γ-生育酚甲基转移酶及其基因和用途的制作方法

文档序号:400728阅读:782来源:国知局
专利名称:γ-生育酚甲基转移酶及其基因和用途的制作方法
技术领域
本发明属于γ-生育酚甲基转移酶(γ-tocopherolmethyltransferase,γ-TMT)基因工程领域。具体地说,涉及一种来自结球甘蓝(Brassica oleracea L.Var.capitata L.)的γ-生育酚甲基转移酶,及γ-生育酚甲基转移酶基因和其结构基因及其重组质粒;涉及其在植物中具有组成型或种子特异性表达的重组质粒,以提高植物和相应产品中α-生育酚的含量及改变α-生育酚的分布(特别是提高种子及油中α-生育酚的含量);同时,还涉及在微生物中具有特异性表达γ-TMT的重组质粒,利用生物反应器催化生产α-生育酚。
背景技术
维生素E(又称生育酚)分天然和合成两种。在天然存在的四种生育酚中,α-生育酚的生物活性最高(α-、β-、γ-、δ-生育酚的相对活性分别为100%,50%,10%和3%)。天然维生素E在化学上通常指α-生育酚,是仅由光合生物合成的一类脂溶性的抗氧化剂和营养补充剂。人体每天吸收7-9mg的α-生育酚是维持肌肉、中枢神经系统和血管系统正常生理功能所必需的。近20年来的临床研究表明,日吸收70-250mg的α-生育酚可提高免疫功能,防止或延缓许多人类退化性疾病的进程,降低患心血管疾病和某些癌症的危险,临床上可用于治疗老年性痴呆症、高血压、冠心病、心肌梗塞、动脉硬化、血栓及不育症等。随着人们对绿色食品、有机食品的逐步青睐,天然维生素E作为营养补充剂和抗氧化剂广泛应用于医药、保健品、食品、营养品、化妆品和饲料工业中。作物中α-生育酚水平的提高能延长新鲜和加工植物产品的货架时间及提高其稳定性。在食品中添加维生素E,不仅可以提高其营养价值,而且能防止食品中脂肪的氧化酸败,大大提高贮存期;在化妆品工业中,维生素E是防晒冷霜及精华素中的有效成分,在香波水中添加维生素E具有脱臭效果;此外,在猪、牛、家禽的饲料中添加维生素E,可显著提高肉的质量和延长加工后肉类产品的货架时间。
随着近代医学和营养学的发展,一系列动物实验也已证实,α-生育酚(天然维生素E)被人体优先吸收和利用,无论是在生理活性上还是在安全性上均明显优于合成的维生素E,其活性约为合成维生素E的1.3-1.4倍,在国际市场上的价格约为合成的2-3倍。随着维生素E在医药、保健品、食品、营养品、化妆品和饲料等方面用途的不断扩大,天然维生素E的需求量不断增加,目前年消费量达3,000吨左右,年需求增长为10%。而我国目前的维生素E产品几乎全是合成品。
α-生育酚主要是从植物油或其精炼副产品中提取的,α-生育酚的含量由植物种类决定。不同植物组织中生育酚的总量和成分差异很大,在绿色的叶片组织中,α-生育酚是含量最丰富的生育酚,但这些组织的总生育酚水平却非常低(10-50μg/g鲜重)。与光合组织不同,植物的非绿色组织(如大多数油料作物的种子)常含有高浓度的总生育酚(500-2,000μg/g鲜重),但其中α-生育酚的含量很低(84-200μg/g鲜重),绝大多数为它的生物合成前体——γ-生育酚,一些主要的植物油(如豆油、花生油、菜籽油)中α-生育酚的含量仅为7%-10%,而其生物合成前体——γ-生育酚却高达67%-70%。为此,改变作物及其产物中α-生育酚对γ-生育酚的比率,即提高了α-生育酚的含量和改变α-生育酚分布,特别是对提高种子及油中α-生育酚的含量有着十分重要的社会和经济效益。美国科学家仅仅从模式植物拟南芥及蓝藻中克隆了γ-TMT基因,在转γ-TMT基因拟南芥中α-生育酚含量有所提高。至今未见有从经济作物中获得γ-TMT的新基因,并将其转化到非模式植物的经济作物中去,以提高α-生育酚在作物和其产品中的含量和改变α-生育酚的分布的报道。

发明内容
本发明目的在于提供一种具有序列表SEQ NO.1所示的核苷酸序列的γ-TMT基因(含结构基因);具有序列表SEQ NO.2所示的氨基酸序列的一种γ-生育酚甲基转移酶及重组质粒p3END-T、p5END-T、pTMT。
本发明的另一个目的是提供一种来自结球甘蓝(Brassica oleracea L.Var.capitata L.)的γ-TMT结构基因构建新的植物组成型表达重组质粒pBin-TMTL或种子特异性表达重组质粒p7S-TMTL,以及在微生物中特异表达的重组质粒pET-TMT;提供一种培育系列α-生育酚含量高的转基因植物,特别是油料作物如大豆、油菜、花生等,提高植物及其产品中α-生育酚的含量和改变α-生育酚分布(特别是指提高了种子及油中α-生育酚的含量)的新途径。本发明不仅将有助于人们从日常膳食中获得高水平的α-生育酚,达到增强体质,防病与保健相结合的目的,同时还可以大大降低工业化生产天然维生素E产品的成本,提高产品的产量和质量,在医药、保健品、食品、营养品、化妆品和饲料等方面具有广泛的应用前景。
米用3’、5'-RACE及RT-PCR技术,从结球甘蓝(Brassica oleraceaL.Var.Capitata L.)实生苗顶芽中克隆了如序列表No.1所示的γ-TMT的全长cDNA序列。该cDNA长1,265bp,包含一个1,044bp的开放阅读框,编码包括叶绿体导肽(47个氨基酸)和两个S-腺苷甲硫氨酸结合结构域(SAM-binding domain)在内如序列表No.2所示的347个氨基酸组成γ-TMT的蛋白质。该序列与美国科学家报道的模式植物拟南芥及蓝藻(Synechocystis PCC6803)的γ-TMT基因相比,核苷酸序列同源性分别为83.5%和37.7%,推导的氨基酸序列同源性分别为86.5%和41.8%,本发明首次从非模式植物中克隆得到的γ-TMT基因的cDNA全序列。本发明的γ-TMT基因编码的氨基酸与美国科学家报道的拟南芥的γ-TMT基因编码的氨基酸在一级结构上的主要差异在47个氨基酸的叶绿体导肽部分有22个氨基酸不同;在第二个功能区(10个氨基酸)有1个氨基酸不同;与蓝藻γ-TMT基因在氨基酸一级结构上的差异本发明所述的叶绿体导肽是47个氨基酸,蓝藻的细菌导肽是25个;其中只有7个氨基酸相同;在第一个功能区(9个氨基酸)有3个氨基酸不同;在第二个功能区有4个氨基酸不同。总的来说,三者在叶绿体导肽部分仅有3个氨基酸相同;在第一个功能区有3个氨基酸不同,在第二个功能区有4个氨基酸不同。应当指出的是,对本发明的γ-生育酚甲基转移酶基因所表达的酶分子的氨基酸进行一个或多个氨基酸替换、插入或缺失所得到的功能类似物也能达到本发明的目的,因而本发明也包括与Seq NO.2所示的氨基酸序列具有至少有80%的同源性,优选具有γ-生育酚甲基转移酶90%的同源性,但同时具有γ-生育酚甲基转移酶活性的功能类似物。
