发光器件衬底和使用该衬底的发光器件的制作方法

文档序号:6833533阅读:348来源:国知局
专利名称:发光器件衬底和使用该衬底的发光器件的制作方法
技术领域
本发明涉及一种用于发光器件的衬底和使用该衬底的光学器件。
背景技术
有机电致发光(EL)器件是一种自发发光显示器件,其原理为,施加电场后,荧光材料响应于从阳极注入的空穴和从阴极注入的电子的复合能量而发光。自从报导了分层的低电压驱动有机EL器件后,研究人员开展了诸多关于使用有机材料作为组成材料的有机EL器件的研究。
Tang等人教导了用三(8-羟基喹啉)铝形成发光层,用三苯基硫胺衍生物形成空穴输运层。分层结构的优点在于,例如,空穴注入到发光层的效率提高,通过阻挡阴极注入的电子使通过复合产生激子的效率提高,并且产生的激子被限制在发光层。
采用这种方式,作为有机EL器件结构,有众所周知的由空穴输运(注入)层和可输运电子的发光层组成的双层结构,或者由空穴输运(注入)层、发光层和电子输运(注入)层组成的三层结构。为了提高具有分层结构的器件中注入空穴和电子的复合效率,还对器件结构和器件制作方法进行了研究。
然而,在有机EL器件中,存在发光几率的上限,这是由于载流子复合过程是受到单态(singlet)形成几率的限制,而不是取决于自旋统计。该已知的上限约为25%。
此外,在波前为球面波形的表面发光器件中,例如有机EL器件,发光层至少是插在阳极和阴极之间。由于发光元件的折射率大于衬底和空气的折射率,出射角大于临界角的光在衬底/空气界面形成全反射,从而这些光无法出射。已知的是,当发光元件的折射率为1.6时,只有约20%的发射光能被有效利用。
因此,考虑单态形成几率在内,总的能量转换效率的上限将总共约为5%。在光的发射受到严格限制的有机EL器件中,低发光效率导致能量转换效率的降低,而这被认为是致命的。
按照常规,已经提出了多种方案作为提高发光效率的方法。
例如,日本专利公开号No.S63(1988)-314795公开了在衬底上形成透镜的方法。其中,衬底是利用诸如单元叉架(cell fork)或凸透镜的具有收集光能力的元件。
日本专利公开号No.H01(1989)-200394公开了形成反射表面作为提高发光效率的装置的方法。其特征在于,在发光层的一个表面形成镜面反射光,其形状类似臼。因此,改善了发光层周围光泄漏损失。
日本专利公开号No.H13(2001)-202827公开了在衬底和电极层之间插入低折射率的层的方法。该公开的技术包括与低折射率层的至少一个表面接触的透明介电层(电极层),由于通过低折射率层的光出射到空气的比例加大,使得光传播到外部的出射率增大,由于低折射率层的折射率为1.003~1.300,通过低折射率层的光出射到空气的比例加大,使得光传播到外部的出射率增大,并且由于低折射率层采用二氧化硅气凝胶,实现了相当低的接近1(一)的折射率。
日本专利公开号No.H15(2003)-31374公开了具有抗反射层的发光器件,其中在衬底和发光层之间依次沉积高折射率层、低折射率层和高折射率层。该文件的图1给出具有光学多层元件2的结构,在玻璃衬底1和有机EL层3之间依次沉积高折射率层H1、低折射率层L1、作为阳极层2A的高折射率层。该文件的第 段公开了光学多层元件2具有抗反射功能,从而提高了提取来自衬底1的光的效率。
当所谓的抗反射膜由单层组成并满足nd=λ/4(d为该物理层的厚度,λ为所用的波长),由于光的干涉使反射光被消除。该文件中所描述的技术就是这种抗反射层的一种,并且具有多层结构。在该实施方案描述的结构中,高折射率层H1、低折射率层L1、阳极层2A的厚度分别为14.2nm、41.5nm、139.8nm(第 段)。各层的厚度都被设定为小于发光波长400-700nm的一半。该文件公开的多层是一种所谓的抗反射层。
然而,传统的技术在下述方面存在另外的改进余地。
