用于连接的纳米级金属糊及其使用方法

文档序号:8029435阅读:641来源:国知局
专利名称:用于连接的纳米级金属糊及其使用方法
技术领域
本发明总的来说涉及用于连接电子器件的材料,其中电子器件特别是指在使用中产生高温或者是在高温条件下使用的电子器件。而且,本发明总的来说涉及一种装配方法,其中该方法在连接例如晶片连接的装配过程中减少或不再需要使用高压条件。
背景描述所有的半导体芯片都必须紧固或连接到基板上以便在电子器件中发挥功能。在现有技术中,典型的连接这些芯片的方法是使用含铅或不合铅的焊接合金、或导电聚合物胶水,例如环氧聚合物。但是,这些材料的热性能差,不能分散由芯片产生的热。它们的电学性能也差,不能有效地降低电力损耗,而且机械强度和可靠性也差。而且,由于焊接合金的熔点低和环氧聚合物的分解温度低,一般来说,这些材料也不适合一些芯片如SiC或GaN在高温下发挥功能。
微米级金属粉末糊的烧结是在用于生产电路图样的混合电子封装中经常使用的。但是,高的加工温度(大于600℃)使得不能将其用在将电子组件连接到基板上。现在的做法是,使用软熔(reflow)的温度足够低使器件可以承受的焊料。低熔点的优点变成了焊接合金的不利条件,这是因为它们不能满足在高温条件下操作或在高温下使用的要求。而且,相对于其他金属例如铜和银,焊接材料的电学和热性能相对较差,而且抗疲劳性也差,而这将会对整个电子系统的表现带来不利影响。
有人探讨了利用商业化银金属糊的压力辅助的烧结来连接电子元件Zhang等人,“Pressure-Assisted Low-Temperature Sintering ofSilver Paste as an Alternative Die-Attach Solution to Solder Reflow”,IEEE Transactions on Electronics Packaging Manufacturing,vol.25 no.4,2002年10月(pp 279-283);Zhang等人,“Pressure-AssistedLow-Temperature Sintering of Silver Paste as an Alternative Die-AttachSo1ution to Solder Reflow”,The Fifth International IEEE Symposium onHigh Density Packaging and Component Failure Analysis in ElectronicsManufacturing(HDP 2002)。商业化的银金属糊中的金属粉末的颗粒大小通常是微米级的。由于颗粒较大,在通常的烧结条件下就需要高的烧结温度(600℃或更高)。如果降低烧结温度,就需要对装配线加压以辅助烧结过程。但是,加压是不希望看到的,因为这将使得生产难度加大,成本增加。加压也增加了在器件处理过程中损坏器件的可能性。
发明概述现发现,使用500nm级或更细、最优选100nm级或更细(例如1-100nm)非常细的导电金属和金属合金颗粒,能够在相对低的烧结温度下,在较低压力或不加压的条件下获得致密(densified)的金属连接。可以像使用焊膏或环氧聚合物一样使用或加工本发明的材料(例如分散、模版/丝网印刷等)。但是,用细的粉末及其组合物形成的连接远远优于那些用传统的含铅或不含铅的焊料、环氧材料、甚至是微米级的粉末(在低温下烧结)所形成的连接。