利用植物组成型表达载体pBin438和种子特异性表达载体p7S438构建了含该结构基因的重组植物组成型表达载体pBin-TMTL和重组植物种子特异性表达载体p7S-TMTL。经转化分别获得含pBin-TMTL和p7S-TMTL的重组大肠杆菌JM109和重组农杆菌LBA4404-Bin-TMTL、LBA4404-7S-TMTL、GV3101-Bin-TMTL和GV3101-7S-TMTL。以大豆无菌苗子叶节为外植体,经农杆菌介导,获得PCR、Southern blot、RT-PCR和Westernblot均为阳性的并能正常地开花结果的T0代转基因大豆株系。经HPLC分析转基因大豆的种子中α-生育酚含量至少提高了4倍。T1代转基因大豆的PCR阳性植株也能正常地开花结果。因此,本发明为转基因植物提高其α-生育酚含量开辟了一条新途径。
本发明的又一个目的是提供一种利用重组微生物或利用重组微生物所产生的酶,通过生物反应器生产α-生育酚的新途径。为达此目的,采用目前通用的基因工程手段,将γ-TMT结构基因插入到原核表达载体pET30a,在原核微生物中,优选大肠杆菌(Escherichia coli),在大肠杆菌BL21(DE3)中获得了高效表达,表达产物占菌体总蛋白的22%,体外酶的活性测定结果表明表达的γ-TMT具γ-生育酚甲基转移酶活性,能有效地催化γ-生育酚甲基化生成α-生育酚。体外酶活测定比较表明,重组菌是含空载对照菌酶活的10余倍。同样,将γ-TMT结构基因插入真核表达载体pPIC9,在真核微生物中,优选酵母菌,在甲醇酵母(即毕赤酵母,Pichiapastoris)中有效分泌和高效表达,表达产物同样具有较高的γ-生育酚甲基转移酶活性。


图1γ-TMT结构基因在大肠杆菌中的表达。
M,示蛋白质分子量标准;1,示诱导4h的空载体pET30a;2,示诱导4h的质粒pET-TMT(箭头指示诱导的特异性蛋白带)。图2大肠杆菌表达的γ-TMT的酶活性分析。
1,γ-生育酚标准品;2,pET30a的阴性对照;3,pET-TMT反应产物;4,α-生育酚标准品。
图3农杆菌LBA4404-Bin-TMTL介导的转γ-TMT结构基因的大豆。
1,子叶节外植体;2,外植体在MSB1培养基上长出丛生芽;3,MSB2培养基上长出的抽长芽;4,抽长芽在MSB培养基上生根;5,结豆荚的转基因大豆植株;6,T1代转基因大豆植株;7,转基因大豆的种子。
图4农杆菌GV3101-7S-TMTL介导的转基因拟南芥的Western Blot检测1,野生型拟南芥的叶片;2,3,转基因拟南芥的叶片;4,野生型拟南芥的荚;5,6,转基因拟南芥的荚;7,大肠杆菌表达的γ-TMT蛋白。
具体实施例方式
为进一步理解本发明上述目的,通过以下实施例予以具体说明,但本实施例并非作为对本发明的限定。
实施例1.γ-生育酚甲基转移酶基因的克隆1)结球甘蓝总RNA的提取取结球甘蓝中甘十一号(Brassica oleracea L.Var.Capitata L.)9天实生苗的顶芽2.5g,液氮研磨后,迅速加入15mL在65℃预热过的RNA提取缓冲液(100mmol/L Tris-HCl,pH8.0,2%CTAB、2%PVP4000、25mmol/LEDTA、2.0mol/L NaCl、0.5g/L Spermidine和2%β-巯基乙醇),颠倒混匀。用等体积的氯仿、异戊醇混合溶液(V/V=24∶1)抽提两次,取最后一次的上清溶液,加入1/4体积10mol/L LiCl,4℃放置过夜,次日4℃、10,000rpm离心回收上述溶液中的RNA沉淀,沉淀再溶于500μL的SSTE溶液(10mmol/L Tris-HCl pH8.0,1.0mol/L NaCl、0.5%SDS、1mmol/L EDTA pH8.0),用氯仿、异戊醇混合溶液再抽提两次,上清液加入两倍体积的无水乙醇,-70℃放置2h后,于4℃、10,000rpm离心20min,回收RNA沉淀,用70%的乙醇洗涤沉淀,干燥后沉淀用两次灭菌的无离子水溶解。为防止DNA的污染,每100μg的总RNA加入2U DNase(Promega,USA)和40U RNase抑制剂,于37℃处理30min,以消化DNA。RNA溶液的紫外分光度测定结果为A260/A280=1.80,A260/A230=2.0,电泳分析估计28S、18S的rRNA量的比大约为28S∶18S=2∶1,此RNA溶液可作为RT-PCR反应的模板。
2)cDNA 3’末端的快速扩增(3'RACE)在含5μg总RNA的溶液(11μL)中,加入1μL的Oligo(dT)17(0.5mol/L)引物(5’-GAGGATCC(T)17-3’),70℃放置10min后快速置于冰上3min,瞬间离心。向上述溶液中依次加入5×第一链缓冲液4μL,DTT 2μL(0.1mol/L)、dNTPs(每种dNTP为10mmol/L)1μL,轻微混匀后置于42℃ 2min,然后向该溶液中加入1μL的SuperscriptTMII ReverseTranscriptase(Gibco-BRL,USA)。该反应体系于42℃放置50min后,再在70℃水浴15min终止反应,最后瞬时离心。