日本专利公开号No.S63-314795和No.H01-200394分别描述的在衬底上形成透镜和形成反射表面的方法,对于发光面积大的大尺寸器件是有效的,但是在诸如点阵显示器的具有小像素面积的小尺寸器件中就很难形成具有收集光能力的透镜、侧向反射表面等。尤其对于有机EL器件,由于发光层的厚度小于几个微米,不仅难于形成反射镜面(该反射镜面在器件侧面上具有锥形表面),而且即使采用现有技术,也难以避免成本的剧增。
日本专利公开号No.2001-202827所描述的在衬底和电极层之间插入低折射率层的方法是有效的,这是由于通过收集小于临界角的光提高了光的发射效率。然而,由于光在阳极和低折射率层之间的界面处被反射,光发射效率的提高仍然是不够的。
此外,在使用抛光二氧化硅气凝胶的情况下,为了获得非常低的折射率层,该层的机械强度就很弱。而且,抛光层的表面不平整会导致电极短路,因此产生不发光的部分(暗点)。用于有机EL器件的有效的光提取技术仍未达到满意的水平。
日本专利公开号No.2003-31374所描述的提供抗反射层的方法,考虑到抗反射层的作用,其对光出射效率的提高是有限的(将在本专利的实施方案中说明这一点)。
此外,众所周知,由于抗反射层对波长的高度依赖性,随着发射波长的变化,该结构的光发射效率变化幅度极大。因此,当该文件中的技术用于白色发光器件时,不同波长的光出射到衬底外的量差别巨大,因此白平衡的恶化就成为问题。
而且,由于抗反射层利用光的干涉消除光的反射,所以抗反射层的厚度或者折射率必须满足预定条件。因此,在由于制作因素引起该层的厚度有稍许变化的情况下,抗反射层的反射率都会变化,最终造成发光器件的性能对误差敏感。

发明内容
因此,考虑到前述问题,本发明的目的是提供用于发光器件的衬底以及使用该衬底的发光器件,从而解决了现有技术中存在的问题,并且发光效率较高。
正如现有技术中所描述,到目前为止改进的方法都是从基于这一出发点,即提供收集传输到衬底的光或形成抗反射层以防止光在衬底和发光区之间的光反射。但是,本发明的发明人从不同于上述方案的观点考虑,明显成功地提高了发光效率。换而言之,本发明的发明人发现,在透明衬底上引入一个光学控制部分,发射光在该处经过波前转换并被引导至透明衬底,从而大幅度提高光发射效率,这样就完成了本发明。
根据本发明,提供了用于发光器件的衬底,该发光器件包括一个透明衬底和光学控制部分,其中光学控制部分位于透明衬底上,它将球面波的入射光转换为平面波形式的光,并且将已被转换的光引导到透明衬底。
此外,根据本发明,提供了发光器件,该发光器件包括透明衬底、被提供在透明衬底上的光学控制部分、被提供在该光学控制部分上的电极层、以及被提供在该电极层上的发光层,该光学控制部分将球面波的入射光转换为平面波形式的光,并将已被转换的光引导到透明衬底。
根据本发明,通过被提供在透明衬底上的光学控制部分的作用可以明显提高发光效率。配置该光学控制部分,以对其上部的发光区域所发射的球面波形式的光进行波前转换,将该球面波形式的光转换成平面波形式的光,并将已被转换的光导入到透明衬底。由于平面波形式的光被导入到透明衬底,可能有效降低光在透明衬底和与其相邻的层之间的光反射或损耗。因此,光的出射效率可以明显提高。
在这里,平面波形式的光是指光的指向矢量(pointing vector)基本上是平行的。在垂直于光传播方向的平面上不应该有光的相位。波前转换是指转变波前以提高光的方向性,并且将指向矢量发散的球面波转变为上述提及的平面波形式的光。可采用不同类型的结构来执行波前转换以转换为平面波形式。例如,通过在光学控制部分中引入折射率调制区,并且以适当的方式调整光的传播,便可能进行波前转换。
此外,用于发光器件的衬底是指其被构造成将发光区域安装在光学控制部分的上部的衬底。发光区域应用方式多样。例如,它可以用作有机或者无机EL器件的发光层。