如果使用了纳米级的金属颗粒,就能够降低结合温度(即本文中的烧结温度)并且不再需要或减少使用高压。由于不再需要使用高压,因此能够使用现有的混合微电子加工工艺和装配设备,从而能够大规模的生产这些组件。可以用已知的技术生产本发明的纳米粉末或者用与微米级粉末相仿的价格购买到纳米粉末。优选使用分散剂以减少颗粒的聚集,颗粒聚集可能导致糊的混合中不希望看到的/低的银颗粒负载。本发明的纳米粉末,优选和分散剂一起,可以与聚合物粘合剂结合在一起,而且优选其中粘合剂的汽化温度低于所需要的烧结温度。使用优选直到接近金属或金属合金粉末的烧结温度才气化的粘合剂有助于获得更密实的连接,因为烧结在整个组合物中发生的更一致(即,优选选择粘合剂并且将粘合剂配制到组合物中,从而使得位于靠近热源的边缘上的金属或金属合金粉末在大量的颗粒开始融合之前不会开始融合)。可以通过超声或机械的方法或者其组合加速金属或金属合金粉末的分散。
本发明的组合物有着广泛的用途。例如,它们可以用于粘接计算机中的硅集成电路芯片,或电源中的硅电力芯片,或通讯模件中的光电芯片。而且,如果使用的是银粉末和银合金,金属将在700或800℃以上的温度熔化,本发明适合于连接在高温使用的半导体芯片,例如SiC或GaN电力芯片。也就是说,通过在相对低的温度(例如在300℃的级别)下烧结纳米粉末形式的银或银合金(尺寸小于500nm,优选小于100nm)就能够得到致密的导电金属连接,而该金属连接能够在高温下操作而没有被熔化的风险,而当使用商业化的含铅或不含铅的焊料和导电环氧聚合物时却存在被熔化的风险。能够使得这些芯片在高温下运行降低了它们的冷却需求,导致节省了在该产品的制造和运行中的材料和能源。
本发明的纳米银糊,由于其熔化温度高,加工温度低,也可以用于硅器件和散热器件连接之外的应用。可以将其用于连接需要在高温操作的宽带隙器件,例如SiC、GaN和金刚石。还可以将其用于连接产生大量热的器件,例如发光二极管(LED)和半导体激光器。
附图简述通过参考附图,并通过下文对本发明的优选实施方案的详细描述,可以更好的理解上述本发明的内容、其它主题、方面和优点。


图1的示意图示出了形成糊的金属颗粒(例如纳米银颗粒),其中使用了分散剂以防止聚集,而且使用了粘合剂以防止在处理和干燥过程中糊的开裂。
图2的示意图展示的是一个制备用于本发明的纳米级金属颗粒糊的示例性两步法。
图3的示意图展示了使用本发明的金属糊将器件连接到基板上。
图4A、4B、4C的图分别对比了各种现有技术的连接材料和本发明的连接材料的相对导电性、相对导热性和弹性模量。
图5A、5B分别是本发明的纳米级银糊和商业化的微米级银糊(Heraeus C1075)的SEM图像,其中这两种银糊都已经在300℃烧结了10分钟。
图6显示待烧结的不同大小的颗粒的膨胀/收缩曲线。
图7A和7B分别显示在高烧结温度PVB和脂肪酸分散剂,或在低烧结温度PRV914下形成的100nm银颗粒的SEM图像。
本发明优选实施方案的详细描述现发现烧结纳米级金属糊是一种形成电连接的切实可行的方法,这是因为该方法绕开了对高加工温度和高加工压力的要求,而这是当使用微米级的金属粉末时是需要的。优选地,纳米级金属糊中的金属粉末的大小是小于500nm,更优选小于100nm(例如1-100nm或1-60nm等)。
本发明优选的金属或金属合金是银或银合金。这是因为,相对于金,银的费用低,而且可以在常规大气环境中烧结。尽管是以与焊料软熔相仿的温度进行加工,但是它随后能承受更高的温度,而焊料是不能承受的。
