枯草杆菌蛋白酶突变体的制作方法

文档序号:445479阅读:686来源:国知局
专利名称:枯草杆菌蛋白酶突变体的制作方法
技术领域
本发明涉及新的具有氨基酸顺序的羰基水解酶突变体,在该顺序中的羰基水解酶前体的一个或多个氨基酸残基,特别在相当于解淀粉芽孢杆菌(Bacillus amyloliguefaciens)枯草杆菌蛋白酶中+123和/或+274残基上的氨基酸残基已被不相同的氨基酸取代。一般说来,这类突变体羰基水解酶可通过对编码天然的或重组的羰基水解酶的前体DNA顺序的离体修饰得到,所述顺序用于仅仅编码前体氨基酸顺序中的1个或2个这种氨基酸的取代,或编码与前体氨基酸顺序中其他编码、插入或缺失相结合的取代。
丝氨酸蛋白酶是羰基水解酶的一种亚组,它们包括具有广谱专一性和生物作用的各种不同的酶(Stroud,R.M.1974,Sci.Amer.,131,74-88).尽管它们的功能各有不同,但是丝氨酸蛋白酶的催化机理至少有两族酶在遗传学上显著不同,即枯草杆菌蛋白酶和哺乳动物糜蛋白酶与同种细菌丝氨酸蛋白酶(例如胰蛋白酶和S.cresius胰蛋白酶)。这两族酶具有明显相似的催化机理(Kraut,J.1977.Ann.Rev.Biochem.,46,331-358)。此外,虽然一级结构互不相关,但是这两个酶族的三级结构都构成了由丝氨酸、组氨酸和天冬氨酸组成的氨基酸的保守催化三分体。
枯草杆菌蛋白酶是一种由许多不同种的杆菌和其他微生物中大量分泌的丝氨酸蛋白内切酶(分子量27500),枯草杆菌蛋白质顺序至少已由四个不同种的杆菌中测定得到(Markland,F.S.,et al.1983,Honne-Seyler′s Z.Physiol.Chem.,364,1537-1540)。解淀粉芽孢杆菌枯草杆菌蛋白酶对2.5A分辨率的三维晶相结构也已有报导(Wright,C.S.,et al.1969,Nature,221,235-242;Drenth,J.,et al.1972,Eur.J.Biochem.,26,177-181)。上述研究说明,虽然枯草杆菌蛋白酶在遗传上与哺乳动物丝氨酸蛋白酶无关,但都具有相似活性部位结构。含有共价键肽抑制剂的枯草杆菌蛋白酶(Robertus,J.D.,et al.,1972,Biochemistry,11,2439-2449)或产物复合物(Robertus,J.D.,et al.,1976,J.Biol.Chem.,251,1097-1103)的X射线晶体结构也提供了有关枯草杆菌蛋白酶的活性部位和公认的底物结合裂口的信息。另外,还报导了有关枯草杆菌蛋白酶的大量动力学和化学方面的修饰研究(Philipp,M.,et al.,1983,Mol.Cell.Biochem.,51,5-32;Svendsen,B.1876,Carlsbera Res.Comm.,41,237-291;Markland,F.S.同上),至少有一篇报告报导在枯草杆菌蛋白酶222位残基上的蛋氨酸的侧链通过过氧化氢转化为蛋氨酸-亚砜(Stauffer,D.C.,et al.1965,J.Biol.Chem.,244,5333-5338),在221残基上的丝氨酸的侧链通过化学修饰方法转化为半胱氨酸(Polgar,et al.,1981,Biochimica et Biophysica Acta,667,351-354)。
美国专利4760025号和欧洲专利0130756号于1985年1月9日公开了枯草杆菌蛋白酶氨基酸残基的修饰,这些残基相当于解淀粉芽孢杆菌枯草杆菌蛋白酶。酪氨酸-1,天冬氨酸+32,天冬酰胺+155,酪氨酸+104,蛋氨酸+222,甘氨酸+166,组氨酸+64,甘氨酸+169,苯基丙氨酸+189,丝氨酸+33,丝氨酸+221,酪氨酸+217,谷氨酸+156和丙氨酸+152。1988年1月7日发表的欧洲专利0251446号公开了解淀粉芽孢杆菌中的枯草杆菌蛋白酶的其他氨基酸残基以及它们的等同物,即可通过取代、插入或缺失方法进行修饰和可与修饰美国专利4760025号所证明的残基相结合,形成有用的枯草杆菌蛋白酶突变体。但是,本申请所证明的特定残基在上述文献中均未被证明。
与此类似的还有1989年10月19日发表的PCT专利WO89/09819号和WO89/09830号。公开了通过诱变编码枯草杆菌蛋白酶的核苷酸顺序得到枯草杆菌蛋白酶。在这些文献中业已证明,许多氨基酸残基是可以进行修饰的,但是上述文献均未证明本发明所述的残基的修饰。
因此,本发明的任务在于提供含有取代羰基水解酶前体中氨基酸残基的羰基水解酶突变体,所述被取代的残基相当于解淀粉芽孢杆菌中的枯草杆菌蛋白酶+123和/或+274位上的残基。这类突变体通过至少有一种不同于具有相关性质的衍生出所述突变体的氨基酸的羰基水解酶前体的性质。
本发明的另一个任务在于提供编码这类羰基水解酶突变体的DNA顺序和含有这类突变体DNA顺序的表达载体。
本发明还有一个任务在于提供用这类载体转化的宿主细胞和表达这类DNA的宿主细胞,从而在细胞内或细胞外产生羰基水解酶突变体。
本发明包括与衍生突变体氨基酸的羰基水解酶前体相比,具有不同蛋白水解活性、稳定性和/或性能特征的非天然羰基水解酶突变体。该羰基水解酶前体可以是天然羰基水解酶,也可以是重组体水解酶。具体地说,这类羰基水解酶突变体具有在自然界尚未被发现的氨基酸顺序,它是通过用1个或多个不同氨基酸取代1个或多个羰基水解酶前体的氨基酸残基得到的。该酶前体的1个或多个氨基酸残基相当于解淀粉芽孢杆菌的枯草杆菌蛋白酶的第Asn+123和/或Ala+274位或其他羰基水解酶或枯草杆菌蛋白酶中等同的氨基酸残基。
