一种介孔金属有机框架及其制备方法和应用与流程

文档序号:22879919发布日期:2020-11-10 17:38阅读:280来源:国知局
一种介孔金属有机框架及其制备方法和应用与流程

本发明属于药物研发和制备技术领域,尤其涉及一种介孔金属有机框架及其制备方法和应用。



背景技术:

铁死亡(ferroptosis),是一种铁依赖性的不同于传统凋亡形式的调节性细胞死亡,由dixon等人于2012年提出并命名。近年来,为了深入了解并揭示铁死亡的发病机理,学者对其进行了大量研究,并初步发现了铁死亡的一些调节机制和信号途径,例如氨基酸和谷胱甘肽的代谢相关转运系统:胱氨酸/谷氨酸逆转运系统xc-,脂质代谢中的含多不饱和脂肪酸(pufas)的膜磷脂是脂质氧化的主要标记,辅酶q10(coq10)的产生、napdh和硒的堆积会抑制铁死亡发生,内质网应激的抵抗和上调都会影响铁死亡的发生。但是,铁死亡最重要的特征是铁和活性氧的积累而最终导致的大量脂质过氧化。据报道,铁的代谢影响铁死亡的敏感性,并且是脂质过氧化物积累以引起铁死亡所必需的。此外,谷胱甘肽(gsh)依赖性脂质过氧化物酶(gpx4)在铁死亡通路中扮演着重要的地位,可以在辅因子gsh的帮助下将堆积的脂质过氧化物转化为无毒性脂质醇,因此抑制铁死亡的发生。因此,gsh的清除或gpx4的抑制可能会导致脂质过氧化物的堆积,从而诱发铁死亡。逐渐地,因基于铁死亡的肿瘤治疗方式有望克服单一细胞凋亡途径介导的治疗缺点而引起大量学者的重视。各种直接或间接影响gpx4活性的诱导铁死亡的策略逐渐被发现,例如基因敲除技术,基因转染和小分子药物(索拉非尼,柳氮磺吡啶,青蒿素)等。

dixon等人在2018年总结了诱导铁死亡的主要两方面策略:通过增加细胞内铁水平或直接/间接抑制gpx4活性。据此,大量学者成功利用纳米材料独特的物理化学特性及成熟的纳米技术来实现铁的运输,其开发的铁运输纳米材料通过靶向或肿瘤高通透和滞留效应(epr)到达肿瘤局部与其过表达的h2o2发生铁基芬顿反应(fentonreaction)生成活性氧(ros),例如铁磁纳米颗粒(γ-fe2o3或fe3o4nps),铁纳米金属玻璃材料,含铁上转换纳米粒子等。此通过纳米材料铁运输引起肿瘤内芬顿反应的治疗策略也被称为化学动力学治疗。此外,因金属有机框架具有比无机纳米材料更好的灵活运用性和肿瘤微环境响应性,研究者还设计了一些含fe离子的金属有机框架(mofs),例如,携带p53质粒的金属有机框架(mon-p53)通过联合铁死亡/p53基因治疗显著增强了体内铁死亡的治疗效果;还原敏感性携叶酸含铁金属有机框架(rmof-fa)实现了叶酸介导的肿瘤靶向及肿瘤酸性微环境诱导铁释放的肿瘤特异性铁死亡治疗,实现了良好的体内肿瘤抑制效果。为了进一步提高基于fe芬顿反应生成的高毒性活性氧·oh的催化效率,研究者尝试利用光和热来提高芬顿反应效率以达到更好的铁死亡治疗效果。据报道,常被用于肿瘤光热疗法的具有良好光热转换效率的铜基纳米材料可通过激光诱导产生的热效应加速铁基芬顿反应产生更多的活性氧·oh。