可以从许多供应商经商业途径获得各种大小的合适的纳米银粉末(例如小于500或100nm),价格大约是每克1美元。例如,商业化的供应商有Nanostructured & Amorphous Materials,Inc.,InframatAdvanced Materials,Inc.,Sumitomo electric USA,Inc.和KemcoInternational Associates。纳米银粉末已经有各种用途。例如,银可以用作纺织品例如毯子、尿布和外科口罩中的抗细菌添加剂。在医学上已经证明银能够杀死身体中广泛范围的致病微生物而且是相对安全的。由于这个原因,许多商家招揽人们使用银胶体攻击体内的细菌。三星还在其电冰箱产品中使用银纳米颗粒增强对食品保存。由于其抗菌特性,银纳米颗粒还作为添加剂用在了消费品中,例如牙膏、牙刷和肥皂以及袜子中。在电子应用中,所出售的银纳米粉末被用于导电图(traces)、电阻、电极、光学滤镜和EMI防护屏中(直到本发明为止,银的在低温下烧结形成连接,然后高温下使用的用途尚未被人认识到)。纳米银颗粒还可以用作油漆、玻璃、油墨和化妆品中的颜色添加剂。
还可以通过改良的Carey Lea方法生产适合本发明使用的纳米银糊。Carey Lea方法最早被用于制备照相乳剂。但是,该方法改良后就可以合成纳米银颗粒(参见例如S.M.Heard,F.Grieser,C.G.Barraclough and J.V. Sanders,J.Colloid Interface Sci.93(2)545-555 1983;F.C.Meldrum,N.A.Kotov,and J.H.Fendler,“Utilization of surfactant-stabilized colloidal silver nanocraystallites inthe construction of mono-and multiparticulate Langmuir-Boldgett films”,Langmuir 10(7)2035-2040,1994)。在该技术中,通过混合柠檬酸钠溶液和硫酸亚铁溶液制备还原剂。在剧烈搅拌下,将该混合物加到硝酸银溶液中形成蓝黑色的沉淀,通过离心收集该沉淀。例如该方法可以如下操作通过混合3.5ml的40%的Na3柠檬酸·2H2O和2.5ml的新鲜制备的30%FeSO4·7H2O。将其加入到2.5ml 10%的AgNO3溶液中以沉淀纳米银颗粒。
对于本领域的技术人员来说,很明显的是,本发明可以使用广泛范围的各种金属和金属合金粉末。而且,特别是,在优选使用银粉末时,该组合物和技术中也不限于使用纯银。事实上,通常会修饰合金组合物和糊组分以使得它们能够在广泛的范围内使用。这些金属也常是贵金属,例如Au、Pt和Pd。它们能够提高糊的烧结温度和合金的熔点,而这在有些时候可能是需要的。可以向银中添加少量的钯(Pd)以防止银的迁移。还可以加入金,形成金-银合金,但仍具有相当高的熔点。加入少量的低熔点的金属例如铟能够增强晶片和基板的粘合/结合。当少量存在时,操作温度仍然会比高温焊料例如低共熔AuSn高,而且能够在一个相仿的温度下加工。已经开发了在结合层中含有铟从而形成高温连接的技术,但是通常该技术却需要长的加工时间(例如参见R.W.Chuang and C.C.Lee,“Silver-Indium Joints Producedat Low Temperature for High Temperature Devices”,IEEE Transactionson Components and Packaging Technologies,25(3)(2002)pp 453-458)。
参考图1,纳米银颗粒10优选用在含有分散剂12的糊中,以分散银颗粒10防止聚集,糊中还优选含有粘合剂14以防止在加工和干燥过程中糊的开裂,而且,在有些情况下,还含有稀释剂16以调整糊的粘度以能够进行丝网或模版印刷(现在的做法是将糊涂敷到基板上)。有多种分散剂可以用于本发明,包括脂肪酸、鱼油、聚(二烯丙基二甲基氯化铵(PDDA)、聚丙烯酸(PAA)、聚苯乙烯璜酸(PSS)等。