本发明还包括编码这类羰基水解酶或枯草杆菌蛋白酶突变体的突变体DNA顺序。
上述突变体DNA顺序是由编码天然的或重组的酶前体的前体DNA顺序得到的。突变体DNA顺序是通过修饰前体DNA顺序得到的,用于编码由相当于解淀粉芽孢杆菌中第+123和/或+274位的前体DNA顺序编码的1个或多个专一的氨基酸残基的取代。这些重组DNA顺序编码具有新氨基酸顺序的羰基水解酶突变体,一般说来这种突变体至少要有一个性能基本上不同于由前体羰基水解酶DNA顺序编码的相同性能的酶。以上所述的性能包括蛋白水解的活性、稳定性和/或更佳性能特征。
本发明还包括在相当于解淀粉芽孢杆菌的枯草杆菌蛋白酶中第Asn+123位上具有不同氨基酸残基(例如丝氨酸)的原核和真核枯草杆菌蛋白酶和在相当于解淀粉芽孢杆菌的枯草杆菌蛋白酶中第+274位上具有不同氨基酸残基的枯草杆菌蛋白酶。
此外,本发明还包括含这类突变体羰基水解酶DNA顺序的表达载体和用这类能产生这种突变体的载体转化的宿主细胞。本发明还涉及含有本发明的羰基水解酶突变体的洗涤剂组合物。


如下图1说明解淀粉芽孢杆菌的枯草杆菌蛋白酶的DNA和氨基酸顺序以及该基因的部分限制性基因图;
图2说明由解淀粉芽孢杆菌、枯草杆菌(Bacillus subtilis)varl168和地衣形芽孢杆菌(Bacillus licheniformis)(carlsbergensis)得到的枯草杆菌蛋白酶中保守的氨基酸残基;
图3A和3B说明解淀粉芽孢杆菌、枯草杆菌varI168和地衣形芽孢杆菌中枯草杆菌蛋白酶的氨基酸顺序;
图4说明3种枯草杆菌蛋白酶的氨基酸顺序。第一行表示解淀粉芽孢杆菌枯草杆菌蛋白酶中枯草杆菌蛋白酶的氨基酸顺序(有时称为枯草杆菌蛋白酶BPN′)。第2行表示粘性芽孢杆菌(Bacillus lentus)(在PCT专利WO89/06276号中为枯草杆菌蛋白酶309)。第3行表示本发明最佳实施例GG-RYSA的氨基酸顺序。*号表示与枯草杆菌蛋白酶BPN′相比,缺失特定的氨基酸残基;
图5说明质粒pGGA274的构建;
图6说明质粒pGG-RYSA的中间体pGG-KVNA的构建;
图7说明用于构建合成的粘性芽孢杆菌枯草杆菌蛋白酶基因的寡核苷酸复制方法;
图8说明构建用于编码粘性芽孢杆菌枯草杆菌蛋白酶合成基因的方法;
图9说明用于在DNA+123密码子位上通过盒式诱变进行取代的盒。XXX表示修饰的密码子,用于编码+123位上的氨基酸取代;
图10说明本发明最佳实施例的DNA和氨基酸顺序,其中DNA顺序是合成的DNA。该图中的DNA已被修饰,用于编码27位上的精氨酸、78位上的丝氨酸、104位上的酪氨酸、123位上的丝氨酸和274位上的丙氨酸。
本申请公开了在羰基水解酶枯草杆菌蛋白酶中相当于在解淀粉芽孢杆菌枯草杆菌蛋白酶中+123位上的氨基酸残基离体诱变产生具有经过改变的高于枯草杆菌蛋白酶前体的蛋白水解活性。
本申请还公开了在羰基水解酶枯草杆菌蛋白酶中在相当于解淀粉芽孢杆菌枯草杆菌蛋白酶的+274位残基上的离体诱变产生了具有改进的稳定性(例如经过改进的蛋白自水解稳定性)的枯草杆菌蛋白酶突变体。在若干实例中,当将这些突变体用于洗涤剂组合物时还具有更好的性能。
羰基水解酶是水解含有

键化合物的酶(其中X是氧或氮)。它们包括天然羰基水解酶和重组羰基水解酶。天然羰基水解酶基本上包括水解酶,例如肽水解酶(如枯草杆菌蛋白酶或含金属蛋白水解酶)。肽水解酶包括α-氨酰肽水解酶、肽基氨基酸水解酶、酰氨基水解酶、丝氨酸羧肽酶、含金属羧肽酶、硫醇蛋白酶、羧肽酶和含金属蛋白酶。还包括丝氨酸、金属硫醇和酸的蛋白酶以及蛋白内切酶和蛋白外切酶。
“重组羰基水解酶”系指编码天然羰基水解酶的DNA顺序经过修饰、用于产生能编码羰基水解酶氨基酸顺序中取代、插入或缺失1个或多个氨基酸的突变体DNA顺序的羰基水解酶。本文公开了适合的修饰方法,1985年1月9日发表的EPO专利0130756号和1988年1月7日发表的EPO专利0251446号也均已公开了该方法。
枯草杆菌蛋白酶是细菌或真菌羰基水解酶,一般说来,其作用在于裂解蛋白质或肽的肽键。本发明中所用的“枯草杆菌蛋白酶”系指天然枯草杆菌蛋白酶或重组枯草杆菌蛋白酶。已知通过各种微生物产生和经常分泌出许多天然的枯草杆菌蛋白酶,其中有些酶的氨基酸顺序不完全是同源的。但是其中的枯草杆菌蛋白酶具有相同或相似类型的蛋白水解活性。这类的丝氨酸蛋白酶具有限定催化三分体的共同的氨基酸顺序,而该三分体使丝氨酸蛋白酶和与其相关的糜蛋白酶区分开来。与丝氨酸蛋白酶有关的枯草杆菌蛋白酶和糜蛋白酶都具有含天冬氨酸、组氨酸和丝氨酸的催化三分体。在与蛋白酶有关的枯草杆菌蛋白酶中,上述氨基酸的相对顺序,从N端至C端为天冬氨酸-组氨酸-丝氨酸。但在与蛋白酶有关的糜蛋白酶中,其相对顺序为组氨酸-天冬氨酸-丝氨酸。因此,本文所述的枯草杆菌蛋白酶系指具有与蛋白酶有关的枯草杆菌蛋白酶的催化三分体的丝氨酸蛋白酶。例子包括本文图3给出的和在PCT专利WO89/06276号和EPO专利申请0283075号所述的各种枯草杆菌丝氨酸。
“重组枯草杆菌蛋白酶”系指编码枯草杆菌蛋白酶的DNA顺序经过修饰、用于产生能编码天然枯草杆菌蛋白酶氨基酸顺序中取代、缺失或插入1个或多个氨基酸的突变体DNA顺序的枯草杆菌蛋白酶。产生这种修饰并可与本文所述方法相结合的适宜方法包括EPO专利-130756和0251446以及PCT专利WO89/06279、WO89/09830和WO89/09819中所公开的方法。
