化合物的膜上由透射光的薄金属膜形成第二电极的工艺步骤。
35.根据权利要求34的发光器件的制造方法,其中第一电极是反射光的金属层和用作刻蚀停止层的金属层的叠层,并且为了暴露在斜面反射光的金属材料,该反射光的金属层被刻蚀。
36.根据权利要求34的发光器件的制造方法,其中第一电极是阳极并由功函数比第二电极大的金属层形成。
37.根据权利要求34的发光器件的制造方法,其中第一电极是叠层,第一金属层包含钛,第二金属层包含氮化钛或氮化钨,第三金属层包含铝以及第四金属层包含氮化钛。
38.根据权利要求34的发光器件的制造方法,其中第一电极向其中心倾斜并且斜面的倾角是大于30°且小于70°。
39.根据权利要求34的发光器件的制造方法,其中覆盖第一电极的边缘部分的绝缘体的上边缘是弯曲的具有曲率半径,而且曲率半径设为0.2-3μm。
40.一种发光器件,包括在具有绝缘表面的衬底上与薄膜晶体管相连接的有凹陷的第一电极;覆盖第一电极边缘部分的绝缘体;至少覆盖第一电极的凹陷的一层含有机化合物层;在该层上的第二电极;其中凹陷底部的宽度小于凹陷上表面的宽度。
全文摘要
并不是所有在有机化合物层中产生的光都从作为透明电极的阴极向TFT取出。例如,光在横向(平行于衬底表面的方向)被发射,但是在横向发射的光没有被取出结果导致损失。因此,提供一种发光器件,其结构使得沿着特定方向取出的光的量增加,并提供此发光器件的制造方法。作为刻蚀处理的结果,绝缘体(19)的上边缘部分被弯曲具有曲率半径,沿弯曲面形成斜面同时部分露出第一电极的层(18c和18d),第一电极的层(18b)暴露在作为发光区域的区域。从有机化合物层(20)发射的光被第一电极的斜面(层18c和18d)反射以增加在图1A中箭头指示的方向取出的光的总量。
文档编号H01L51/52GK1454035SQ0312847
公开日2003年11月5日 申请日期2003年4月23日 优先权日2002年4月23日
发明者山崎舜平, 濑尾哲史, 桑原秀明 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1