如图1所示,当使用脂肪酸或鱼油时,分散剂12通过氢键或其它方式以其头基团在纳米银颗粒10的表面上结合,而其疏水的尾部能够将邻近的颗粒间隔开,从而防止聚集。聚集导致低的固体负载并最终使得所获得的连接的电学、热或机械性能差。
优选的粘合剂14可以是低沸点的有机化合物,例如萜品醇(沸点220℃)从而使得粉末在高达300℃时能不受阻碍的致密化。其它合适的粘合剂14的例子包括,例如聚乙烯醇(PVA)、聚乙烯基丁醛(PVB)和蜡。粘合剂14的性质(例如汽化温度)必须和纳米粉末的烧结动力学(即粘合剂必须在低于烧结温度下沸腾、汽化或分解)及待连接的器件的温度限制相匹配。如下面将详细讨论的(见例如对比实施例1和实施例1),粘合剂14的明智选择或配制可用于保证颗粒更均一的烧结。为了降低糊的粘度,这可能是为了能够进行丝网印刷或其它操作所需要的,可以加入稀释剂16,例如来自Heraus Inc.的RV912。根据粘合剂14的选择,可以使用萜品醇作为稀释剂16。稀释剂有广泛的选择,取决于装配者的需要、材料的选择和其它因素。合适的稀释剂可以包括Hareus HVS 100、texanol、萜品醇、HeraeusRV-372、Heraeus RV-507等。与粘合剂14一样,稀释剂16的气化温度也应该与金属颗粒10的烧结动力学相匹配。所添加的粘合剂14和稀释剂16的总量将根据用途进行变化,可以占到20%重量或更多(在一些实施方案中,优选的重量百分比是5-20%)。
图2显示用两步法制备可以用于本发明的纳米级金属糊。将商业上获得的直径小于500nm、更优选小于100nm的金属颗粒20,与其它已经溶解在丙酮24中的鱼油或其它合适的分散剂22结合在一起。这将得到自由流动的粉末(非聚集的)26,其中在粉末的颗粒表面上结合有分散剂。粉末26与溶液27结合,其中该溶液包括分散在载体例如稀释剂中的粘合剂28,这样最终产生糊30,该糊包括分散在粘合剂材料中的金属颗粒。可以通过浸在超声波浴中来帮助金属颗粒的分散,其中在超声波浴时可以用室温的或冰的水浴以防止加热和金属粉末的烧结。另外,还可以使用机械方式的搅拌和振荡等帮助金属颗粒在粘合剂中的分散。在图2所示的方法中,过量的丙酮能够显著的在超声波处理中帮助脂肪酸分散剂分散银颗粒。而且,可以不通过离心就能够从银和脂肪酸的混合物中将非极性的丙酮分离出来。图2方法的优点是能够更容易的控制糊的质量,这是因为颗粒分散步骤和糊质量调整步骤是分开的。
尽管图2所示的是溶解的分散剂与金属颗粒相结合,但是应该理解到,上述用Carey Lea的方法所制备的颗粒可能含有通过氢键结合到表面上的柠檬酸部分,而柠檬酸能够作为分散剂。另外,以类似于图2所示的方式,柠檬酸部分可以被长链脂肪酸或鱼油分散剂置换。
图3是按照本发明将电子组件结合到基板上的一个示例性方法。开始时,纳米级银粉末32和聚合物34结合形成纳米级银糊36。如图1和2中所讨论的,可以通过超声波的方法增强银粉末在粘合剂中的分散。可以通过加入低沸点的有机溶剂(例如萜品醇)和稀释剂(例如来自Heraeus的RV912)将纳米级的银粉末32转化为糊36。通过烧结纳米粉末糊36从而在器件38和承载基板40之间形成固体结合层,电子器件38如硅或宽带隙器件可以被结合到基板40上。在图3所示的方法中可以使用银颗粒、银合金以及其它金属和金属合金。
在本发明中可以使用镀金或镀银从而改进连接。例如,为了防止铜氧化(因为铜氧化物不能和银互扩散形成好的结合),可以在丝网或模版印刷纳米级银糊36之前,先向结合点和/或器件上的接触点(未示出)上施加薄的金或银的涂层。使用金或银的涂层不会显著的偏离现在的实践,这是因为现在商业上可获得的高性能的电子封装件中铜基板已经是涂有金的。