上述反应液取出1μL作第一次PCR扩增。PCR扩增体系包括dNTP 1μL(每种dNTP各为10mmol/L)、5’端引物Psa35’-GAAAGTAGTGGATGTTGGGTG-3’和3’端引物Oligo(dT)17各2μL(10pmol/μL)、10×Taq Plus酶缓冲液5μL、Taq Plus酶0.5μL(5u/μL)、用水补充至50μL。PCR扩增的条件为94℃ 4min;94℃ lmin、42℃ 2min、72℃ 2min(35个循环);72℃ 10min。取第一次PCR产物1μL做巢式PCR扩增。PCR扩增体系包括dNTP 1μL(每种dNTP各为10mmol/L)、5’端引物Psa45'-CAGGAGGTAGGATAATAATAGTGA-3’和3’端引物Oligo(dT)17各2μL(10pmol/μL)、10×Taq Plus酶缓冲液5μL、Taq Plus酶0.5μL(5u/μL)、用水补充至50μL。PCR扩增的条件为94℃ 3min;94℃ 1min、48℃ 1min、72℃ 1min30sec(35个循环);72℃ 10min。PCR扩增产物的琼脂糖电泳分析显示一条较为明显的约583bp的DNA带。
取3μL的巢式PCR扩增产物与1μL pGEM-T Easy Vector(Promega,USA)作10μL连接体系反应,其中含5μL(2×连接缓冲液)、1μL的T4DNA连接酶。连接体系在4℃反应过夜,取2μL电击转化感受态大肠杆菌JM109后,涂于含Amp(氨苄青霉素)的LB固体培养基上。挑取单菌落,利用以上的PCR系统,直接以菌落为模板进行PCR。对PCR阳性的菌落,用煮沸法提质粒。利用载体上的两个EcoRI酶切位点,对5μL的质粒作EcoR I的单酶切鉴定。根据电泳结果选择含约583bp DNA片段重组质粒的菌落(JM109-3END),提取质粒(p3END-T),由上海博亚生物技术有限公司测序。
3)cDNA5’末端的快速扩增(5’RACE)5μg总RNA溶液用于5’RACE反应。反应步骤参照Gibco-BRL公司的5’RACE试剂盒说明进行。首先以总RNA为模板,用引物GSP15’-TTCCACGTTAATGCGGTTC-3’在SuperscriptTMII Reverse Transcriptase的作用下进行反转录反应,合成第一链cDNA。经RNaseH处理,Glass MAXDNA isolation spin cartridge纯化后,用末端转移酶在合成的第一链cDNA3’端加poly(dC)尾。用巢式引物GSP35’-GCAGATTCTGTCCAAGAGGTTC-3’和锚定引物AAP5’-GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-3’进行PCR扩增,PCR扩增程序为94℃ 4min;94℃ 1min、53℃ 1min、72℃ 1min20sec(35个循环);72℃ 10min。PCR扩增产物的琼脂糖电泳分析显示出一条明显的800bp的DNA带。将此片段按上述方法克隆于pGEM-T Easy Vector上,转化大肠杆菌JM109感受态细胞,通过PCR和重组质粒的EcoRI的单酶切方法,挑取含重组质粒p5END-T的JM109-5END菌体并测序。
从2)和3)测序结果得出如序列表No.1所示的γ-TMT的全长cDNA序列。
4)RT-PCR扩增cDNA的编码区序列3μg的总RNA用于反转录反应,反应系统同3’RACE。取1μL的反转录产物作PCR扩增。PCR扩增的体系有dNTP 1μL(每种dNTP各为10mmo l/L)、上游引物RT65’-CGGGATCCACCATGAAAGCGACTCTCG-3’(含一个BamH I酶切位点)和下游引物RT35’-TGAACTTAGAGAGGCTTCTGGCAA-3’各2μL(10pmol/μL)、10×Taq Plus酶缓冲液5μL、Taq Plus酶0.5μL(5u/μL)、用水补充至50μL。PCR扩增程序为94℃ 4min;94℃ 1min、55℃ 1min、72℃ min30sec(35个循环);72℃ 10min。PCR产物的琼脂糖电泳分析显示一条亮的约1060bp的DNA带。
取3μL的PCR扩增产物与1μL pGEM-T Easy Vector按照以上方法做连接反应,用2μL连接产物电击转化大肠杆菌JM109感受态细胞,然后涂于含Amp的LB固体培养基上。通过PCR挑选出阳性菌落,用煮沸法提取质粒。利用载体上的Sal I和PCR产物上BamH I的酶切位点,对5μL的质粒作BamH I、Sal I的双酶切反应。根据电泳结果选择能切出约1,060bp DNA片段重组质粒的菌落(JM109-TMTL),提取质粒(pTMTL)并测序。
实施例2.含γ-生育酚甲基转移酶结构基因重组植物组成型表达载体、重组植物种子特异性表达载体及其重组农杆菌的制备BamH I、Sal I双酶切质粒pTMTL,回收DNA小片段。同样双酶切植物组成性表达载体pBin438和种子特异性表达载体p7S438,回收DNA载体大片段。取这些DNA载体大片段分别与上述DNA小片段连接。电击转化感受态大肠杆菌JM109后,涂于含Kan(卡那霉素)的LB固体培养基上。分别利用PCR和BamH I、Sal I双酶切的鉴定转化子,并挑取含重组质粒pBin-TMTL或p7S-TMTL的JM109菌体。
经碱法提取质粒pBin-TMTL和p7S-TMTL,分别转化感受态农杆菌LBA4404,涂于含50g/ml Kan和50g/ml Rif(利福平)的YEP固体培养基上。挑取单菌落提质粒,PCR和BamH I、Sal I双酶切鉴定显示分别获得了含pBin-TMTL和p7S-TMTL的农杆菌LBA4404-Bin-TMTL和LBA4404-7S-TMTL。
同样,将质粒pBin-TMTL和p7S-TMTL分别转化感受态农杆菌GV3101,涂于含50μg/ml Kan和50μg/ml Rif(利福平)的YEP固体培养基上。挑取单菌落提取质粒,PCR和BamH I、Sal I双酶切鉴定显示分别获得了含pBin-TMTL和p7S-TMTL的农杆菌GV3101-Bin-TMTL和GV3101-7S-TMTL。
挑取含pBin-TMTL或p7S-TMTL的农杆菌LBA4404或GV3101单菌落,置于5mL的含50μg/ml Kan和50μg/ml Rif的YEP培养基中,于28℃、250rpm培养过夜。此菌液经MSB液体培养基作10倍稀释后,可用于大豆转化。