“非人羰基水解酶”和编码该酶的DNA可从许多真核生物和原核生物中得到。原核生物适宜的例子包括革兰氏阴性生物(如大肠杆菌或假单胞菌)和革兰氏阳性细菌(例如小球菌或芽孢杆菌)。可得到羰基水解酶及其基因的真核生物的例子包括酵母(例如啤酒酵母)、真菌(曲霉sp.)和非人的哺乳动物(例如牛sp.)并由其得到编码羰基水解酶糜蛋白酶的基因。作为枯草杆菌蛋白酶,许多羰基水解酶都可从各种相关种的生物中得到,它们具有的氨基酸顺序并非完全同源,但却具有相同或相似类型的生物活性。因此,用于本发明的非人羰基水解酶具有的功能定义,都涉及间接或直接地与原核生物和真核生物相联系的羰基水解酶。
“羰基水解酶突变体”具有由“羰基水解酶前体”的氨基酸顺序得到的氨基酸顺序。该羰基水解酶前体包括天然羰基水解酶和重组羰基水解酶。羰基水解酶突变体的氨基酸顺序是由前体水解酶氨基酸顺序通过取代、缺失或插入1个或多个前体氨基酸顺序的氨基酸“得到”的。与其使用前体羰基水解酶本身,还不如对编码前体羰基水解酶的氨基酸顺序的“前体DNA顺序”进行上述修饰。使用前体DNA顺序的适宜方法包括本文和EPO专利0130756及0251446中公开的各种方法。
相当于解淀粉芽孢杆菌枯草杆菌蛋白酶的+123位和+274位的特定残基在本发明中被用于取代。这些氨基酸位数可参阅图1中的成熟的解淀粉芽孢杆菌枯草杆菌蛋白酶顺序。然而本发明并不限于该具体的枯草杆菌蛋白酶的诱变,而可引伸到含有“相当于”解淀粉芽孢杆菌枯草杆菌蛋白酶中已确认的残基位上的氨基酸残基的羰基水解酶前体。
如果前体羰基水解酶的残基(氨基酸)是同等的(即在一级或三级结构的位上相对应)或类似于解淀粉芽孢芽菌枯草杆菌蛋白酶中的特定残基或该残基的一部分(即具有能在化学上结合、反应或相互作用的相同或相似的功能),那么它就相当于解淀粉芽孢杆菌枯草杆菌蛋白酶的残基。
为了建立相同的一级结构,将前体羰基水解酶的氨基酸顺序直接与解淀粉芽孢杆菌枯草杆菌蛋白酶一级顺序,特别是已知顺序的所有枯草杆菌蛋白酶的变体的一组残基(图2)进行对比。在将保守残基排列后,为保持该排列可以进行必要的插入和缺失(即避免由于任意的缺失和插入而引起保守残基的缺失),应限定相当于解淀粉芽孢杆菌枯草杆菌蛋白酶一级顺序中的具体氨基酸的残基。保守残基的排列最好保持100%的这类残基。但是,大于75%或小至50%保守残基的排列也适合于限定相应的残基。还应保持催化三分体Asp32/His64/Ser221。
例如图3所示,将由解淀粉芽孢杆菌、枯草杆菌var I168和地衣形芽孢杆菌(carlsbergensis)中的枯草杆菌蛋白酶的氨基酸顺序排列后,可提供氨基酸顺序之间最大量的同等性。这些氨基酸顺序的对比证明,每个顺序都含有大量保守残基,即图2中所确定的残基。
因此,这些保守残基可用于限定相应于诸如粘性芽孢杆菌中的枯草杆菌蛋白酶的其他羰基水解酶和本发明所用的较佳枯草杆菌蛋白酶突变体中与解淀粉芽孢杆菌枯草杆菌蛋白酶相等的氨基酸残基(PCT专利WO89/06279,公开于1989年7月13日)。这些特定的氨基酸顺序的排列示于图4,该解淀粉芽孢杆菌枯草杆菌蛋白酶的顺序用于产生最高等同性的保守残基。由其可以看到,与解淀粉芽孢杆菌枯草杆菌蛋白酶相比较,在粘性芽孢杆菌的顺序和本发明较佳的枯草杆菌蛋白酶突变体中存在大量缺失。因此,在其他的枯草杆菌蛋白酶中,与解淀粉芽孢杆菌枯草杆菌蛋白酶中Val-165相等的氨基酸是示于Val-165下面的特定的异亮氨酸。
在图4中,123位上的氨基酸是解淀粉芽孢杆菌枯草杆菌蛋白酶中的天冬酰胺。在粘性芽孢杆菌枯草杆菌蛋白酶中,相等的残基是所示特定的天冬酰胺。但是,在本发明较佳的枯草杆菌蛋白酶突变体中,相等于解淀粉芽孢杆菌枯草杆菌蛋白酶中的+123位的氨基酸是另一个氨基酸,而不是天冬酰胺,最好是图4所示的丝氨酸。与此相类似的是图4所示的在解淀粉芽孢杆菌枯草杆菌蛋白酶中+274位上的氨基酸是丙氨酸。由此可见,粘性芽孢杆菌枯草杆菌蛋白酶中相等的氨基酸是图4所示特定的苏氨酸。在本发明特定的较佳枯草杆菌蛋白酶突变体中,274位上相等的氨基酸是图4所示的丙氨酸。
因此,在+123和+274位上的由图4所示的是粘性芽孢杆菌和本发明较佳实施例中的枯草杆菌蛋白酶的一级氨基酸顺序。但是其他各种氨基酸残基也可以修饰,它们相等于解淀粉芽孢杆菌枯草杆菌蛋白酶中的特定氨基酸。因此,在较佳的实施例中,在解淀粉芽孢杆菌枯草杆菌蛋白酶中27位的赖氨酸具有在粘性芽孢杆菌枯草杆菌蛋白酶中27位上相等的赖氨酸。正如实施例所述,含有本发明较佳实施例之一的枯草杆菌蛋白酶是通过修饰编码粘性芽孢杆菌枯草杆菌蛋白酶的DNA顺序得到的。上述修饰DNA包括相当于解淀粉芽孢杆菌枯草杆菌蛋白酶中的123和274位上密码子的修饰。但是其他两个修饰则是对在相当于解淀粉芽孢杆菌枯草杆菌蛋白酶的残基27和104位上粘性芽孢杆菌氨基酸顺序的修饰。如图4所示,将粘性芽孢杆菌枯草杆菌蛋白酶中相等的残基27上的赖氨酸修饰为编码较佳实施例中的精氨酸。与此相类似的是将相当于解淀粉芽孢杆菌枯草杆菌蛋白酶中的酪氨酸104的粘性芽孢杆菌104位上的缬氨酸残基也被修饰为编码酪氨酸。因此,图4所示的较佳实施例含有由粘性芽孢杆菌枯草杆菌蛋白酶衍生的氨基酸顺序,它是通过修饰相当于解淀粉芽孢杆菌枯草杆菌蛋白酶27、104、123和274位上枯草杆菌蛋白酶的残基得到的。
