一种阵列基板的制造方法及阵列基板、显示器的制作方法

文档序号:7063740阅读:140来源:国知局
专利名称:一种阵列基板的制造方法及阵列基板、显示器的制作方法
技术领域
本发明涉及显示领域,尤其涉及一种阵列基板的制造方法及阵列基板、显示器。
背景技术
随着显示技术的飞速发展,人们对显示器的分辨率,响应时间等特性要求也越来越高。在这种情况下,随着显示器的尺寸越来越大以及3D等显示技术的发展,对设置在显示器阵列基板上的TFT (Thin Film Transistor,薄膜晶体管)的迁移率要求越来越高。其中,TFT包括栅极、栅绝缘层、有源层、源极和漏极。上述TFT的迁移率实际上 是指TFT的有源层中载流子(电子和空穴)在单位电场作用下的平均漂移速度。目前,用非晶硅制作有源层已经不能满足对迁移率的要求,人们已经将目光投向了具有较高迁移率的金属氧化物材料。现有技术中制造将金属氧化物作为有源层材料的TFT过程中,主要有如下问题传统工艺进行源漏极的构图工艺时会使用酸刻蚀图案,而金属氧化物材料一般不耐酸,从而传统工艺会腐蚀部分有源层,影响到器件的性能。为了解决这一问题,通常采用一层耐酸腐蚀的刻蚀阻挡层覆盖有源层的沟道区域,以保护有源层不被腐蚀;但这就需要增加一次构图工艺,导致工艺复杂。

发明内容
本发明提供一种阵列基板的制造方法及阵列基板、显示器,用以保护阵列基板上的TFT的有源层不被腐蚀。为达到上述目的,本发明的实施例采用如下技术方案一方面提供一种阵列基板的制造方法,包括在衬底基板上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极;制作覆盖所述栅极的栅绝缘层;制作金属氧化物半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成有源层;制作顶层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的源极和漏极;在本次构图工艺中所使用的刻蚀液的成分包括双氧水、顶层金属离子络合剂、双氧水的稳定齐U,以及表面活性剂;且该刻蚀液的PH值在6-8之间;制作覆盖所述源极、漏极的钝化层,在所述漏极的位置形成连通像素电极的过孔。一方面,还提供了一种阵列基板的制造方法,包括在衬底基板上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极;制作覆盖所述栅极的栅绝缘层;依次制作金属氧化物半导体薄膜和顶层金属薄膜,并通过一次构图工艺至少形成有源层及源、漏极;此步骤具体包括在依次制作的两层薄膜上涂覆光刻胶,且该光刻胶分为半保留区域、完全保留区域和完全去除区域,并按照上述区域的划分通过一次曝光显影,除掉完全去除区域的光刻胶且留下完全保留区域的厚度比半保留区域厚度大的光刻胶;使用双氧水基刻蚀液刻蚀掉完全去除区域的顶层金属薄膜;使用不与顶层金属反应的含酸刻蚀液刻蚀掉完全去除区域的金属氧化物薄膜,形成有源层;灰化所留下的光刻胶,以便除掉半保留区域的光刻胶且留下部分完全保留区域的光刻胶;使用所述双氧水基刻蚀液刻蚀掉半保留区域的顶层金属薄膜,形成源、漏极;其中,所述双氧水基刻蚀液的成分包括双氧水、顶层金属离子络合剂、双氧水的稳定剂,以及表面活性剂;且该刻蚀液的PH值在6-8之间;制作覆盖所述源极、漏极的钝化层,在所述漏极的位置形成连通像素电极的过孔。
另一方面,还提供了一种阵列基板,包括在衬底基板上设置的阵列形式的像素单元,且在每个像素单元中包括薄膜晶体管以及覆盖该薄膜晶体管的钝化层;其中,薄膜晶体管包括依次设置的栅极、栅绝缘层、金属氧化物半导体材料的有源层、源极、漏极;所述栅绝缘层和有源层之间还设置有用于隔绝所述栅绝缘层和所述有源层接触的第一隔绝层;且所述第一隔绝层的材料为不含氢的非金属氧化物的半导体材料。另一方面,还提供了一种显示器,包括上述阵列基板。本发明实施例提供的阵列基板的制造方法及阵列基板、显示器,通过使用双氧水基刻蚀液刻蚀顶层金属薄膜,且双氧水基刻蚀液PH值为6-8之间,就使得双氧水基刻蚀液不会与金属氧化物半导体反应,从而保护TFT的有源层不被腐蚀;并且进一步的,由于现有技术中栅绝缘层的材料中含有氢01)元素,为了避免H进入有源层而导致有源层的特性变差,通过使用不含氢的非金属氧化物的半导体材料制作第一隔绝层以防止上述不良的发生,可以进一步保护有源层。