实施例3.含γ-生育酚甲基转移酶结构基因重组微生物表达载体及重组微生物的制备、γ-TMT的表达、表达γ-TMT的酶活性分析及γ-TMT的抗体制备1)含γ-生育酚甲基转移酶结构基因重组大肠杆菌表达载体及重组大肠杆菌的制备与γ-TMT的诱导表达为了使γ-生育酚甲基转移酶结构基因在大肠杆菌中能正确的获得表达及表达的蛋白能具有活性,我们依据所获得的结球甘蓝γ-生育酚甲基转移酶结构基因序列设计了一个上游引物RT55’-CGGGATCCACCATGACAACGACGGCAAC-3’,该引物含一个BamHI酶切位点,当它与RT3引物进行RT-PCR扩增时,所获得的930bp产物编码一个去除了大部分NH2-端叶绿体导肽的截短的蛋白质。RT-PCR扩增条件同实施例1,PCR扩增产物克隆于pGEM-T Easy Vector上,转化大肠杆菌JM109感受态细胞,通过PCR和重组质粒的BamH I、SalI的双酶切方法,挑取含重组质粒pTMT的JM109-TMT菌体并测序。取80μL的质粒pTMT在100μL体系中,进行BamHI、SalI的双酶切反应,37℃温浴3h后,取5μL的反应液进行电泳检查。对酶切完全的反应液全部进行电泳,用DNA胶回收试剂盒(上海生工生物工程技术服务有限公司)回收930bp的DNA片段,溶于30μL水中。取3μL的930bp DNA片段溶液和10μL经同样双酶切后回收的pET30a大片段作20μL的连接反应,体系还包括2μL(10×连接缓冲液)、2μL的T4DNA连接酶,用水补足到20μL。取2μL连接产物电击转化感受态大肠杆菌BL21,转化产物涂于含Kan(卡那霉素)的LB固体培养基上。通过PCR和重组质粒的BamH I、Sal I双酶切方法,挑取含重组质粒pET-TMT的BL21-ET-TMT菌体。
含重组质粒pET-TMT的BL21菌体在含50μg/mLKan的LB液体培养基中培养至OD600=0.5后,加入IPTG至终浓度0.4mmol/L,于250rpm振荡培养4h使其诱导表达。取1.5mL菌液于12,000rpm离心30sec回收菌体。菌体重悬于100μL无菌水和100μL的2×SDS缓冲液(含10%的β-巯基乙醇)中,煮沸3min再12,000rpm离心5min。取上清液10μL进行SDS-PAGE蛋白电泳,显示一条39kD的特异蛋白带。诱导4h后,其表达量约占菌体总蛋白的22%(图1)。
2)诱导γ-TMT的体外酶活分析含重组质粒pET-TMT的BL21-ET-TMT菌体于28℃振荡培养至OD600=0.6时,加入IPTG至终浓度0.4mmol/L,诱导蛋白表达3.5h。8,000rpm离心收集500mL培养液的菌体,重悬于5mL超声缓冲液(10mmol/L HEPES pH7.8,5mmol/L DTT,0.24mol/L山梨醇,1mmol/LPMSF)中,于冰上用超声波细胞破碎仪破碎细胞。向匀浆物中加入TritonX-100至终浓度为1%,冰上放置30min后,4℃,30,000g离心30min,取上清液用BioRad蛋白分析法测定蛋白质的浓度后,进行酶活性分析。以含空载体pET30a的Escherichia coli BL21(DE3)菌株作为阴性对照。125μL的反应体系含50mmol/L Tris(pH8.5)5mmol/L DTT,0.64mmol/L γ-生育酚,1.28mmol/L S-腺苷甲硫氨酸(SAM),样品60μL,于25℃温育1.5h后,加入500μL 2∶1(V∶V)的氯仿∶甲醇(含1mg/mL的BHT)和125μL 0.9%生理盐水终止反应。各样品剧烈涡旋1min后,离心分相,将下层氯仿相转入一新的离心管中,真空法除去氯仿,用20μL的乙酸乙酯(含1mg/mL的BHT)重溶去除氯仿后的油液,点样于TLC板(硅胶GF254板)上,在二氯甲烷中展层。在室温中使TLC板干燥,在紫外光(253nm)下观察色谱。含γ-TMT表达蛋白的反应体系在25℃反应1.5h后,于TLC板上出现了一个很清晰的α-生育酚的色谱斑点,而对照组没有出现此斑点(图2)。另外,在酶促反应0,20,40,60,80,100,120min时,分别取出20μL的反应液,按上述方法终止反应和进行薄层层析分离,在紫外光下标明相应于α-生育酚谱带的位置。刮取各谱带物,加入2mL的无水乙醇,涡旋振荡,然后静置5min,12,000rpm离心5min,将上清液转入比色杯中,向各杯加入0.5%的α,α’-双吡啶乙醇溶液0.5mL和0.2%的三氯化铁乙醇溶液0.5mL,混匀,在加入三氯化铁恰好2min后测定520nm的吸收值。520nm处的吸光度曲线显示,在含γ-TMT表达蛋白的反应体系中,随着反应的进行,A520值逐渐增大,在前60min反应较快,到80min时达到最高,随后逐渐变得平缓,而对照组并无此变化发生。在含γ-TMT表达蛋白的反应体系中γ-TMT活性在反应80min时是对照的10倍以上。
3)含γ-生育酚甲基转移酶结构基因重组酵母表达载体及重组酵母的制备、γ-TMT表达与表达γ-TMT的体外酶活分析将上述所获得的930bp产物插入真核表达载体pPIC9的polylinker,使目的基因与质粒中的α-因子信号肽序列翻译融合,建成了以乙醇氧化酶1(AOX1)启动子和终止子引导表达,α-因子信号肽序列引导分泌,以his4为选择标记的甲醇酵母(即毕赤酵母)表达分泌的重组质粒。重组质粒用BglII酶切,使线性化,电击转化甲醇酵母GS115(his4,mut+),选择his+转化子,挑取转化子对应点接到MM和MD培养基上,在MD培养基上正常生长,在MM培养基上生长不正常的转化子即为阳性克隆。经高密度发酵,在发酵液中存在目的产物γ-生育酚甲基转移酶。
分别将含空载体pPIC9的甲醇酵母GS115(阴性对照)与含γ-TMT结构基因的甲醇酵母GS115进行高密度发酵,按2)所述方法测定γ-生育酚甲基转移酶的活性。含γ-TMT结构基因的甲醇酵母GS115的发酵液的反应体系在25℃反应1.5h后,于TLC板上出现了一个很清晰的α-生育酚的色谱斑点,而对照组没有出现此斑点。结果显示含γ-TMT结构基因的甲醇酵母GS115发酵液中确实表达了重组γ-生育酚甲基转移酶,并具有γ-生育酚甲基转移酶的活性。