相等的残基也可通过测定前体羰基水解酶三级结构的同等性予以确定,而其三级结构已用X射线结晶测定法测定。相等残基的定义为在排列后,前体羰基水解酶和解淀粉芽孢杆菌枯草杆菌蛋白酶的特定氨基酸残基的一个或多个主链原子的原子配位(N-N,CA-CA,C-C,和O-O)是在0.13nm内,尤以0.1nm为佳。在将最佳模型定向定位后获得的排列,可以就所讨论的解淀粉芽孢杆菌枯草杆菌蛋白酶的羰基水解酶非氢蛋白原子的原子配位达到最大的重叠。所述最佳模型系指在可用的最高分辨率下,试验衍射数据的最低R因子限定的结晶学模型。
R因子= (Σh|FO(h)|-|FC(h)|)/(Σh|FO(h)|)功能类似于解淀粉芽孢杆菌枯草杆菌蛋白酶特定残基的相等残基的定义为可以采用一种结构,由解淀粉芽孢杆菌枯草杆菌蛋白酶特定残基产生并对其进行适当限定,从而对它们进行改变、修饰或影响蛋白质结构、底物结合或催化。此外,它们是前体羰基水解酶的这样一类的残基(其三级结构已通过X射线结晶方法得到),即其所具有的位置类似于至少残基的2个侧链原子的原子配位是在解淀粉芽孢杆菌枯草杆菌蛋白酶相应侧链原子的0.13nm,尽管根据所具有等同位置,给定残基的主链原子可以不满足等同物的标准。解淀粉芽孢杆菌枯草杆菌蛋白酶的三维结构的配位已在EPO专利0251446给出,并且可以按如上所述,用于测定三级结构的等同残基。
用于取代、插入或缺失的一些残基系保守残基,而其他一些则系非保守残基。在非保守残基的情况下,一个或多个氨基酸的取代限制于能产生具有与天然氨基酸顺序不对应的氨基酸顺序的突变体,这种取代不应导致天然存在的顺序。本发明的羰基水解酶突变体包括成熟形式羰基水解酶突变体和前形式和早前形式的这类水解酶突变体。早前形式是一种较佳结构,因为它能促使羰基水解酶突变体的表达、分泌和成熟。
“前顺序”系指与成熟形式的羰基水解酶的N端部分相结合的氨基酸顺序,并且在除去时产生“成熟”形式的羰基水解酶。在自然界中已经发现许多蛋白水解酶,它们是转译原酶产物,并且在转译后不进行处理时,以这种方式表达。产生羰基水解酶突变体,特别是枯草杆菌蛋白酶突变体的较佳前顺序是解淀粉芽孢杆菌枯草杆菌蛋白酶的前顺序,虽然也可使用其他的枯草杆菌蛋白酶的前顺序。在实施例中也使用了粘性芽孢杆菌(ATCC21536)中枯草杆菌蛋白酶的前顺序。
“信号顺序”或“先顺序”系指与羰基水解酶的N端部分或与可参予成熟水解酶或前形式水解酶分泌的原水解酶的N端部分相结合的任何氨基酸顺序。这个信号顺序的定义是一种功能性定义,意味着包括在天然条件下由枯草杆菌蛋白酶基因或参予枯草杆菌蛋白酶或其他羰基水解酶分泌的其他能分泌羰基水解酶的N端编码的所有这些氨基酸顺序。本发明利用的这类顺序都能有效地分泌如本文所定义的羰基水解酶突变体。用于实施例中的较佳信号顺序包括枯草杆菌的枯草杆菌蛋白酶信号顺序的前7个氨基酸残基与之相融合的粘性芽孢杆菌(ATCC21536)的枯草杆菌蛋白酶信号顺序的其余氨基酸残基。
“先前”形式的羰基水解酶突变体由具有可与水解酶氨基端控制连接的前顺序和可与前顺序氨基端控制连接的“前”或“信号”顺序的成熟形式的水解酶组成。
“表达载体”系指含有可与能使DNA在适合的宿主中表达的适宜的控制顺序控制连接的DNA顺序的DNA结构。所述控制顺序包括能进行转录的启动区、控制该转录的操纵子顺序、编码适合的mRNA核糖结合位点的顺序和控制转录和转译末端的顺序。载体可以是质粒、噬菌体颗粒或只是可能的基因组的插入。一旦转化到适合的宿主中时,载体可以复制并且独自起着宿主基因组的作用,在有些实施例中,还可以整合到基因组中。在本文中,“质粒”和“载体”有时可相互换用,而在目前质粒是一种最广泛使用的一种载体。但是本发明还可引伸为包括具有相同功能并且在本领域中系已知或可知的其他形式的表达载体。
本发明所用的“宿主细胞”是原核或真核宿主,它们最好能采用EPO专利0130756号中已公开的方法进行操作,使其成为不能分泌具有酶活性的内蛋白酶。表达枯草杆菌蛋白酶的较佳宿主细胞是缺乏具有酶活性的中性蛋白酶和碱性蛋白酶(枯草杆菌蛋白酶)的杆菌(Bacillus)株BG2036。菌株BG2036的构建在EPO专利0130756中已作了详细介绍,而且Yang,M.Y.等(J.Bacteriol.,160,15-21,1984)又作了进一步的介绍。表达枯草杆菌蛋白酶的其他宿主细胞包括枯草杆菌I168(EPO专利0130756号)。
使用由重组DNA技术构建的载体转化或转染宿主细胞,经过转化的这类宿主细胞能复制编码羰基水解酶突变体和表达所需的羰基水解酶突变体。在编码先或先前形式的羰基水解酶突变体的载体的情况下,这类突变体在被表达时,一般都由宿主细胞分泌到宿主细胞培养基中。
“控制连接”系在描述两个DNA区之间关系时仅意味着它们在功能上彼此相关。例如先顺序如果起着信号顺序的功能作用并参予最好包括信号顺序的裂解的成熟形式的蛋白质的分泌,则可与肽控制连接启动区如果控制顺序的转录,则可与编码顺序控制连接核糖体结合位点如果定位进行转译,则可与编码顺序控制连接。
编码天然的前体羰基水解酶的基因可按EPO专利0130756和0251446所述的一般方法获得。由本文中的实施例可见,所述方法一般包括合成具有有意义的水解酶顺序编码区的标记探针,由表达水解酶的有机体制备基因库,和通过与探针的杂交筛选有意义基因的基因库。然后绘制杂交克隆的基因图和编制其顺序。