为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。图I为实施例一提供的一种阵列基板的结构示意图;图2为实施例一提供的另一阵列基板的结构示意图;图3为实施例一提供的又一阵列基板的结构示意图;图4为实施例二提供的一种阵列基板的结构示意图;图4A-图4G为制作图4所示阵列基板的步骤示意图;图5为实施例二提供的另一阵列基板的结构示意6为实施例二提供的又一阵列基板的结构示意图;图7为图I所示阵列基板的制造方法流程图。附图标记100-衬底基板;IIa-栅极,IIb-源极,IIc-漏极,12-栅绝缘层,13-有源层,14-钝化层,15-像素电极;21_第一隔绝层,22-第二隔绝层。
具体实施例方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一、参考图I所示的阵列基板的结构图,该阵列基板包括在衬底基板100上设置的阵列形式的像素单元,且在每个像素单元中包括薄膜晶体管、覆盖该薄膜晶体管的钝化层14及与该薄膜晶体管呈水平设置的像素电极15 ;其中,薄膜晶体管包括依次设置的栅极11a、栅绝缘层12、金属氧化物半导体材料的有源层13、源极lib、漏极Ilc ;并且薄膜晶体管的漏极Ilc通过钝化层14上的过孔和像素电极15相连。由于现有制作工艺会腐蚀金属氧化物半导体材料的有源层,故本发明实施例提供了一种制造上述阵列基板结构的方法,以保护有源层。参考图7和图1,本发明实施例提供的阵列基板的制造方法,包括S101、在衬底基板100上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极Ila;其中,所述底层金属薄膜的材料可以是钥,铝,铜,铬等任一金属,也可以是含有这些金属的合金。在本发明所有实施例中,构图工艺可以包括涂覆光刻胶、曝光、显影、刻蚀等工艺。其中,曝光工艺需要使用对掩膜板控制光刻胶在不同区域的曝光度。在阵列基板的整个制造过程中,通常将使用掩膜板的个数作为构图工艺的次数;也就是说,进行一次构图工艺即为使用一次掩膜板完成构图。S102、制作覆盖所述栅极的栅绝缘层12 ;其中,所述栅绝缘层12的材料可以是目前常用的的SiNx(氮化硅)材料。S103、制作金属氧化物半导体薄膜,并通过一次构图工艺在与所述栅极Ila相对的位置形成有源层13 ;其中,金属氧化物半导体的材料可以是任意能够作为半导体的金属氧化物,例如,可以是IGZ0(含有铟、镓、锌的金属氧化物)或IZ0(含有铟、锌的金属氧化物)等。S104、制作顶层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的源极Ilb和漏极Ilc ;在本次构图工艺中所使用的刻蚀液的成分包括双氧水、顶层金属离子络合齐U、双氧水的稳定剂,以及表面活性剂;且该刻蚀液的PH值在6-8之间;其中,所述顶层金属薄膜的材料可以是钥,铝,铜,铬等任一金属,也可以是含有其中至少一种金属的合金。在发明实施例中考虑到对显示器分辨率以及开关时延特性的较高要求,因为铜的电阻率低,就使得充电的时间短,并且用铜做源漏极,像素可以做的小一点,即单位面积的像素增多了,从而可以提高显示器的分辨率;故本实施例中优选铜或铜合金作为顶层金属薄膜的材料。所述顶层金属络合剂在本发明实施例中是指可以和顶层金属离子形成络合离子的化合物;进一步的,在本发明实施例中顶层金属选用铜或铜合金的情况下,顶层金属离子络合剂选用铜离子络合剂。另外,根据多次实验得到的经验值,在本发明实施例中对于该双氧水基刻蚀液的成分,优选的,所述双氧水的含量为5% -20%之间,所述表面活性剂的含量在1% -10%之间,所述顶层金属离子络合剂的含量根据所需要刻蚀掉的顶层金属的量而定,一般的所述顶层金属离子络合剂的含量为1% -25%之间。