4)γ-生育酚甲基转移酶的抗体制备为进行Western blot检测需制备γ-生育酚甲基转移酶的抗体,采用上述1)中方法,将SDS-PAGE蛋白电泳后的凝胶,在4℃ 0.1N KCl浸泡5min后,挖取39kD特异表达蛋白带的凝胶,凝胶用无菌水清洗两次,每次浸泡5min,液氮速冻后用研钵研磨,再用生理盐水悬浮,用悬浮液直接免疫兔子,一个月后采集兔的抗血清。用ELISA法检测该抗血清的效价在1∶200,000以上。
实施例4.转结球甘蓝γ-生育酚甲基转移酶结构基因大豆的培育1)大豆的转化和再生取中作大豆绿1号的种子,于70%酒精浸泡5sec,无菌水洗3次,再用0.1% HgCl2表面消毒15min,用无菌水冲洗5次,浸泡6-14h后置于MSB培养基上萌发,25℃每日光照16小时。取6天苗龄的大豆无菌苗,去除种皮,横切去1/2的子叶,保留2-4mm下胚轴,纵向切一刀使成为两个对称部分,切除胚芽后并用刀片在子叶节部位进行划伤即为用于转化的子叶节(外植体)。外植体浸于0.35mol/L甘露醇溶液中预处理30min,再置于以上的农杆菌稀释液中,30分钟后取出外植体,用无菌滤纸吸除外植体表面的菌液,将外植体呈45°角斜插于MSB1固体培养基上,使切口朝上插入培养基,28℃暗培养三天。三天后,将共培养的外植体用无菌水洗4次以除去表面生长的农杆菌,用含500mg/L Cef(头孢霉素)的无菌水浸泡30min,再转移到含500mg/L Cef的MSB1培养基上,25℃每日光照16小时进行诱导生芽培养。当子叶节上长出0.5~1cm的丛生芽时,将外植体转入含50mg/L Kan、500mg/L Cef的MSB2固体培养基上,25℃每日光照16小时进行选择性筛选培养。当幼芽抽长至3-4mm时,将幼芽切下,于MSB固体培养基中诱导生根。待幼芽长出根,且苗高约6-7cm时取出幼苗,彻底清除根部培养基,将幼苗移入土壤中培养(图3)。
2)转基因大豆的分厂子生物学检测a)PCR扩增和Southern blot检测 取上述转基因大豆叶片30mg,加入150μL的CTAB缓冲溶液(100mmol/L Tris-HCl,pH8.0,1.4mol/L NaCl,20mmol/L EDTA,2%CTAB)后研磨,再另加入350μL CTAB缓冲溶液,轻轻混匀,65℃温浴30min。然后加入500μL在4℃预冷过的氯仿∶异戊醇混合液(v∶v=24∶1),小心摇匀,室温10,000rpm离心5min,吸出400μL水相转入另一个Eppendorf管中。水相中加入400μL在4℃预冷过的异丙醇,轻轻摇匀,于-20℃放置30min。10,000rpm离心15min,回收DNA沉淀。弃上清液,用70%的乙醇洗涤沉淀两次。沉淀干燥后再溶于100μL的无离子水中。取1μL该溶液作模板,按以上PCR系统进行PCR扩增(引物分别为35S5'-TGATGTGATGGTCCGATTG-3’和GSP25’-CACCAGGCCGGGAGATAA-3’)。电泳结果显示为一条800bp DNA带,说明此植株为PCR阳性株。
按上述提取大豆基因组DNA的方法制备70μg的转基因大豆基因组总DNA,加入200u的Hind III做400μL体系的酶切反应。37℃保温12h后,补加200u的Hind III再酶切6h,取5μL电泳检测是否酶切完全。若酶切完全后,依次加入50μL 3m0l/L NaAc(pH5.8)、50μL的蒸馏水和2倍体积的无水乙醇,混匀,于-20℃放置30min。10,000rpm离心15min回收酶切的DNA沉淀。弃上清液,用70%的乙醇洗涤沉淀两次。沉淀经干燥后溶于30μL的无离子水和10μL的DNA上样缓冲液中,1%的琼脂糖凝胶电泳,30V约10h。转移琼脂糖凝胶至一大培养皿中,加入脱嘌呤液(0.25mol/L HCl)至液面刚淹没凝胶,于摇床上脱色20min。倒掉脱嘌呤液,蒸馏水冲洗5遍。加入0.4N NaOH溶液,于摇床上振荡20min。采用碱转移法利用毛细管原理将胶中的DNA转移至尼龙膜上,转膜液为0.4N NaOH,转膜12-16h。取出膜,在2倍的SSC溶液中轻轻漂洗1min,稍晾干膜(约30min)。将稍晾干的膜放入紫外交联仪中紫外交联4min。将膜放入杂交管中,DNA面朝内。加入15mL的65℃预热的预杂交液(7%SDS,1%BSA,1mmol/L EDTA,250mmol/L NaPO4pH7.2缓冲液,1%鱼精DNA),65℃预杂交5-6h。更换预杂交液,变性探针后按50μL的探针15mL杂交液加入到杂交管中,65℃杂交过夜。加入约60mL的洗膜液I(0.1%SDS,2倍SSC),室温下洗膜1min。倒掉洗膜液I,加入约60mL的洗膜液II(0.1%SDS,1倍SSC),65℃洗膜两次,每次10min。倒掉洗膜液II,依膜上放射性的强度决定用洗膜液III洗膜的次数和时间。将膜晾干后用保鲜膜包好,于暗室中压X光片。放射自显影结果显示转基因大豆出现了一条特异性的DNA条带,说明结球甘蓝的γ-生育酚甲基转移酶结构基因已整合到转基因大豆基因组中。
b)RT-PCR和Western blot检测 取上述Southern blot阳性的转基因大豆植株叶片0.2g,于液氮中研磨成粉末后,转入一个含0.6mL4mol/L异硫氰酸胍溶液(4mol/L异硫氰酸胍,25mmol/L二水合柠檬酸三钠,0.5%十二烷基肌氨酸钠,10%乙醇)的1.5mL离心管中,颠倒混匀。依次加入0.06mL 2mol/L NaAc(pH4.0-5.0),0.6mL水饱和的酸酚和0.2mL氯仿,颠倒混匀,于冰上放置20min。4℃,8,000rpm离心13min。吸出上清液,加入3倍体积的无水乙醇,-70℃沉淀1h或更长的时间。4℃,6,000rpm离心13min。弃上清液,沉淀重悬于0.2mL 4mol/L LiCl溶液中,于冰上放置10min,然后13,000rpm离心15min。沉淀重溶于0.08mL经两次灭菌的蒸馏水中,用等体积的氯仿抽提一次,10,000rpm离心5min。取上清液,加入0.1倍体积的3mol/L NaAc(pH5.8)和2倍体积的无水乙醇,于-70℃沉淀30min。13,000rpm离心15min,弃上清,用70%的乙醇洗沉淀两次,干燥后的沉淀溶于40μL经两次灭菌的蒸馏水中。取20μL总RNA按上述方法进行DNase处理,反转录成cDNA后,取2μL的cDNA为模板,以RT5和RT3为引物,按上述的反应体系进行第一次PCR扩增,PCR扩增程序为94℃4min;94℃8sec、50℃8sec、72℃8sec(35个循环);72℃10min。取1μL的第一次PCR产物为模板,以Psa4和RT3为引物,进行第二次PCR扩增,PCR反应程序为94℃4min;94℃8sec、53℃8sec、72℃8sec(35个循环);72℃10min。电泳结果显示为一条380bp的特异性条带,而野生型大豆没有该带。RT-PCR结果说明结球甘蓝γ-生育酚甲基转移酶结构基因不仅已整合到转基因大豆基因组中,而且能成功转录。