然后将经过克隆的羰基水解酶用于转化宿主细胞,供以表达水解酶。将水解酶基因连接到高拷贝数的质粒中。该质粒在宿主中进行复制,其意义就在于它含有质粒复制所需的公众已知的成份可与基因连接的启动区(如其可为宿主识别即转录,则提供作为基因的等同启动区);转录终止区和多聚腺核苷酸化区(系稳定由宿主从某些真核宿主细胞水解酶基因转录mRNA所需),后者由外源得到或由水解酶基因的内源终止区提供;需要时还可含有如抗菌素的抗性基因一类的选择基因,能使由含抗菌素培养基培养的经质粒感染的宿主细胞保持连续培养。高拷贝数质粒还含有复制宿主的起始物,从而能在不受染色体限制的细胞质中产生大量的质粒。但是,属于本发明范围的还有将水解酶基因的多重拷贝整合到宿主基因组中。它们可通过对同源重组特别敏感的原核和真核有机体产生。
此外,还可产生编码天然的或突变的前体羰基水解酶的合成基因。其所采用的方法是确定前体水解酶的DNA和/或氨基酸的顺序。并联后对重叠的合成单链DNA片段进行合成,通过杂交和连接,产生编码前体水解酶的合成DNA。此方法与克隆天然基因相比具有若干优点,采用此方法,限制性位点可以整个插入到DNA中,而无需改变编码的氨基酸顺序,然后通过修饰形成突变体羰基水解酶。此外,合成方法还可调整密码子在合成基因中的应用,从而与所用具体表达宿主的密码子偏倚相一致。
当天然的或合成的前体羰基水解酶基因被克隆后,大量的修饰使基因的使用超过天然的前体羰基水解酶的合成。这类修饰包括如EPO专利0130756和0251446中所述重组羰基水解酶和本文所述羰基水解酶突变体的产生方法。
以下盒式诱变方法可用于构建和鉴别本发明的羰基水解酶突变体,尽管包括定位诱变在内的其他方法也可使用。首先,要得到编码水解酶的天然基因,并进行全部或部分的编排顺序。然后对该顺序找出所需的位点,对编码的酶中1个或多个氨基酸进行诱变(缺失、插入或取代)。鉴定在该点两侧的顺序是否存在用寡核苷酸库取代基因短片段的限制性位点,该寡核苷酸库被表达时可编码各种突变体。这类限制性位点最好是在水解酶基因内的单一位点,能够取代基因片段。但是在水解酶基因中并非过份冗余的任何适宜的限制性位点都可使用,只要由限制性消化所产生的基因片段能够重新组合到原来的顺序中。如果限制性位点不是在距所选择点的范围内(10-15个核苷酸),那么这种位点是由取代基因中的核苷酸所产生的,其读码和编码的氨基酸在最终结构中都不发生变化。为了使其顺序变为与所需顺序相一致,根据通常所知的方法,基因的诱变可通过延长M13的引物来完成。适宜的侧翼区的定位和获得两个适宜的限制性位点顺序所需变化的确定,通过遗传密码的多重性、基因的限制酶谱图和大量不同的限制酶等方法可解决这些问题。应予注意的是,如果获得一个适宜的侧翼限制性位点,那末上述方法必须仅与不含位点的侧翼区结合使用。
当天然的DNA或合成的DNA被克隆后,需被诱变两侧的限制性位点可用近亲限制酶消化,并将许多终端的末端互补寡核苷酸盒连接到基因上。采用此方法诱变异常简单,因为所有寡核苷酸都能合成为具有相同限制性位点,并且不需要用合成的连接子去建立限制性位点。
本文所述的蛋白水解活性被定义为每毫克活性酶水解肽键的速率。许多已知的方法都可用于测量蛋白水解活性(K.M.Kalisz,.“Microbial Proteinases”,Advances in Biochemical Engineering/Biotechnology,A.Fiechter ed.,1988)。
本发明的目的在于与前体羰基水解酶相比,能获得具有较高蛋白水解活性的突变体羰基水解酶,从而能使酶更有效地作用于靶底物。在实施例中,给出了在相当于解淀粉芽孢杆菌枯草杆菌蛋白酶+123位残基上得到产生枯草杆菌蛋白酶型的羰基水解酶所用的特定氨基酸。在若干实施例中,也可获得蛋白水解活性较底的蛋白水解酶。在这种情况下,可在相当于解淀粉芽孢杆菌枯草杆菌蛋白酶+123位残基上取代实施例中所用氨基酸,即可降低蛋白水解活性。
关于前体枯草杆菌蛋白酶,其中丝氨酸并不是相当于解淀粉芽孢杆菌+123位上的残基,当前体的+123位上丝氨酸被取代时,即可获得最大的蛋白水解活性。此外,已知非天然的枯草杆菌蛋白酶在相当于解淀粉芽孢杆菌的+123上含有丝氨酸。已知在该位上的丝氨酸能提高蛋白水解活性,本领域专业人员能够筛选出天然杆菌中的枯草杆菌蛋白酶,以便鉴别和克隆含有在该位上的丝氨酸的天然突变体。这种天然杆菌中的枯草杆菌蛋白酶突变体也属本发明的范围。
如羰基水解酶由非杆菌得到,而丝氨酸则在前体酶的+123位,则取代可以是一种减低蛋白水解活性的取代。这种方法应是有用的,例如需要羰基水解酶的合成活性(例如用于合成肽)时,就可使用这种方法。人们需要降低这种蛋白水解的活性,它能破坏这种合成的产物。
本发明的另一个任务在于确定,相当于解淀粉芽孢杆菌的枯草杆菌蛋白酶中+274上的残基在调节酶在洗涤剂组合物中全部性能特征方面的重要意义。因此,如本文实施例所述,在相当于+274位上的粘性芽孢杆菌的枯草杆菌蛋白酶中的苏氨酸,诱变为最佳实施例中的丙氨酸,从而产生高性能的突变体酶。如实施例中所示,用除苏氨酸以外的氨基酸,如亮氨酸、丝氨酸、缬氨酸和丙氨酸取代该残基,从而降低突变体的稳定性。这种稳定性的降低被认为是突变体自催化降解的结果。因此,相当于杆菌的枯草杆菌蛋白酶+274位残基的修饰能够提高酶在洗涤剂组合物中整个性能并调节酶的整个稳定性。本发明在这方面的任务在于当突变体羰基水解酶用于洗涤剂组合物时,获得具有高于前体羰基水解酶的性能。如本文中所述,洗涤剂中的高性能,其定义为提高某些酶敏感的颜色如禾本科植物或血液的洗净程度,其洗净程度是在经过常规洗涤周期后通过目测确定。