除了在本发明的实践中优选使用低温之外,将电子器件38结合到基板40上的方法与传统的金属糊烧结工艺是类似的,例如那些在混合电子封装中使用的工艺。由于金属颗粒的大小(不同于微米级的,颗粒是纳米级的(优选颗粒直径小于100nm)),因此优选烧结温度和焊料软熔温度相仿,而且如果需要,较小的施力就能足以维持与烧结金属粉末层的紧密接触。如图3所示,纳米级金属糊通常是以厚膜图(例如20-100微米厚)的形式丝网或模版印刷到基板上的,其中在该厚膜图上放置器件。在放置器件之后,用适中力量下压晶片并保持在一定位置同时进行烧结。根据膜的厚度、颗粒的大小、颗粒的材料(如银或银合金)不同,烧结时间和温度将发生变化。在很多情况下,烧结温度为至少250℃,而时间通常为2分钟或更长。烧结可以在带式炉(belt oven)中以半连续的方式操作,或者在箱式炉(boxoven/furnace)中以分批的方式操作。图3显示,经过低温烧结操作之后,电子器件38以机械的方式结合到了基板40上,与布线(traces)或其它接触点电接触。如下面将要详细讨论的,通过该方法形成的连接是致密的导电性金属,可在高于烧结温度的温度下操作(例如600℃、700℃、900℃或更高)。
比较实施例1纳米级银糊与微米级银糊与其它已知的连接材料如焊料和银填充导电性环氧材料相比,银是更有利的。低共熔的Pb-Sn焊料目前用于绝大多数连接中,尽管无铅替代品正逐渐普及。对于高温应用,例如接合光发射二极管(LED)和半导体激光器,通常建议使用低共熔的AuSn,因为它们能达到比Pb类和Sn类焊料更高的温度。但这是远更昂贵的方案。目前在硅晶片连接应用中使用银填充导电性环氧树脂。例如,在InternationalRectifier的DirectFETTM中使用导电性环氧树脂以将硅晶片固定到铜腔中。这些材料的性能列于表1中,有些也显示于图4a-c中。
在本发明中使用纳米银代替微米尺寸的银,主要是为了将烧结温度降低到大多数焊料的加工温度范围内。这样它可以作为这些连接材料的方便替换方法。烧结温度对于颗粒的大小和形态是敏感的。具有很高扩散速率的银尤其具有吸引力,因为如果粒径足够小它可以在远低于其熔点(962℃)下烧结。目前的银糊材料必须烧至600℃以上以获得适当的强度和密度。常规的烧制过程通常要将糊置于约900℃左右使其致密。但是,对于本发明中银颗粒粒径低于100nm的纳米级银糊而言,可以在低至100℃的温度下进行致密化(尽管这不是理想的温度范围)。
表1一些常规连接材料与本发明的烧结纳米银浆的性能比较
通过加入适当类型的分散剂、粘合剂和溶剂,可以延迟烧结的开始直至达到了优选的烧制温度(~280-300℃),以能达到极快的致密化速率,并且不仅获得高密度而且可以良好地粘着到器件和基板上。因此,除了降低粒径外,选择能恰在烧结温度以下挥发和燃尽的分散剂和粘合剂体系对于糊的适用性也是很重要的。如果粘合剂体系过早地离开糊,银纳米颗粒会在较低的温度下开始烧结,因此在较低的动力学下,会导致活化非致密化机理,例如表面扩散,由此导致的微结构即使在高于预定烧结温度下也难以致密化。如果粘合剂体系组分在高于预期烧制温度下才会烧尽,银颗粒将不能正常烧结,因为聚合物组分会阻碍颗粒间的广泛接触。最高500nm(该尺寸传统上不在视为“纳米级”尺寸的范围内)的粒径是对于这种技术的实际上限,因为烧结温度会因此升高,超过预期范围,显然它将不再适合用作焊料的简便替换物。不同于市售银糊,本文中记载的大多数实验工作是基于100nm或以下的粉末进行的。