取0.1g转基因大豆叶片,用液氮研磨成粉末后,转入含150μL蛋白抽提缓冲液(50mmol/L Na2HPO4-NaH2PO4,0.5mol/L NaCl,1mmol/L EDTA,14mmol/L巯基乙醇,1mmol/L PMSF)的离心管中。充分混匀,4℃,12,500rpm离心20min。上清液转入一个新的离心管中,用BioRad法在595nm下测定蛋白浓度。根据所测定的蛋白浓度,每个样品取80μg的可溶性总蛋白,加入等体积2倍的蛋白质样品缓冲液(20%甘油,0.05%溴酚蓝,0.125mol/L Tris-HCl,pH6.8,4%SDS,10%的β-巯基乙醇),100℃水浴5min,然后10,000rpm离心8min。样品进行12%的SDS-PAGE电泳,待溴酚蓝全泳出凝胶后,采用Bio-Rad公司生产的半干式蛋白转移仪将凝胶中的蛋白转移至硝酸纤维素膜上,恒压9V,转移30min。取出硝酸纤维素膜,用Buffer III(Buffer I加5%的脱脂奶粉)于室温封闭过夜。倒掉Buffer III,加入含5%脱脂奶粉的Buffer I(1mol/L Tris-HCl(pH7.4)10mL,5mol/L NaCl 15mL,0.5mol/L EDTA(pH8.0)1mL,Tween-200.5mL,加水至500mL)稀释的一抗溶液(兔抗γ-TMT血清,1∶5000倍稀释),37℃作用2.5h。Buffer I洗膜3次,每次5min。加入含5%脱脂奶粉的Buffer I稀释的二抗溶液(碱性磷酸酯酶标记的羊抗兔IgG,1∶3000倍稀释),37℃作用45min。Buffer I洗膜3次,每次5min。加入含有66μL氯化硝基四氮唑蓝(NBT)和33μL 5-溴-4-氯-3-吲哚磷酸甲苯胺蓝(BCIP)的溶液II(1mol/L Tris(不调pH)10mL,5mol/LNaCl 2mL,50mmol/L MgCl20.5mL,加水至100mL)10mL,置暗处显色,直至目的条带出现。用自来水漂洗终止反应。Western Blot结果显示转基因大豆在34kD大小处出现了一条比对照(野生型大豆)明显加深的特异性免疫条带,此结果表明在转γ-生育酚甲基转移酶结构基因大豆中γ-生育酚甲基转移酶已成功的表达。经HPLC分析转基因大豆的种子中α-生育酚含量至少提高了4倍。T1代转基因大豆的PCR阳性植株也能正常地开花结果(图3)。
实施例5.结球甘蓝γ-生育酚甲基转移酶在转基因拟南芥种子中的特异性表达挑取含p7S-TMTL的农杆菌GV3101单菌落,置于5mL的含50μg/mL Kan和50μg/mL Rif的YEP培养基中,于28℃、250rpm培养过夜。次日将此菌液转入500mL YEP培养基中,28℃振摇培养至OD600=1.2。5,000rpm离心收集菌体,弃去上清液,用转化悬浮液(1/2 MS盐,1倍的维生素B5,5%蔗糖,10μL/L悬浮液的6-BA,0.02%Silwet L-77)重悬菌体,并分装于抽真空的小杯中,每杯约放2/3体积的菌液。将已除去结荚和开花的拟南芥,用橡皮筋将花盆作“十”字捆扎,倒置于小杯上,花序部分浸入菌液中,置于真空缸内。0.05Mpa压强下真空处理5min。取出拟南芥并将其水平放置在阴凉处2天。然后将拟南芥置23℃,每日光照培养16h。25-30天后收集转基因拟南芥的种子。
取适量干燥的转基因拟南芥的种子于1.5mL离心管中,加入1mL 70%乙醇处理2min。吸出乙醇,用无菌水洗2次后,加入1mL 10-20%的花王消毒液处理15min。吸出消毒液,用无菌水洗涤5次。最后用0.1%的琼脂重悬种子,以200-300粒种子/培养皿的密度在1/2MS培养基中(含Kan50μg/mL)培养。4℃放置48h,然后转入23℃光照培养。待Kan抗性幼苗长出4-8片莲座叶后移入土中培养。
抗Kan幼苗叶片50mg,于200μL提取缓冲液(1倍的DNA提取缓冲液,1倍的核裂解缓冲液,0.4倍体积5%的肌氨酰)中研磨成匀浆。加入500μL 65℃预热的提取缓冲液,颠倒混匀。65℃水浴30-60min。加入750μL的氯仿∶异戊醇(24∶1)混合液,充分混匀。10,000rpm离心5min。将上清液转入一个新的离心管中,加入2/3到1倍体积的冷的异丙醇,颠倒混匀至DNA沉淀。10,000rpm离心10min,弃上清液,用70%的乙醇洗沉淀两次,干燥沉淀,用50μL的无菌水重溶解沉淀。取1μL DNA作为模板,以7S5(5'-CCCAAGCTTCCTATCTGTCACTTC-3’)和7S3(5'-CGGGATCCGAGAGACTGGTGATT-3’)为引物,按上述体系进行PCR扩增。结果显示转基因拟南芥出现了一条特异性的530bp条带,表明结球甘蓝γ-生育酚甲基转移酶结构基因已成功的转入拟南芥中。
取PCR阳性转基因拟南芥叶片和荚各50mg,按实施例4中2)b方法进行Western Blot,结果显示转种子特异性表达质粒p7S-TMTL的转基因拟南芥的荚在34kD大小处出现了一条比野生型拟南芥荚明显加深的特异性免疫条带(图5)。这表明种子特异性启动子引导γ-生育酚甲基转移酶结构基因在转基因拟南芥荚中获得了高效表达。
在转基因拟南芥种子中表达的γ-生育酚甲基转移酶的酶活测定称取5mg Western Blot阳性的转基因拟南芥T2代种子,加入100μL的酶提取缓冲液(50mmol/L Tris pH8.5,5mmol/L DTT,1%Triton-100,1mmol/L PMSF)后研磨成匀浆。10,000rpm离心6min,吸取上清液,取25μL检测γ-TMT酶活。酶活反应体系及其检测同实施例32)。TLC结果表明在转种子特异性表达质粒p7S-TMTL的转基因拟南芥T2代种子的样品中出现了α-生育酚的色谱斑点,而野生型拟南芥的种子中没有出现此斑点,说明在转种子特异性表达质粒p7S-TMTL的转基因拟南芥T2代种子中表达的γ-TMT具有催化γ-生育酚甲基化形成α-生育酚的酶活性。