具体的,对于顶层金属络合剂的含量控制,可以是先在刻蚀液中添加一部分(例如含量为50% )顶层金属络合剂,并根据溶进刻蚀液中的顶层金属离子含量以及完成顶层金属薄膜刻蚀的程度,后续添加顶层金属络合离子。S105、制作覆盖所述源极、漏极的钝化层14,并通过一次构图工艺在所述漏极Ilc的位置形成连通像素电极15的过孔。其中,所述钝化层14的材料可以是目前常用的SiNx (氮化硅)材料。 进一步的,若要形成图I所示的阵列基板,还可以包括步骤S106。S106、制作覆盖S105中过孔的透明导电薄膜,并通过一次构图工艺形成像素电极15。其中,透明导电薄膜的材料可以是通常使用的ITO(氧化铟锡)。本发明实施例提供的阵列基板的制造方法,通过使用双氧水基刻蚀液刻蚀顶层金属薄膜,且双氧水基刻蚀液PH值为6-8之间,就使得双氧水基刻蚀液通过氧化和络合的方式来对顶层金属薄膜进行构图工艺,并且刻蚀液中的氧化物不会对下面的金属氧化物半导体产生反应,也就不会改变金属氧化物的半导体特性等。由于现有技术中在制作栅绝缘层时,主要是用硅烷等气体通过化学气象沉积的方法制备,这就使得制备完成的栅绝缘层中存在H元素,故而,本发明更进一步的,为了防止栅绝缘层中的H元素进入金属氧化物半导体材料的有源层中,故参考图2所示的阵列基板包括在衬底基板100上设置的阵列形式的像素单元,且在每个像素单元中包括薄膜晶体管以及覆盖该薄膜晶体管的钝化层14 ;其中,薄膜晶体管包括依次设置的栅极11a、栅绝缘层12、金属氧化物半导体材料的有源层13、源极lib、漏极Ilc ;所述栅绝缘层12和有源层13之间还设置有用于隔绝所述栅绝缘层12和所述有源层13接触的第一隔绝层21 ;且所述第一隔绝层21的材料为不含氢的非金属氧化物的半导体材料。其中,在本发明所有实施例中不含氢的非金属氧化物的半导体材料为任意可以作为半导体的不含氢的非金属氧化物材料,例如可以是SiO2(二氧化硅)等材料。制造图2所示的阵列基板,需要在上述制造图I所示阵列基板的各步骤的基础上,进一步在步骤S102和S103之间,还包括S102a ;S102a、制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极Ila相对的位置形成用于隔绝所述栅绝缘层12和所述有源层13接触的第一隔绝层21。示例的,在形成有栅绝缘层12的基板上沉积不含氢的非金属氧化物的半导体材料,形成薄膜;并在栅极Ila相对的位置形成比有源层13外围大的图案,以隔绝栅绝缘层12和有源层13的接触。这样就可以有效的防止栅绝缘层12中的H元素进入到金属氧化物半导体材料中,从而保护了有源层13 ;并且还该第一隔绝层21的材料是半导体,故而在一定程度上能够增强TFT的时间特性。与制备栅绝缘层类似的,现有技术中在制作钝化层时,也主要是用硅烷等气体通过化学气象沉积的方法制备,这就使得制备完成的钝化层中存在H元素,故而,本发明更进一步的,为了防止钝化层14中的H元素进入金属氧化物半导体材料的有源层13中,故参考图3,在图2所示阵列基板的基础上,还包括所述薄膜晶体管和所述覆盖该薄膜晶体管的钝化层14之间还设置有用于隔绝所述薄膜晶体管的有源层13和所述钝化层14接触的第二隔绝层22 ;且所述第二隔绝层22的材料为不含氢的非金属氧化物的半导体材料。制造图3所示的阵列基板,需要在上述制造图2所示阵列基板的各步骤的基础上,进一步在步骤S104和S105之间,还包括S104a ;S104a、制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极Ila相对的位置形成用于隔绝所述有源层13和所述钝化层14接触的第二隔绝层22。示例的,在形成源、漏极Ilc的基板上沉积不含氢的非金属氧化物的半导体材料,形成薄膜;并在栅极Ila相对的位置形成能够覆盖有源层13沟道区域(即没有被源、漏极覆盖的有源层13区域)的图案,以隔绝所述有源层13和所述钝化层14接触。