图4a-b显示,与低共熔PbSn、低共熔AuSn和导电性环氧材料相比,本发明的纳米银糊提供了更优的导电性和导热性。图4c显示,烧结的纳米银糊对于连接应用而言是令人满意的。
图5a和5b是在300℃烧结10分钟的银糊的SEM图像。图5a显示根据本发明的烧结纳米银糊的SEM图像,图5b显示烧结的市售包含微米级银的银糊(Heraeus C1075)的SEM图像。图5a显示通过在300℃烧结纳米级银糊10分钟获得的相对高密度(约80%),约是生坯密度(仅在烧结前装载银粉;未混入有机物)的2倍。图5b显示商用糊,其含有在相同条件下烧制的微米级银,然而其微结构是多孔隙的并具有最低的致密度。具体而言,图5b的结构中的唯一变化在于消除了尖锐的触点。这些特征的退火消失使得糊难以致密化。
图6是从银粉商业供应商的网址上获得的图(见Ferro的网站),表明各种尺寸的银粉随着温度的升高而收缩。该图中的数据,连同本文中的实验,证明本发明的纳米级银糊随着尺寸减小可在更低的温度下烧结。
比较实施例2不同类型连接材料的工艺对比在高温半导体器件连接应用中,目前使用一些高温熔融的焊料。例如,低共熔Au80Sn20焊料可以在310-330℃软熔,并在低于其熔点280℃的温度下使用。焊料软熔(reflow)与本发明的纳米银糊烧结的主要不同包括1)通过在其熔点温度以上加热合金以形成结合,从而加工成焊料。合金在称为焊料软熔的过程结束后进行熔融和固化。要求合金熔化意味着只有那些具有低熔点的合金才是适用的。这种约束还将连接的最大操作温度局限在熔点以下。
2)导电性环氧树脂在室温以上的温度通过固化而硬化,引发环氧树脂的固化反应。但是加工温度较低并且不涉及熔融,环氧树脂成分的分解温度限制了最高工作温度在固化温度的范围内。
3)根据本发明,通过纳米银糊的附着/连接是通过烧结工艺获得的,其中银纳米颗粒通过扩散过程而不是通过熔融进行凝固。这样避免了高加工温度。另一方面,因为银锭的熔点远高于纳米银颗粒的烧结温度,连接可在高于加工温度下操作。总之,本发明的纳米粉烧结技术是一种用于高温应用的低温接合方案。通过减小粉末的粒径,显著降低了烧结温度。如上所述,以及如比较实施例3中所论述的,通过使用纳米级颗粒代替微米级颗粒,可以急剧降低银的烧结温度。因此可以将烧结温度降低至多种焊料合金的软熔温度。
比较实施例3使用包含微米级银的银糊的现有技术目前市售的银/银合金糊含有微米级银(粒径大于500nm的银颗粒,通常尺寸在10-100μm级)。通常,这些糊不得不被烧到接近合金熔点的高温以获得高密度。例如,根据建议的银糊烧制程序,加热到900℃左右(尽管在较低的温度,例如700℃,可以获得适当的高密度和机械强度)。它们大多用于形成导电性布线/图案(封装基板)和电极(电容器)用于电子用途中。它们不同于本发明的构思,通常不用于形成器件与基板间的连接。这些产品的卖方有许多,例如DuPont、Heraeus和Ferro。银糊也曾被考虑作为晶片粘着和连接材料。为了实现以上目的,向组件施加外压(约40MP)以将烧结温度降低至300℃或更低(参见例如,H.Schwarzbauer,“Method of securingelectronic components to a substrate”,U.S.Patent 4,810,672;H.Schwarzbauer and R.Kuhnert,“Novel large Area jointing technique forimproved power device performance”,IEEE Trans.Ind.Appl.27(1)93-95,1991;Z.Zhang and G.Q.Lu,“Pressure-assisted low-temperaturesintering of silver paste as an alternative die-attach solution to solderreflow”,IEEE Trans.Electron.Pack.Manu.,25(4)279-283,2002),这基本上是半导体装置可暴露于但仍不被破坏的最高温度。