在实施例中给出了本发明的最佳实施例,其中在粘性芽孢杆菌枯草杆菌蛋白酶27位上的赖氨酸被精氨酸取代,104位上的缬氨酸被酪氨酸取代,123位上的天冬酰胺被丝氨酸取代,274位上的苏氨酸被丙氨酸取代。虽然这种酶的稳定性有时低于前体粘性芽孢杆菌的枯草杆菌蛋白酶,但是在洗涤剂组合物中该酶的性能水平基本上提高了,与未修饰的粘性芽孢杆菌的枯草杆菌蛋白酶相比较,该粘性芽孢杆菌的枯草杆菌蛋白酶变体在使用一半量时,性能却完全相同。
根据用该种或其他突变体枯草杆菌蛋白酶得到的结果,显然相当于解淀粉芽孢杆菌+123和+274位上的羰基水解酶中的残基对于这些酶的蛋白水解活性、性能和/或稳定性来说具有重要的意义。
本发明的许多羰基水解酶突变体,尤其是枯草杆菌蛋白酶,都可用于配制各种不同的洗涤剂组合物。大量已知化合物都适宜用于含本发明羰基水解酶突变体的组合物中的表面活性剂,包括如US-4404128(Barry J.Anderson)和US-4261868(Jiri Flora等)等专利中所公开的非离子的、阴离子的、阳离子的或两性离子的洗涤剂。本领域非常熟悉能用作洗涤剂组合物的各种不同的配制剂。本发明的枯草杆菌蛋白酶能够配制成约为0.01-5%(重量)(尤以0.1-0.05%为佳)、pH为6.5-12.0的已知粉末和液体的洗涤剂。上述洗涤剂还可包括其他酶,例如已知的蛋白酶和淀粉酶,以及助洗剂和稳定剂。
本发明的枯草杆菌蛋白酶加到常规清洁剂组合物时并不需要特别的使用限制。换言之,任何适合于洗涤剂的温度和pH也适合于本发明的组合物,只要pH是在上述范围内,而温度则在本发明枯草杆菌蛋白酶变性温度之下。此外,本发明的枯草杆菌蛋白酶还可用于不含洗涤剂的清洁剂组合物,而且既可单独使用,也可与助洗剂和稳定剂结合使用。
以下实施例只是说明本发明而不限制要求保护的范围。
实施例1在枯草杆菌蛋白酶中表达粘性芽孢杆菌枯草杆菌蛋白酶基因的构建通过在枯草杆菌和解淀粉芽孢杆菌的枯草杆菌蛋白酶基因第7-8信号顺序密码子上共同的Sau3A限制位点,质粒pSAR(图5)含有转译融合。如图5所示,将EcoRⅠ-BamHⅠ 2.0Kb片段上的该基因亚克隆到M13mp19中,分离出用于定点诱变的单链模板DNA,形成pSAR-Q275R。诱变方法基本上按Zoller,M.等人所述方法(Methods Enzymol.,1983,100,468-500)(1),并使用下列顺序的合成寡核苷酸

顺序中*号表表示变自野生型基因顺序,底线表示引入用于筛选编码Q275R转换的特定的突变体基因的PstⅠ核酸内切限制酶位点。这些改变可使(1)将该位上的氨基酸转化为由粘性芽孢杆菌枯草杆菌蛋白酶中得到的氨基酸;(2)使pSAR终止区的挂钩通过类似引入到粘性芽孢杆菌(ATCC 21536)中的pGG36的Pst位点挂联到粘性芽孢杆菌的成熟编码区。
质粒pGG36(图5)含有编码完全枯草杆菌蛋白酶基因的粘性芽孢杆菌(ATCC 21536)的2.1Kb基因组片段,该枯草杆菌蛋白酶基因是按常规方法用往复式载体pBS42克隆得到的(Band,L.,et al.,1984,DNA,3,17-21)。
用于该枯草杆菌蛋白酶的氨基酸顺序与PCT专利89/06279所公开的用于枯草杆菌蛋白酶309的氨基酸顺序相同。按上述定点诱变方法和使用下列顺序的寡核苷酸,将该基因亚克隆到M13中

以便1)将相应于被引入位点的该基因中相同位置上的PstⅠ位点引入到上述的pSAR中;2)用丙氨酸取代274位上的苏氨酸,构成pGG36-T274A。
在PatⅠ/BamHⅠ消化、片段分离和连接前,先将突变体pSAR-Q275R和pGG36-T274A基因再分别亚克隆到pBS42中,产生质粒GG-A274B,amy.term,(如图5所示),所采用的方法均为常规方法。
合成DNA连接物可通过下列顺序的互补单链寡核苷酸的对合制取

得到图6所示双链DNA片段#2。该复式结构连接物左右凹入两端分别互补于pSAR的片段#1的San3A端和pGG-A274 B.amy.term的片段#3的ClaⅠ端。这3个片段在通过常规方法进行质粒的核酸内切限制酶消化、片段分离和连接后,与pSAR-Q275R的片段4结合,产生质粒pGG-KVNA。消化GG-KVNA表明该枯草杆菌蛋白酶含有由pGG-36编码的枯草杆菌蛋白酶,其包括27位上的赖氨酸(K)、104位上的缬氨酸(V)、123位上的天冬酰胺(N)和在274位上用丙氨酸取代苏氨酸(A)。
实施例2pGG-KNVA的修饰如图6所示,使用具有下列顺序的寡核苷酸,将GG-KVNA基因(2.1KbEcoRⅠ-BamHⅠ片段)亚克隆到定点诱变的3个连续圆圈的M13中


*号表示变自野生型基因顺序,底线表示(a)引入的XbaⅠ位点,(b)和(c)分别表示用于筛选连接的R27、Y104和S123诱变是否存在被引入的NheⅠ位点。此外,(c)中的顶线表示被破坏的SphⅠ位点。最后,再将2.1Kb GG-RYSA基因亚克隆到pBS42,用于在枯草杆菌宿主中的表达。
形成的质粒称之为pGG-RYSA。该命名表明在pGG-KVNA质粒中有4个残基被修饰。27位上的赖氨酸(K)被修饰为天冬酰胺(R),104位上缬氨酸(V)被修饰为酪氨酸(Y),123位上的天冬酰胺(N)被修饰为丝氨酸(S)。上述274位上的残基被取代的丙氨酸在本方法中未被修饰。