这样就可以 有效的防止钝化层14中的H元素进入到金属氧化物半导体材料中,从而保护了有源层13 ;并且还该第二隔绝层22的材料是半导体,故而在一定程度上能够进一步增强TFT的时间特性。需要说明的是,对于第二隔绝层22的图案可以与有源层13沟道区域的图案相同,当然可以与比沟道区域的图案略大;若第二隔绝层的图案大到不仅覆盖了沟道区域还覆盖整个漏极的图案,则在S105中制作过孔时,需要打通钝化层以及该第二隔绝层,以使得漏极和像素电极相接触。实施例二、参考图4所示的阵列基板的结构图,该阵列基板包括在衬底基板100上设置的阵列形式的像素单元,且在每个像素单元中包括薄膜晶体管以及覆盖该薄膜晶体管的钝化层14、像素电极15 ;其中,薄膜晶体管包括依次设置的栅极11a、栅绝缘层12、金属氧化物半导体材料的有源层13、源极lib、漏极Ilc ;并且薄膜晶体管的漏极Ilc通过钝化层14上的过孔和像素电极15相连。其中,所述有源层13和源极lib、漏极Ilc是通过同一层构图工艺形成的。需要说明的是,在本实施例中的各层的制作材料均可以参考实施例一的描述,在本实施例中不加赘述。本发明实施例提供的上述阵列基板的制造方法,包括S201、在衬底基板100上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极Ila;S202、制作覆盖所述栅极的栅绝缘层12,参考图4A所示的结构。S203、依次制作金属氧化物半导体薄膜和顶层金属薄膜,并通过一次构图工艺至少形成有源层13及源极I lb、漏极Ilc ;此步骤具体包括在依次制作的两层薄膜上涂覆光刻胶,且该光刻胶分为半保留区域(图中用B标识)、完全保留区域(图中用A标识)和完全去除区域(图中用C标识),并按照上述区域的划分通过一次曝光显影,除掉完全去除区域的光刻胶且留下完全保留区域的厚度比半保留区域厚度大的光刻胶,参考图4B所示的结构;使用双氧水基刻蚀液刻蚀掉完全去除区域的顶层金属薄膜,参考图4C所示的结构;使用不与顶层金属反应的含酸刻蚀液刻蚀掉完全去除区域的金属氧化物薄膜,形成有源层13,参考图4D所示的结构;灰化所留下的光刻胶,以便除掉半保留区域的光刻胶且留下部分完全保留区域的光刻胶,参考图4E所示的结构;使用所述双氧水基刻蚀液刻蚀掉半保留区域的顶层金属薄膜,形成源、漏极lie,参考图4F所示的结构;去除剩下的光刻胶,参考图4G所示的结构;
其中,所述双氧水基刻蚀液的成分包括双氧水、顶层金属离子络合剂、双氧水的稳定剂,以及表面活性剂;且该刻蚀液的PH值在6-8之间;优选的,所述双氧水的含量为5% -20%之间,所述表面活性剂的含量在1% -10%之间,所述顶层金属离子络合剂的含量为1% -25%之间。另外,优选的所述顶层金属为铜或铜合金。S204、制作覆盖所述源极、漏极的钝化层14,在所述漏极的位置形成连通像素电极的过孔。进一步的,若要形成图4所示的阵列基板,还可以包括步骤S205。S205、制作覆盖S105中过孔的透明导电薄膜,并通过一次构图工艺形成像素电极15。其中,透明导电薄膜的材料可以是通常使用的ITO(氧化铟锡)。本发明实施例提供的阵列基板的制造方法,通过使用双氧水基刻蚀液刻蚀顶层金属薄膜,且双氧水基刻蚀液PH值为6-8之间,就使得双氧水基刻蚀液通过氧化和络合的方式来对顶层金属薄膜进行构图工艺,并且刻蚀液中的氧化物不会对下面的金属氧化物半导体产生反应,也就不会改变金属氧化物的半导体特性等。更进一步的,为了防止栅绝缘层12中的H元素进入金属氧化物半导体材料的有源层13中,故参考图5所示的阵列基板包括在衬底基板100上设置的阵列形式的像素单元,且在每个像素单元中包括薄膜晶体管以及覆盖该薄膜晶体管的钝化层14 ;其中,薄膜晶体管包括依次设置的栅极11a、栅绝缘层12、金属氧化物半导体材料的有源层13、源极lib、漏极Ilc ;所述栅绝缘层12和有源层13之间还设置有用于隔绝所述栅绝缘层12和所述有源层13接触的第一隔绝层21 ;且所述第一隔绝层21的材料为不含氢的非金属氧化物的半导体材料。