但是,高的施加压力并不是封装工业的规范操作,对于附着/连接工业将会面临更严峻的复杂情况,结果导致失败(例如晶片破裂)和更高的制造成本。对于现行的生产线则需要大方面的改良,因此它并未被视为焊料的简便替换方法。仅是高成本就会挫伤在工业上使用它的积极性。
对于市售银糊(微米级)的压力辅助烧结的结果,总结于表2中。如果显著提高在连接点上的外压,则可以获得适当的高密度(80%)。这通常还伴随着烧结Ag节点的有些关键参数值的实质增加,例如导电性、导热性和剪切强度。相反,用本发明的纳米级银糊(尺寸小于500nm,更优选小于100nm),则没有必要施加如此高的压力以引发烧结和接合,因此对于晶片粘着和电连接,它是焊料和/或环氧树脂的潜在简便替换方法。在实际应用中,对于本发明的银糊,在银烧结前使用的压力可以仅用于实现更好的初始表面接触,建议该压力不要高于0.1MPa,这样银糊不会挤出(该过程在焊料软熔晶片粘着中是非常常规的)。
表2压力对含有微米级银的烧结银糊的性能的作用(糊在240℃烧制5分钟)
实施例1通过粘合剂体系的组成调节银致密化的方法通过调节粘合剂体系中的组分的类型,实现对本发明的糊中的金属颗粒的致密化温度/速率的调节。尤其是,对于任何给定粒径的银(或其它金属和金属合金),可以增加和降低烧制温度。例如,如果需要升高例如上述纳米银糊进行致密化的有效起点温度,可以通过将粘合剂体系组分替换为在更高温度下燃尽的替代物来实现,以与需要的目标最高加工温度相匹配(例如选择的粘合剂体系在与金属或金属合金颗粒的烧结温度相同或稍低(例如50℃或30℃或10℃)的温度下气化或分解)。这样保持纳米银的附加益处在于,纳米级银将在达到温度时快速致密化,从而缩短加工时间。
在有些应用中,最高加工温度不需要被限制在300℃或更低。例如,可以利用金或其合金在高至600℃的温度下附着碳化硅,但是当在空气中烧制时会有接触片的问题。本发明的技术可以用于制备一种糊,它可以在更高温度下烧制以获得更高的密度和更牢固的接合(但仍低于600℃,因为需要保持纳米银颗粒直至烧结温度)。这种技术的示例性例子如图7a-7b所示,其中包含100nm颗粒和各种碳链长度脂肪酸的纳米银糊在450℃烧结。与图7b中的糊相比较,图7a中的烧制糊具有显著更致密的微结构。图7a的糊中PVB与长链脂肪酸(C-24)的更高燃尽温度可以防止在加热过程中低温时100nm颗粒的聚集和烧结反应,从而加速了在烧结温度时的致密化速率。加热到烧结温度的同时能够保持最初的粒径(或大多数可以保持)(从而防止烧结过程需要的能量被退火掉)有助于获得这种效果。
尽管已经通过其优选的实施方案描述了本发明,本领域技术人员可以认识到可以在不背离本发明权利要求的精神和范围进行变化以实现本发明。
权利要求
1.一种用于形成电连接的组合物,其包含由多个粒径为500nm或以下的颗粒组成的金属或金属合金粉末;与金属或金属合金粉末的颗粒结合的分散剂,存在足够量的所述分散剂以减少或防止所述金属或金属合金粉末的颗粒聚集;以及粘合剂,其挥发温度低于所述金属或金属合金粉末的烧结温度。
2.权利要求1所述的组合物,其中所述粒径为100nm或以下。
3.权利要求1所述的组合物,其中所述金属或金属合金是银或银合金。
4.权利要求1所述的组合物,其中所述分散剂是脂肪酸或鱼油。
5.权利要求1所述的组合物,其中所述粘合剂是聚合物材料。