附注LB培养基5g/L NaCl;10g/LTrypton;10g/LYeast ExtractpH7.0(3NNaOH调);15g/L琼脂;15磅灭菌30分钟。
YEP培养基5g/L NaCl;10g/L Polypepton;10g/LYeast ExtractpH7.0(3NKOH调);15g/L琼脂;15磅灭菌30分钟。
MSB培养基大量元素(KNO31.9g/L,NH4NO31.6g/L,KH2PO40.17g/L,CaCl2·2H2O 0.44g/L,MgSO4·7H2O 0.37g/L),微量元素(KI 0.83mg/L,HBO36.2mg/L,MnSO4·4H2O 22.3mg/L,ZnSO4·7H2O 8.6mg/L,Na2MoO4·2H2O 0.25mg/L,CuSO4·5H2O 0.025mg/L,CoCl2·6H2O0.025mg/L),铁盐(FeSO4·7H2O 27.8mg/L,Na·EDTA·2H2O 37.3mg/L),有机成分(维生素B110mg/L,维生素B61.0mg/L,烟酸1.0mg/L,肌醇100mg/L),蔗糖3%,调pH值至5.8,固体培养基加0.7%的脂,8磅灭菌30分钟。
MSB1培养基在MSB培养基中加入过滤灭菌的IBA和6BA终浓度分别为0.2mg/L和10mg/L。
MSB2培养基含0.05mg/L IBA和0.5mg/L 6BA的MS培养基。
DNA提取缓冲液127.54g山梨醇,24.2g Tris pH8.2,3.722g EDTA.Na2,加水定容到2L。
核裂解缓冲液200mL 1mol/L Tris,pH7.5;200mL 0.25mol/L EDTA;400mL5mol/L NaCl;20g CTAB;200mL去离子水。
序列表<110>中国科学院微生物研究所<120>γ-生育酚甲基转移酶及其基因和用途<130>cai2000305<160>2<170>PatentIn version 3.1<210>1<211>1265<212>DNA<213>Brassica oleracea<400>1tttctccaac caacctctca ttataaatga aagcgactct cgcaccaccc tcctctctca60taagcctccc caggcacaaa gtatcttctc tccgttcacc gtcgcttctc cttcagtccc 120agcggccatc ctcagcctta atgacaacga cggcaacacg tggaagcgta gctgtgacgg 180ctgctgctac ctcctccgct gaggcgctgc gagaaggaat agcggaattc tacaacgaga 240cgtcgggatt atgggaggag atttggggag atcatatgca tcacggcttc tacgatcccg 300attcctctgt tcaactttca gattccggtc accgggaagc tcagatccgg atgattgaag 360agtctctacg tttcgccggc gttactgaag aggagaaaaa gataaagaga gtggtggatg 420ttgggtgtgg gatcggagga agctcaaggt atattgcctc taaatttggt gccgaatgca 480ttggcatcac actcagtccc gttcaagcca agagagccaa tgatctcgcc gccgctcaat 540cactctctca taaggtttcc ttccaagttg cagatgcatt ggaccaacca tttgaagatg 600gtattttcga tcttgtttgg tcaatggaaa gcggtgagca tatgcctgac aaggccaagt 660tcgtgaagga attggtacgt gtgacggctc caggaggaag gataataata gtgacatggt 720gccacagaaa tctatcccaa ggggaagaat ctttgcagcc atgggagcag aacctcttgg 780acagaatctg caaaacattt tatctcccgg cctggtgctc cacctctgat tatgtcgagt 840tgcttcaatc cctctcgctc caggatatta agtgtgcaga ttggtcagag aacgtagctc 900
ctttctggcc ggcggttata cgaaccgcat taacgtggaa gggccttgtg tctctgcttc 960gtagtggtat gaagagtata aaaggagcat tgacaatgcc attgatgatt gaagggtaca1020agaaaggtgt cattaaattt ggcatcatcg cttgccagaa gcctctctaa gttcaatcta1080aacaataaaa ttgtcgtact tttcagcgaa ttgatttcta tctatgatat aggagattga1140ataagagtca cgtgagaaat gtggatgcat gaaatccctt aaacgtcatt aatgttcgtt1200catggctacg ttgtctattt tagataaata tacaagttga aaggtgtcaa aaaaaaaaaa1260aaaaa 1265<210>2<211>347<212>PRT<213>Brassica oleracea<400>2Met Lys Ala Thr Leu Ala Pr0 Pro Ser Ser Leu Ile Ser Leu Pro Arg1 5 10 15His Lys Val Ser Ser Leu Arg Ser Pro Ser Leu Leu Leu Gln Ser Gln20 25 30Arg Pro Ser Ser Ala Leu Met Thr Thr Thr Ala Thr Arg Gly Ser Val35 40 45Ala Val Thr Ala Ala Ala Thr Ser Ser Ala Glu Ala Leu Arg Glu Gly50 55 60Ile Ala Glu Phe Tyr Asn Glu Thr Ser Gly Leu Trp Glu Glu Ile Trp65 70 75 80Gly Asp His Met His His Gly Phe Tyr Asp Pro Asp Ser Ser Val Gln85 90 95Leu Ser Asp Ser Gly His Arg Glu Ala Gln Ile Arg Met Ile Glu Glu