在研究依赖铁基芬顿反应纳米材料诱导铁死亡的同时,学者同时也尝试进行了一些其他策略,既通过抑制或消耗肿瘤微环境内过量表达的gsh(最高10mm)来间接灭活gpx4,最终诱导铁死亡。例如,利用人工合成的半胱氨酸酶来减少gsh合成的前体物质,左-半胱氨酸,从而阻断瘤内gsh的合成,最终获得良好的抗肿瘤效果。wang等人合成了富含精氨酸的硅酸锰纳米气泡,其可以通过生成的纳米气泡来消耗gsh而引起铁死亡。另外,研究者发现基于mno2的纳米体系具有消耗细胞内抗氧化剂gsh而增强ros诱导肿瘤治疗的能力。据研究发现,谷胱甘肽(gsh)是众所周知的细胞内抗氧化剂,其会消耗肿瘤细胞内毒性ros来维持细胞体内稳态,规避损伤。相关研究表明,谷胱甘肽的消耗会增强与ros有关的肿瘤治疗方案,例如放射治疗,化学动力治疗和光动力疗法(pdt)。meng等开发了负载光敏剂ce6的谷胱甘肽响应型纳米金属有机框架,它可通过二硫键-硫醇转换反应引起细胞内gsh的消耗,间接导致gpx4活性丧失并导致铁死亡的发生,最终增强pdt的抗肿瘤效果。gsh消耗引起铁死亡大多数只是初步作为抗肿瘤治疗的辅助手段,例如上面提到的进一步增强pdt的疗效,所以通过gsh消耗引起铁死亡的纳米体系仍值得进一步探讨。

已有许多相关研究报道了通过铁运输或gpx4抑制成功实现了铁死亡的诱导,但是将两者结合在一个纳米体系平台上同时实现这两种策略共同强化铁死亡效果的研究甚少。liu等建立了核-壳结构纳米粒子srf@feiiita(sft),其可同时通过铁循环性供应和gpx4抑制剂索拉菲尼(sorafenib)来诱导铁死亡,最终协助成像引导的pdt的治疗效果,从而实现良好的抗肿瘤效果。sang等人构建了新型的gsh和nir敏感型胶束(cso-ss-cy7-hex/spion/srfn)来同时释放索拉非尼,spion和nir光敏剂cy7-hex来引起铁死亡和脂质过氧化氢(lpo)的大量爆发堆积。但是,这些研究都是通过光敏剂产生ros和gpx-4抑制剂索拉非尼来引起铁死亡的。



技术实现要素:

本发明的目的在于提供一种介孔金属有机框架及其制备方法和应用,fe2+和cu2+通过二硫键配位自组装形成具有分子内孔隙纳米有机-无机杂化材料,形成生物相容性好的纳米体系(fcsp)。这些fcspmof可以通过肿瘤细胞内高通透性和滞留效应(epr)积聚在肿瘤部位,其中fcsp内二硫键由于肿瘤内过表达的gsh而断裂,导致gsh消耗的同时释放fe2+和cu2+。随之,大量释放的fe2+和cu2+与内源性h2o2之间的自激活芬顿或类芬顿样反应产生更多的高毒ros,从而实现以铁死亡为基础的化学动力疗法。此外,gsh消耗过程也同时导致了肿瘤细胞内gpx4的失活。fcsp自身具有的光热效应在用于温和的光热疗法同时进一步加速芬顿反应的效率并增强了治疗效果。为了达到更好的肿瘤治疗效率,我们利用fcsp的介孔优势装载了化疗药物如阿霉素(dox),其不仅可以诱导化学疗法,而且还可以生成h2o2,得以进一步增强基于铁死亡的化学动力疗法的疗效。依赖于gsh消耗所致gpx4失活和铁依赖性芬顿反应诱导的铁死亡,轻度热疗和化学疗法的协同作用,fcsp@dox在对正常组织损害极微的情况下,在体内和体外均获得了优异的肿瘤抑制效率。

本发明所采取的技术方案是:

本发明的第一个方面,提供:

一种介孔金属有机框架,由二硫键单体与金属离子通过非共价键连接形成,所述金属离子为fe2+和cu2+

优选的,上述介孔金属有机框架具有介孔结构。

优选的,上述介孔金属有机框架的粒径为60~100nm,比表面积为70~80m2/g,所述介孔的孔径为7~10nm。

优选的,上述二硫键单体为选自二硫代甘醇酸、硒代半胱氨酸中的至少一种。

优选的,上述fe2+和cu2+的摩尔比为1:(0.25~4)。

优选的,上述fe2+来源于fecl2和/或fecl2·4h2o和/或乙酰丙酮亚铁;上述cu2+来源于cucl2和/或cucl2·2h2o和/或乙酰丙酮铜。

本发明的第二个方面,提供:

一种介孔金属有机框架的制备方法,包括如下步骤:

(1)分别配制含fe2+溶液、含cu2+溶液、二硫键单体母液;

(2)按比例加入含fe2+溶液和含cu2+溶液,再加入二硫键单体溶液、聚乙烯吡咯烷酮(pvp)和三乙醇胺(tea),超声溶解,反应;

(3)静置冷却,得到介孔金属有机框架。

优选的,上述步骤(1)中用n,n-二甲基甲酰胺与无水乙醇复合溶液来配制上述含fe2+溶液、含cu2+溶液、二硫键单体溶液,所述n,n-二甲基甲酰胺与所述无水乙醇的体积比为(4~6):(2~4)。

优选的,上述fe2+来源于fecl2和/或fecl2·4h2o和/或乙酰丙酮亚铁;上述cu2+来源于cucl2和/或cucl2·2h2o和/或乙酰丙酮铜。

优选的,上述二硫键单体溶液为选自二硫代甘醇酸溶液、硒代半胱氨酸溶液中的至少一种

优选的,上述步骤(2)中反应温度为130℃~170℃,反应时间为12h~24h。

优选的,上述步骤(3)还可以为静置冷却后,对介孔金属有机框架进行分离纯化,具体来说,分离的方式为离心,纯化的方式为用去离子水或乙醇洗涤。

本发明的第三个方面,提供:

一种纳米载体药物,包括介孔金属有机框架和装载于介孔中的化疗药物,所述纳米载体药物中化疗药物的载药率为40~65%。

优选的,上述纳米载体药物还包括表面吸附有聚乙二醇和/或聚乙二醇衍生物。

优选的,上述聚乙二醇选自聚马来酸酐-十八烯-聚乙二醇、二硬脂酰基磷脂酰乙醇胺-聚乙二醇中的至少一种。

优选的,上述化疗药物为选自阿霉素、紫杉醇、甲氨蝶呤中的至少一种。

本发明的第四个方面,提供;

一种介孔金属有机框架在制备治疗肿瘤制剂的应用,所述介孔金属有机框架为上述介孔金属有机框架,或者为上述介孔金属有机框架的制备方法制得。

优选的,上述应用为介孔金属有机框架在制备mri(核磁共振成像)/光声成像(pa)制剂中的应用。

优选的,上述应用为介孔金属有机框架在制备光热/光动力学治疗制剂中应用。

本发明的第五个方面,提供:

一种纳米载体药物在制备治疗肿瘤制剂中的应用,所述纳米载体药物为上述纳米载体药物。

优选的,上述应用为纳米载体药物在制备光热/光动力学治疗制剂中应用。

本发明的有益效果是:

1.本发明的介孔金属有机框架,具有肿瘤微环境响应性(ph/还原性),载药量高,全身副作用低,而且肿瘤局部生物降解性好,药物局部释放充足,全身副作用低,该介孔金属有机框架有望推动肿瘤铁死亡及诊疗一体化的进一步发展。

2.本发明的介孔金属有机框架中,由于的富集作用,使其能表现出良好的体外mri/pa双模态成像效果。

3.本发明的介孔金属有机框架可生物降解、具谷胱甘肽(gsh)清除导致gpx4失活和fe2+和cu2+介导ros产生所共同诱导铁死亡,并具有良好的光热效果,可进一步促进芬顿反应效率,从而形成了基于铁死亡的化学动力治疗/光热治疗/化疗一体化的抗肿瘤治疗体系。