根据枯草杆菌蛋白酶309的氨基酸顺序,27位上的赖氨酸被精氨酸取代。如PCT专利WO89/06279号所示,赖氨酸位于27位上。但是在将该枯草杆菌蛋白酶蛋白独自编顺序后,起始数据证明,在27位上的残基是精氨酸。在104位酪氨酸取代缬氨酸的情况下,根据上面获得的关于解淀粉芽孢杆菌的枯草杆菌蛋白酶(有时用BPN′表示)的结果,这种取代降低了酶的pH构型,提高了酶的性能。根据以下得到的结果,在123位上丝氨酸取代了天冬酰胺,其中测定表明,123位上丝氨酸的取代将酶在最相关的突变体中的蛋白水解活性增至最大程度。
实施例3合成的粘性芽孢杆菌枯草杆菌蛋白酶基因的构建编码粘性芽孢杆菌的枯草杆菌蛋白酶氨基酸顺序的DNA也是通过构建编码合成DNA顺序的基因进行制备的。
将质粒pGG36的2.1Kb HindⅢ基因组片段编顺序。所得成熟的基因产物(GG36枯草杆菌蛋白酶)用于设计具有下列特性的合成成熟编码顺序(1)一般说来,除了在基因中按常规固定的限制酶识别位点所产生的更替密码子外,可利用7个不同枯草杆菌基因(由密码子使用表中得到,参阅Maruyama,T.,et al.所制的表2,发表在Nucl.Acids Res.,Supplement 14 pp,151-197)中每个氨基酸最常见的密码子;(2)约在-0.8成熟编码区每40-60bp,将经过专门选择的2或3个密码子结合在一起,引入间隔非常均匀的各单个限制位点,选择这些位点能够(a)进行以后的盒式诱变和筛选研究;(b)构建1个以上的诱变;(3)设1个PstⅠ识别位点,使之包括272-274密码子,能挂钩到用3个相同的密码子经过类似修饰的解淀粉芽孢杆菌基因的终止区顺序上,并且丙氨酸取代274位上的酪氨酸;(4)引入1个NruⅠ位点,包括成熟密码子残基9-11,用短合成双链DNA连接物使之挂钩到GG36的先、前编码顺序上。根据该设计合成寡核苷酸,使之通过对接到给出的-60bp编码区的编码和非编码的寡核苷酸,在生成的双链DNA片段的末端具有互补于另一个基因的复体片段末端的单链区(参阅图7)。
将总共36个单独的寡核苷酸(包含18个复体)用于如上所述的构建,从而得到-0.8Kb复体合成成熟编码区(图8中片段3)。
最后,再合成一对或合成的寡核苷酸,通过对接(图8给出的片段2),在其5′端具有NcoⅠ位点(互补于成熟密码子5-6上的GG36的NcoⅠ位点)和在其3′端上具有NruⅠ位点(互补于片段3的3′端的5′端)。
最终构建得到完整的表达单位,含有枯草杆菌启动区和挂钩在编码信号顺序其余部分的GG36顺序上的信号顺序前7个氨基酸、完整的前顺序和前6个成熟氨基酸(GG-KVNA的片段1),编码解淀粉芽孢杆菌的成熟残基7-274(片段2+3)和终止区(包括最终成熟基因密码子279)(片段4)的合成基因按4条渠道进行连接(如图6所示)。
最后,将另3个单独的突变引入该全长杂交基因的成熟编码区。其中,第一个由精氨酸取代27位上的赖氨酸,第二个由酪氨酸取代104位上的缬氨酸,第三个由丝氨酸取代123位上的天冬酰胺。生成的质粒称之为pBC3-RYSA。下一个实施例将介绍修饰合成基因中123位所使用的方法。类似的方法还用于修饰合成基因中的27位和104位。
实施例4123位上突变体的构建采用定点诱变进行3个表型同义突变,在实施例3的合成基因111/112密码子上引入XhoⅠ位点(M13中的引物延长诱变)。形成的质粒pX123(图9)用XhoⅠ和AvaⅠ和由琼脂糖凝胶电泳洗脱分离得到含载体大片段进行消化。将互补合成寡核苷酸对接,并用pX123大片段连接后,转移到大肠杆菌株MM294中。这些盒编码123位上20个氨基酸,此外还含有1个破坏pX123中XhoⅠ位点之间的单个SphⅠ位点的同义突变。由大肠杆菌转化株形成的质粒用于筛选缺失单个的SphⅠ位点。按限制分析得正的(即SphⅠ为负的)编顺序,确定被亚克隆到往复性载体pBS42中所需123位突变是否存在,并转移到枯草杆菌BG2036中进行表达。
实施例5各种+123突变体的活性由上述经过修饰的+123位突变体编码的各个枯草杆菌蛋白酶的蛋白水解活性的测定方法是将0.04ml经过离心的培养液上清液与0.56ml1%(W/V)酪蛋白的0.1M Tris溶液(pH8.60)相混合,在37℃温育20分钟后,用10%三氯乙酸(TCA)沉淀使反应骤冷。在波长280nm处,由10%TCA沉淀后的上清液的吸光率测定活性。
表Ⅰ各种正常的123密码子与Asn-123突变体的相对蛋白水解活性密码子123 蛋白水解活性(%)Ser 116Asn 100Cys 22Gly 12Ala 9Thr 7Gln 7Val 6Glu <5Ile <5Trp <5Phe <5Asp <5His <5Leu <5Met <5Pro <5Tyr <5在最终确认编码酶BC3-RYSA的合成基因的DNA顺序的方法中,发现在78位上是脯氨酸而不是丝氨酸(粘性芽孢杆菌的枯草杆菌蛋白酶在该位上的氨基酸)。对该BC3-RPYA酶(在78位上是脯氨酸)测定其123位上突变的起始特性。结果示于表Ⅰ。然后通过在基因的对应位置取代合成的DNA复体,将78位上的氨基酸改为丝氨酸,形成图10所示的DNA和氨基酸顺序。
还可看到,在+123位上用Ser取代Asn,基本上提高了蛋白水解的活性。本文讨论的各种枯草杆菌蛋白酶在27、78、104、123和274位上相互间的关系概括示于表Ⅱ。