100 105 110Ser Leu Arg Phe Ala Gly Val Thr Glu Glu Glu Lys Lys Ile Lys Arg115 120 125Val Val Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Tyr Ile Ala130 135 140Ser Lys Phe Gly Ala Glu Cys Ile Gly Ile Thr Leu Ser Pro Val Gln145 150 155 160Ala Lys Arg Ala Asn Asp Leu Ala Ala Ala Gln Ser Leu Ser His Lys165 170 175Val Ser Phe Gln Val Ala Asp Ala Leu Asp Gln Pro Phe Glu Asp Gly180 185 190Ile Phe Asp Leu Val Trp Ser Met Glu Ser Gly Glu His Met Pro Asp195 200 205Lys Ala Lys Phe Val Lys Glu Leu Val Arg Val Thr Ala Pro Gly Gly210 215 220Arg Ile Ile Ile Val Thr Trp Cys His Arg Asn Leu Ser Gln Gly Glu225 230 235 240Glu Ser Leu Gln Pro Trp Glu Gln Asn Leu Leu Asp Arg Ile Cys Lys245 250 255Thr Phe Tyr Leu Pro Ala Trp Cys Ser Thr Ser Asp Tyr Val Glu Leu260 265 270Leu Gln Ser Leu Ser Leu Gln Asp Ile Lys Cys Ala Asp Trp Ser Glu275 280 285Asn Val Ala Pr0 Phe Trp Pro Ala Val Ile Arg Thr Ala Leu Thr Trp290 295 300
Lys Gly Leu Val Ser Leu Leu Arg Ser Gly Met Lys Ser Ile Lys Gly305 310 315 320Ala Leu Thr Met Pro Leu Met Ile Glu Gly Tyr Lys Lys Gly Val Ile325 330 335Lys Phe Gly Ile Ile Ala Cys Gln Lys Pro Leu340 34权利要求
1.一种来源于结球甘蓝(Brassica oleracea L.Var.capitata L.)的γ-生育酚甲基转移酶或其功能类似物,其氨基酸序列与SEQ NO.2所示的氨基酸序列具有至少有80%的同源性。
2.根据权利要求1所述的酶或其功能类似物,其氨基酸序列与SEQNO.2所示的氨基酸序列具有至少有90%的同源性。
3.一种来源于结球甘蓝(Brassica oleracea L.Var.capitataL.)的γ-生育酚甲基转移酶,它具有SEQ NO.2所示的氨基酸序列。
4.一种编码权利要求1或2所述的γ-生育酚甲基转移酶或其功能类似物的氨基酸序列的基因。
5.一种编码权利要求3所述的γ-生育酚甲基转移酶的基因,它具有SEQ NO.1所示的核苷酸序列。
6.一种重组质粒,含有权利要求4或5所述的γ-生育酚甲基转移酶的基因。
7.根据权利要求6所述的重组质粒,有p3END-T、p5END-T、pTMTL、pBin-TMTL、p7S-TMTL和pET-TMT。
8.一种重组微生物,含有权利要求6或7所述的重组质粒。
9.一种根据权利要求8所述的重组微生物大肠杆菌。
10.一种根据权利要求8所述的重组微生物农杆菌。
11.一种根据权利要求8所述的重组微生物毕赤酵母。
12.根据权利要求8所述的重组微生物,或由其产生的γ-生育酚甲基转移酶在由γ-生育酚制备α-生育酚中的应用。
13.根据权利要求1~10中任意一项在培育组成型或种子特异性表达γ-生育酚甲基转移酶的转基因植物中的应用。
全文摘要
本发明提供了一种从结球甘蓝(Brassica oleracea L.Var.capitata L.)实生苗中克隆的γ-生育酚甲基转移酶(γ-tocopherol methyltransferase,γ-TMT)的全长cDNA序列。由此提供了编码γ-TMT新的结构基因和γ-TMT。构建了原核表达质粒和植物组成型及植物种子中特异性表达质粒。将所述的γ-TMT结构基因转化到高效、稳定表达的微生物,借助生物催化法替代现有的化学催化法使γ-生育酚甲基化生成α-生育酚。并且获得了含有植物组成性表达质粒及植物种子中特异性表达的转基因植物。转基因植物组织及种子中的α-生育酚含量明显提高。
文档编号C12P17/02GK1510132SQ02158079
公开日2004年7月7日 申请日期2002年12月24日 优先权日2002年12月24日
发明者蔡文启, 欧阳青, 韩天富, 孙卉, 樊春涛, 张玉满, 吴存祥, 白羊年 申请人:中国科学院微生物研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1