4.本发明产物合成方法的反应条件简单,纯度高,无毒无害,做到了绿色化学,无需惰性气体保护。

附图说明

图1为实施例1~4制得的介孔金属有机框架的电镜图,其中a为实施例1制得的介孔金属有机框架的电镜图;b为实施例2制得的介孔金属有机框架的电镜图;c为实施例3制得的介孔金属有机框架的电镜图;d为实施例4制得的介孔金属有机框架的电镜图。

图2为实施例3制得的介孔金属有机框架的元素分析图,其中a为黑色介孔金属有机框架粉末电镜形貌图;b为黑色介孔金属有机框架粉末中fe元素分析图;c为黑色介孔金属有机框架粉末中cu元素分析图;d为黑色介孔金属有机框架粉末中s元素分析图。

图3为实施例3制得的介孔金属有机框架的氮气吸附-脱附曲线。

图4为实施例3制得的介孔金属有机框架的紫外光谱图。

图5为实施例5纳米载体药物的生物降解电镜图,其中,a为0天的纳米载体药物的生物降解电镜图;b为1天的纳米载体药物的生物降解电镜图;c为3天的纳米载体药物的生物降解电镜图;d为5天的纳米载体药物的生物降解电镜图。

图6为实施例5纳米载体药物在不同条件下的药物释放曲线。

图7为实施例5纳米载体药物不同浓度影响的体外光热效果图。

图8为实施例5纳米载体药物不同功率影响的体外光热效果图。

图9为实施例5纳米载体药物不同质量浓度的体外核磁共振成像图。

图10为实施例5纳米载体药物不同质量浓度的体外光声成像图。

具体实施方式

为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。实施例或对比例或测试例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

实施例1:一种介孔金属有机框架的制备方法:

(1)取n,n-二甲基甲酰胺与无水乙醇,配制成体积比为5:3的复合溶液;

(2)取步骤(1)制得的复合溶液分别配制含质量浓度为100mg/ml的fecl2溶液、含质量浓度为100mg/ml的cucl2溶液和含质量浓度为50mg/ml的二硫代甘醇酸溶液,分别超声溶解;

(3)将步骤(2)制得的fecl2溶液和cucl2溶液按照fe2+和cu2+的摩尔比为1:1加入至15ml离心管中,再加入0.1ml二硫代甘醇酸溶液、250mg的pvp和100μl的tea,用步骤(1)中的复合溶液定容至15ml,超声溶解,置于高压反应釜中,150℃下反应24h;

(4)步骤(3)反应物在室温下静置冷却,14000rpm下用无水乙醇离心洗涤,收集沉淀,真空干燥后得到黑色介孔金属有机框架粉末。

实施例2:一种介孔金属有机框架的制备方法:

(1)取n,n-二甲基甲酰胺与无水乙醇,配制成体积比为3:2的复合溶液;

(2)取步骤(1)制得的复合溶液分别配制含质量浓度为200mg/ml的fecl2溶液、含质量浓度为100mg/ml的cucl2溶液和含质量浓度为50mg/ml的硒代半胱氨酸溶液,分别超声溶解;

(3)将步骤(2)制得的fecl2溶液和cucl2溶液按照fe2+和cu2+的摩尔比为2:1加入至15ml离心管中,再加入0.1ml硒代半胱氨酸溶液、300mg的pvp和200μl的tea,用步骤(1)中的复合溶液定容至15ml,超声溶解,置于高压反应釜中,135℃下反应24h;

(4)步骤(3)反应物在室温下静置冷却,14000rpm下用无水乙醇离心洗涤,收集沉淀,真空干燥后得到黑色介孔金属有机框架粉末。

实施例3:一种介孔金属有机框架的制备方法:

(1)取n,n-二甲基甲酰胺与无水乙醇,配制成体积比为5:3的复合溶液;