表Ⅱ27 78 104123274GG36(基因组)Lys(K) Ser(S) Val(V) Asn(N) Thr(T)合成的粘性芽孢杆菌基因Lys(K) Pro(P) Val(V) Asn(N) Ala(A)解淀粉芽孢杆菌Lys(K) Ser(S) Tyr(Y) Asn(N) Ala(A)枯草杆菌蛋白酶(BPN)巳公开的枯草杆菌 Arg(R) Ser(S) Val(V) Asn(N) Thr(T)蛋白酶309本发明的最佳实施例Arg(R) Ser(S) Tyr(Y) Ser(S) Ala(A)实施例6274位上突变体的稳定性BC3-RPY(在粘性芽孢杆菌的枯草杆菌蛋白酶中,27位上精氨酸,78位上脯氨酸,104位上酪氨酸)274位突变体的稳定性示于表Ⅲ,所列数据是在37℃下于50mM EDTA中温育60分钟后保持的活性百分率。
表Ⅲ在274位上的氨基酸 活性(%)亮氨酸 2%丝氨酸 79%苏氨酸 91%缬氨酸 42%丙氨酸 43%
该位上的突变清楚地说明对酶的稳定性是有效的。虽然该位上丙氨酸的突变不如丝氨酸或苏氨酸那样稳定,但是在所述使用条件下,相对粘性芽孢杆菌的枯草杆菌蛋白酶而言,该酶提供了良好的性能。在274位上的其他氨基酸也可有各种不同的用途。
实施例7洗涤剂组合物制备了下列组合物的喷雾干燥颗粒磷酸盐洗涤剂。
组分 重量百分比线性烷基苯磺酸钠C12 8.45牛脂醇硫酸钠 4.23线性烷基硫酸钠C14″15 4.23甲苯磺酸钠 1.00三磷酸钠 5.60焦磷酸钠 22.40硅酸盐(1.6r) 5.50硫酸钠 29.83聚丙烯酸钠(4500MW) 1.17增白剂 0.22碳酸钠 12.30聚乙二醇(MW8000) 0.47C12″13聚乙氧基醇(6.5)* 0.50溶剂油+水 加至100%蛋白酶 0.034*除去乙醇和单乙氧基醇。
**mg活性酶/g(2.0mg活性酶/g原料)。
0.1%(重量)组合物的水溶液的pH为10.0。含有本发明枯草杆菌蛋白酶突变体(图7)的组合物与0.068mg活性酶/g产物的粘性芽孢杆菌,分别于95°F(35℃)和每加仓6格令(gpg)硬性(3∶1 Ca/Mg)下进行洗涤对比,则本发明组合物对酶敏感的颜色提供了良好的洗涤效果。
整个使用都涉及由共同的1个字母和3个字母的密码表示各种氨基酸。这种密码在“Protein;Structures and Molecular Proteases”(Thomas E.Creighton,eds.W.N.Freeman,N.Y.N.Y.,1983,p.3)-书中已被确定使用。
虽然以上已对本发明的最佳形式作了介绍,但是很明显,本领域的专业人员在理解了本发明以后,在不脱离所附权利要求书限定的本发明范围的情况下,可以对本发明进行全部的、不同的修饰和等效改进。
所有出版物均以参考文献列入本申请文件中。
权利要求
1.具有自然界中尚未发现的氨基酸顺序的羰基水解酶突变体,该氨基酸顺序由前体羰基水解酶通过取代所述前体中相当于解淀粉芽孢杆菌枯草杆菌蛋白酶+123或+274位上氨基酸残基的不同氨基酸得到的。
2.按权利要求1的羰基水解酶突变体,其中所述前体羰基水解酶是枯草杆菌蛋白酶。
3.按权利要求2的枯草杆菌蛋白酶突变体,其中所述取代是在相当于+123位上进行的。
4.按权利要求3的枯草杆菌蛋白酶,其中在所述位上的该枯草杆菌蛋白酶突变体中的氨基酸残基是丝氨酸。
5.按权利要求2的枯草杆菌蛋白酶突变体,其是由杆菌的枯草杆菌蛋白酶得到的。
6.具有高蛋白水解活性的突变体杆菌枯草杆菌蛋白酶,其由天然的或突变前体杆菌枯草杆菌蛋白酶得到,该蛋白酶在相当于解淀粉芽孢杆菌枯草杆菌蛋白酶的+123位上具有被改为丝氨酸的氨基酸残基。
7.在相当于解淀粉芽孢杆菌枯草杆菌蛋白酶的+123位上具有丝氨酸的杆菌枯草杆菌蛋白酶。
8.具有下列氨基酸顺序的突变体杆菌枯草杆菌蛋白酶
9.编码权利要求1的羰基水解酶突变体的DNA。
10.编码权利要求9的DNA的表达载体。
11.用权利要求10的表达载体转化的宿主细胞。
12.能降解蛋白质的酶清洁剂组合物,包括a)表面活性剂末端;b)具有自然界中尚未发现的氨基酸顺序的羰基水解酶突变体,该氨基酸顺序由前体羰基水解酶通过取代所述前体中相当于解淀粉芽孢杆菌枯草杆菌蛋白酶+123或+274位上氨基酸残基的不同氨基酸得到的。
13.按权利要求12的组合物,其中所述羰基水解酶包括枯草杆菌蛋白酶。
14.按权利要求13的组合物,其中所述枯草杆菌蛋白酶具有下列氨基酸顺序
15.按权利要求12的组合物,其中表面活性剂包括洗涤剂。
16.按权利要求15的组合物,包括喷雾干燥的颗粒洗涤剂。
全文摘要
本文公开了由天然的或重组的非人羰基水解酶的DNA顺序得到的新的羰基水解酶突变体。一般说来,该突变体羰基水解酶的获得是通过离体修饰编码天然的或重组的羰基水解酶的前体DNA顺序,从而在前体羰基水解酶的氨基酸顺序中取代1个或多个氨基酸顺序。这种突变体羰基水解酶具有不同于前体水解酶的特性,尤其可用于洗涤剂组合物。被取代的氨基酸残基相当于解淀粉芽孢杆菌枯草杆菌蛋白酶中的+123位和/或+274位。
文档编号C12N15/10GK1052897SQ9010889
公开日1991年7月10日 申请日期1990年10月31日 优先权日1989年10月31日
发明者罗伯特·马克·孝德威尔, 戴维·艾伦·埃斯特尔, 托马斯·保罗·格雷卡 申请人:詹伦卡国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1