制造图5所示的阵列基板,需要在上述制造图4所示阵列基板的各步骤的基础上,进一步在步骤S202和S203之间,还包括S202a ;S202a、制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极Ila相对的位置形成用于隔绝所述栅绝缘层12和所述有源层13接触的第一隔绝层21。具体可参考实施例一中的S102a。 更进一步的,为了防止钝化层14中的H元素进入金属氧化物半导体材料的有源层13中,故参考图6,在图5所示阵列基板的基础上,还包括所述薄膜晶体管和所述覆盖该薄膜晶体管的钝化层14之间还设置有用于隔绝所述薄膜晶体管的有源层13和所述钝化层14接触的第二隔绝层22 ;且所述第二隔绝层22的材料为不含氢的非金属氧化物的半导体材料。制造图6所示的阵列基板,需要在上述制造图5所示阵列基板的各步骤的基础上,进一步在步骤S203和S204之间,还包括S203a ;S203a、制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极Ila相对的位置形成用于隔绝所述有源层13和所述钝化层14接触的第二隔绝层22。
此步骤具体可参考步骤S104a。需要说明的是,对于第二隔绝层22的图案可以与有源层13沟道区域的图案相同,当然可以与比沟道区域的图案略大;若第二隔绝层的图案大到不仅覆盖了沟道区域还覆盖整个漏极的图案,则在S204中制作过孔时,需要打通钝化层以及该第二隔绝层,以使得漏极和像素电极相接触。本发明实施例通过第一隔绝层21有效的防止栅绝缘层12中的H元素进入到金属氧化物半导体材料中,并且进一步的,通过第二隔绝层22有效的防止钝化层14中的H元素进入到金属氧化物半导体材料中,从而进一步保护有源层13不被腐蚀。本发明实施例提供了一种显示器,该显示器可以包括上述实施例一或实施例二中所述的任一种阵列基板。例如该显示器可以是液晶显示器。以上所述,仅为本发明的具体实施方式
,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应 涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
权利要求
1.一种阵列基板的制造方法,其特征在于,包括 在衬底基板上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极; 制作覆盖所述栅极的栅绝缘层; 制作金属氧化物半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成有源层; 制作顶层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的源极和漏极;在本次构图工艺中所使用的刻蚀液的成分包括双氧水、顶层金属离子 络合剂、双氧水的稳定剂,以及表面活性剂;且该刻蚀液的PH值在6-8之间; 制作覆盖所述源极、漏极的钝化层,在所述漏极的位置形成连通像素电极的过孔。
2.根据权利要求I所述的制造方法,其特征在于,在制作完成所述栅绝缘层之后,在制作金属氧化物半导体薄膜之前,还包括 制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成用于隔绝所述栅绝缘层和所述有源层接触的第一隔绝层。
3.根据权利要求I或2所述的制造方法,其特征在于,在制作完成薄膜晶体管的源极和漏极之后,在制作钝化层之前还包括 制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成用于隔绝所述有源层和所述钝化层接触的第二隔绝层。
4.根据权利要求I或2所述的制造方法,其特征在于,在所述刻蚀液中,所述双氧水的含量为5% -20%之间,所述表面活性剂的含量在1% -10%之间,所述顶层金属离子络合剂的含量为1% -25%之间。
5.根据权利要求I或2所述的制造方法,其特征在于,所述顶层金属为铜或铜合金。