(2)取步骤(1)制得的复合溶液分别配制含质量浓度为150mg/ml的fecl2溶液、含质量浓度为200mg/ml的cucl2溶液和含质量浓度为50mg/ml的二硫代甘醇酸溶液,分别超声溶解;

(3)将步骤(2)制得的fecl2溶液和cucl2溶液按照fe2+和cu2+的摩尔比为11:4加入至15ml离心管中,再加入0.1ml二硫代甘醇酸溶液、200mg的pvp和80μl的tea,用步骤(1)中的复合溶液定容至15ml,超声溶解,置于高压反应釜中,150℃下反应24h;

(4)步骤(3)反应物在室温下静置冷却,14000rpm下用无水乙醇离心洗涤,收集沉淀,真空干燥后得到黑色介孔金属有机框架粉末。

实施例4:一种介孔金属有机框架的制备方法:

(1)取n,n-二甲基甲酰胺与无水乙醇,配制成体积比为2:3的复合溶液;

(2)取步骤(1)制得的复合溶液分别配制含质量浓度为100mg/ml的fecl2溶液、含质量浓度为100mg/ml的cucl2溶液和含质量浓度为50mg/ml的二硫代甘醇酸溶液,分别超声溶解;

(3)将步骤(2)制得的fecl2溶液和cucl2溶液按照fe2+和cu2+的摩尔比为4:1加入至15ml离心管中,再加入0.2ml二硫代甘醇酸溶液、350mg的pvp和150μl的tea,用步骤(1)中的复合溶液定容至15ml,超声溶解,置于高压反应釜中,150℃下反应24h;

(4)步骤(3)反应物在室温下静置冷却,14000rpm下用无水乙醇离心洗涤,收集沉淀,真空干燥后得到黑色介孔金属有机框架粉末。

测试例:介孔金属有机框架的鉴定

通过下述透射电镜(tem)、元素分析(mapping)、氮气吸附-脱附等温线(bet)、紫外吸收光谱初步分析鉴定该载药金属有机框架的合成。

(1)分别取实施例1~4中制得的黑色介孔金属有机框架粉末,配制成1mg/ml的纳米溶液,取20μl纳米溶液滴与镍网支持膜上,40℃白炽灯下烘干,后于透射电镜下观察样品形貌、粒径大小、分散性等,结果如图1所示。

(2)实施例3中的黑色介孔金属有机框架粉末在步骤(1)的基础上做fe(红色)、cu(紫色)、s(绿色)的元素分析mapping,结果如图2所示,图2中a为黑色介孔金属有机框架粉末电镜形貌图、b为黑色介孔金属有机框架粉末中fe元素分析图、c为黑色介孔金属有机框架粉末中cu元素分析图、d为黑色介孔金属有机框架粉末中s元素分析图,其中黑色介孔金属有机框架粉末电镜图为白色,fe元素为红色,cu元素为紫色,s元素为绿色。

(3)取实施例3中一定量的黑色介孔金属有机框架粉末进行氮气吸附-脱附曲线分析检测,结果如图3所示。

(4)用紫外分光光度计检测一定浓度下的实施例3中黑色介孔金属有机框架粉末水溶液,置于比色皿中进行光谱测定,结果如图4所示。

结果分析:由图1可看出,本发明的介孔金属有机框架可通过调节fe2+和cu2+反应的摩尔比来调解其粒径大小、分散性等。从图1中也可看出当fe:cu摩尔比为11:4时,其粒径大小和分散性最好、最适合作为药物载体。由图2可看出,fe、cu和s(来自二硫键)元素是该金属有机框架的主要组成元素。由图4紫外光谱显示,该介孔金属有机框架在近红外区域有明显的吸收峰,证明其由良好的光热转换效率,能很好地运用于肿瘤的光热治疗、酶促反应等。

实施例5:一种纳米载体药物:

(1)用pbs(磷酸缓冲盐溶液)配制质量浓度为1mg/ml的阿霉素(dox)水溶液,置于4℃冰箱避光保存;