6.权利要求1所述的组合物,其还包含粘度调节组分。
7.一种用于形成连接的方法,用于实现以机械、热或电中的至少一种方式将器件连接到基板上,所述方法包括以下步骤烧结安置在器件与基板的触点上并置于二者之间的粒径为500nm或以下的金属或金属合金颗粒,所述金属或金属合金颗粒经所述烧结步骤形成金属或金属合金层,以机械、热或电中的一种或多种方式将器件连接到基板上。
8.权利要求7所述的方法,其还包括在器件和基板至少之一的至少一个电触点上沉积所述金属或金属合金颗粒的步骤。
9.权利要求8所述的方法,其中所述沉积步骤是通过丝网、印刷或模版工艺实现的。
10.权利要求7所述的方法,其中所述金属或金属合金颗粒的粒径为100nm或以下。
11.权利要求7所述的方法,还包括在烧结步骤中将器件与基板保持在一起的步骤。
12.权利要求7所述的方法,其中所述金属或金属合金是银或银合金。
13.权利要求7所述的方法,其中所述金属或金属合金在所述烧结步骤之前以糊的形式存在,所述糊包含粘合剂以及与金属或金属合金颗粒结合的分散剂,存在足够量的所述分散剂以减少或防止所述金属或金属合金粉末的颗粒聚集,而且所述粘合剂的挥发温度低于所述金属或金属合金颗粒的烧结温度。
14.一种连接基板与器件的方法,其包括将一种糊安置在所述基板与所述器件的触点之间,所述糊含有金属或金属合金粉末、与金属或金属合金粉末的颗粒结合的分散剂以及粘合剂,其中所述金属或金属合金粉末由多个粒径为500nm或以下的颗粒组成;存在足够量的所述分散剂以减少或防止所述金属或金属合金粉末的颗粒聚集;而且所述粘合剂的挥发温度低于所述金属或金属合金粉末的烧结温度;并且将所述糊加热至一定温度并保持一段时间,以充分除去所述粘合剂和所述分散剂,并将所述金属和金属合金粉末的金属颗粒烧结在一起,从而由所述金属或金属合金颗粒形成金属或金属合金层,以机械、热或电中的至少一种方式将器件与基板连接。
15.权利要求14所述的方法,其中所述金属或金属合金是银或银合金。
16.权利要求14所述的方法,其中所述颗粒的粒径为100nm或以下。
17.权利要求14所述的方法,其中所述安置步骤是通过丝网、印刷或模版工艺实现的。
18.权利要求14所述的方法,还包括根据需要的挥发温度选择所述糊中的所述粘合剂的步骤。
19.权利要求14所述的方法,还包括在所述加热步骤中用所述粘合剂将所述金属或金属合金颗粒隔离直至达预定温度的步骤,其中所述预定温度是根据所述粘合剂和所述金属或金属合金颗粒的烧结温度确定的。
20.权利要求19所述的方法,其中所述预定温度与所述金属或金属合金颗粒的烧结温度相同或稍低于它。
全文摘要
一种包含金属或金属合金颗粒(优选银或银合金)、分散剂材料和粘合剂的糊,它用于在器件和基板之间形成电、机械或热的连接。通过使用纳米级的颗粒(即颗粒尺寸小于500nm,更优选小于100nm),金属或金属合金颗粒可以在低温下烧结以形成金属或金属合金层,该层可形成好的电、热和机械结合,同时该金属或金属合金层又能够在高温下使用,正如SiC、GaN或金刚石(例如宽带隙器件)需要的。而且,不需要显著施加压力以形成致密的层,而这是微米级的颗粒所必须的。另外,可以改变粘合剂从而使得金属颗粒隔离直到达到所需要的烧结温度,从而实现快速和彻底的烧结。
文档编号H05K3/32GK1961381SQ200580010570
公开日2007年5月9日 申请日期2005年2月14日 优先权日2004年2月18日
发明者陆国权, 约翰·G·白, 杰瑟斯·N·卡拉塔, 张之野 申请人:弗吉尼亚科技知识产权公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1