6.一种阵列基板的制造方法,其特征在于,包括 在衬底基板上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极; 制作覆盖所述栅极的栅绝缘层; 依次制作金属氧化物半导体薄膜和顶层金属薄膜,并通过一次构图工艺至少形成有源层及源、漏极;此步骤具体包括在依次制作的两层薄膜上涂覆光刻胶,且该光刻胶分为半保留区域、完全保留区域和完全去除区域,并按照上述区域的划分通过一次曝光显影,除掉完全去除区域的光刻胶且留下完全保留区域的厚度比半保留区域厚度大的光刻胶;使用双氧水基刻蚀液刻蚀掉完全去除区域的顶层金属薄膜;使用不与顶层金属反应的含酸刻蚀液刻蚀掉完全去除区域的金属氧化物薄膜,形成有源层;灰化所留下的光刻胶,以便除掉半保留区域的光刻胶且留下部分完全保留区域的光刻胶;使用所述双氧水基刻蚀液刻蚀掉半保留区域的顶层金属薄膜,形成源、漏极;其中,所述双氧水基刻蚀液的成分包括双氧水、顶层金属离子络合剂、双氧水的稳定剂,以及表面活性剂;且该刻蚀液的PH值在6-8之间; 制作覆盖所述源极、漏极的钝化层,在所述漏极的位置形成连通像素电极的过孔。
7.根据权利要求6所述的制造方法,其特征在于,在制作完成所述栅绝缘层之后,在制作金属氧化物半导体薄膜和顶层金属薄膜之前,还包括 制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成用于隔绝所述栅绝缘层和所述有源层接触的第一隔绝层。
8.根据权利要求6或7所述的制造方法,其特征在于,在利用一次构图工艺制作完成有源层和薄膜晶体管的源、漏极之后,在制作钝化层之前还包括 制作不含氢的非金属氧化物的半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成用于隔绝所述有源层和所述钝化层接触的第二隔绝层。
9.根据权利要求6或7所述的制造方法,其特征在于,在所述双氧水基刻蚀液中,所述双氧水的含量为5% -20%之间,所述表面活性剂的含量在1% -10%之间,所述顶层金属离子络合剂的含量为1% -25%之间。
10.根据权利要求6或7所述的制造方法,其特征在于,所述顶层金属为铜或铜合金。
11.一种阵列基板,包括在衬底基板上设置的阵列形式的像素单元,且在每个像素单元中包括薄膜晶体管以及覆盖该薄膜晶体管的钝化层;其中,薄膜晶体管包括依次设置的栅极、栅绝缘层、金属氧化物半导体材料的有源层、源极、漏极;其特征在于,所述栅绝缘层和有源层之间还设置有用于隔绝所述栅绝缘层和所述有源层接触的第一隔绝层;且所述第一隔绝层的材料为不含氢的非金属氧化物的半导体材料。
12.根据权利要求11所述的阵列基板,其特征在于,所述薄膜晶体管和所述覆盖该薄膜晶体管的钝化层之间还设置有用于隔绝所述薄膜晶体管的有源层和所述钝化层接触的第二隔绝层;且所述第二隔绝层的材料为不含氢的非金属氧化物的半导体材料。
13.—种显示器,其特征在于,包括权利要求11或12所述的阵列基板。
全文摘要
本发明公开了一种阵列基板的制造方法及阵列基板、显示器,涉及显示领域,用以保护TFT的有源层。所述制造方法包括在衬底基板上制作底层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的栅极;制作覆盖所述栅极的栅绝缘层;制作金属氧化物半导体薄膜,并通过一次构图工艺在与所述栅极相对的位置形成有源层;制作顶层金属薄膜,并通过一次构图工艺至少形成薄膜晶体管的源极和漏极;在本次构图工艺中所使用的刻蚀液的成分包括双氧水、顶层金属离子络合剂、双氧水的稳定剂,以及表面活性剂;且该刻蚀液的pH值在6-8之间;制作覆盖所述源极、漏极的钝化层,在所述漏极的位置形成连通像素电极的过孔。本发明适用于显示器中阵列基板的设计及制造。
文档编号H01L21/77GK102629591SQ20121004882
公开日2012年8月8日 申请日期2012年2月28日 优先权日2012年2月28日
发明者姚琪, 张锋, 戴天明, 曹占锋, 朱佩誉 申请人:京东方科技集团股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1