(2)取实施例3制得的黑色介孔金属有机框架,配制成质量浓度为1mg/ml的纳米水溶液,常温下保存;

(3)用倍比稀释的方法制备浓度分别为50μg/ml、25μg/ml、12.5μg/ml、6.25μg/ml、3.125μg/ml的dox水溶液,利用其在495nm的特征紫外吸收峰制备拟合标准曲线;

(4)在30ml的玻璃样品瓶中加入1ml步骤(1)中的dox水溶液和5ml步骤(2)中的纳米水溶液,50rpm避光搅拌过夜,反复pbs洗涤,收集沉淀,得到装载dox的纳米载体药物,同时收集洗涤上清液,紫外吸收检测其在495nm特征吸收峰的吸收值,利用步骤(3)拟合的曲线计算出上清液中的dox总量,并计算其载药率。

测试例:取实施例5制得的纳米载体药物进行生物降解性测试、药物释放测试、体外光热效果测定、体外mri及光声成像测定,具体方法如下:

1.生物降解性测试:分别用pbs及0.1m的gsh溶液配制2ml质量浓度为1mg/ml的纳米载体药物,避光置于37℃孵箱,分别于0天、1天、3天、5天参照上述透射电镜检测方法来制备电镜样品,在电镜下分别观察其形貌、粒径大小等,结果如图5所示。

2.药物释放试验:分别将两个5ml质量浓度为1mg/ml的纳米载体药物置于14kd透析膜内,并分别置于20ml的pbs(ph7.4)、20ml的pbs(ph5.8)、20ml的10mm的gsh(ph7.4)及20ml的10mm的gsh(ph5.8)中搅拌透析,于0h、1h、3h、5h、7h、12h、16h、20h、24h取透析液1ml,用紫外分光光度计检测其在495nm的吸收值,计算其药物dox的量,最后制备药物释放曲线。结果如图6所示。

3.体外光热实验:用pbs配制浓度为1mg/ml、0.5mg/ml、0.25mg/ml、0.0625mg/ml、0.03125mg/ml的纳米载体药物溶液,用808nm激光仪0.7w照射5min,并用红外热像仪检测其温度上升情况,结果如图7所示。用808nm激光仪不同功率(分别为1w、0.7w、0.5w、0.3w、0.1w)照射浓度为0.25mg/ml的载药纳米粒,用红外热像仪检测其温度上升情况。结果如图8所示。

4.体外成像实验:用pbs配制浓度为1mg/ml、0.5mg/ml、0.25mg/ml、0.0625mg/ml、0.03125mg/ml、0mg/ml的纳米载体药物溶液,在mri及光声成像下观察其体外根据浓度的成像情况,结果分别如图9和图10所示。

结果分析:

从图1和图2可知,通过调节反应体系中fe2+和cu2+离子的比例可以调节该金属有机框架的大小及分散性,根据不同的实际应用要求从而选择不同的粒径大小。

图3验证了其具有多孔性和大的比表面积,为各种药物负载提供了可能性,可实现药物递送,减轻临床药物全身副作用。

图4显示该金属有机框架在近红外区具有良好的紫外吸收峰,初步说明其具有良好的光热转换效率,图7和图8进一步验证了其本身具有良好的光热效应,能很好地运用于肿瘤的光热治疗、酶促反应等。

图5说明该金属有机框架具有谷胱甘肽响应性,结合肿瘤具有高还原性即高谷胱甘肽的微环境特点,该金属有机框架可以实现肿瘤局部的精准释药,最大程度地减轻药物的全身副作用。

图6显示谷胱甘肽和酸性会促进该载药金属有机框架的药物释放,而结合肿瘤微环境具有高谷胱甘肽和酸性的特点,该金属有机框架可以实现肿瘤局部的精准释药,最大程度地减轻药物的全身副作用。

图9和图10说明该金属有机框架具有磁共振和光声成像能力,可以实现肿瘤诊疗一体化,实时追踪该金属有机框架的体内分布情况。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1