在本发明中,光学控制部分可以通过在透明衬底上提供的光学控制层来实现,该光学控制层中具有折射率分布。
在此结构中,低折射率区和高折射率区相间排列的区域可以变成易于实现波前转换的区域。换句话说,当光从低折射率区入射到高折射率区时,光的波前在两个区域之间的界面处被转换。所以,球面波形式的发射光被转换为平面波形式的光。采用这个结构,光学控制部分采取层状的形式,由于结构非常稳定而具有优越性。
本发明中,光学控制层可以构造为包括两层结构,第一层位于透明衬底上,第二层位于第一层上且折射率低于第一层的折射率。在这样的结构中,转换区域为第一层和第二层之间的界面。在此界面处进行光的波前转换,因而球面波形式的发射光被转变为平面波形式的光。由于波前转换发生在层之间的界面处,所以平面波形式的光被高效、稳定地导入到透明衬底,从而稳定提高发光效率。
在这里,如果在透明衬底上提供第一层也是可行的。因此,已转换成平面波形式的光被引导到透明衬底,从而可能有效地控制在透明衬底和其上层之间的界面处的光反射和损耗。
按照这种方式,在形成器件的分层结构中提供具有波前功能的光学控制部分时,发光效率可以得到明显提高。通过利用光学控制部分的影响来提高发光效率的尝试,对于充分稳定地发挥波前转换功能来讲扮演着重要技术问题的角色。此外,在要形成具有充分的波前转换功能的光学控制部分时,重要的是选择、组合以及使用适当的材料。因此重要的是采用层状结构,以便使材料选择的自由度变大。当提供了可进行波前转换的光学控制部分后,就产生了这个新问题。关于这个问题,本发明提供了下述结构。
特别地,根据本发明,提供了满足下述关系n1≥1.3n2的分层结构,其中n1为第一层的折射率,n2为第二层的折射率。因此,第一层和第二层之间的折射率差异变大,使得波前转换的功能能够充分稳定地发挥,从而明显提高发光效率。
在本发明中,还可以在光学控制层上提供电极层,并且第二层的折射率可以小于电极层的折射率。因此,第一层和第二层之间的折射率差异可以很大,使得波前转换的功能能够充分稳定地发挥,进而明显提高发光效率。此外,第一层和第二层的材料选择自由度变大。
在这里,使第一层的折射率大于第二层的折射率是有好处的。从而,可以更明显地提高发光效率。
此外,使得第二层的折射率大于1.35是有益的。当第二层的折射率太小时,第二层的密度就变小。出于这种原因,可能无法获得足够的机械强度。
此外,光学控制层可以设置成具有这样一种折射率分布,其中折射率从透明衬底向其上部分减小。当光从高折射率区传输到低折射率区时,会在各区域之间的界面处产生光的反射或损耗。根据这种结构,当发光部分位于光学控制层上以便光从透明衬底发射出来时,可以获得沿着光的传输方向上折射率减小的层结构。因此,不存在产生光的反射或损耗的界面,所以光的发射效率可以明显提高。
这种结构中,调整折射率分布以便从透明衬底到其上部分的折射率减小,折射率的分布形貌是台阶式还是连续减小的分布形貌这些都无关紧要。此外,如果折射率在整个光学控制层的层厚度方向减小或者在某些区域减小也是可行的。
在本发明中,如果固定在用于发光器件的衬底上的发光器件其峰值发光波长用λ表示,第一层的折射率用n1表示,第一层的厚度用d1表示,则有n1d1≥λ/2。
此外,当第二层的折射率表示为n2,第二层的厚度表示为d2,那么n2d2≥λ/2。
因此,发射光在第一层和第二层之间的界面处被适当地波前转换,并且变成平面波形式的光,从而有可能稳定获得发光效率提高的效果。
在本发明中,透明衬底配有用于发光器件的驱动电路是无关紧要的。例如,可以提供诸如TFT的元件。
在本发明的发光器件中,发光层的发射光可配置成类似彩色的发射光。这样,光学控制层的功能更加稳定。光学控制层其折射率根据波长略有差别。因此,当光学控制层设计成用于单色光发射时,可以获得更加稳固的效果。例如,可适当使用蓝光作为单色光。
本发明的发光器件可以应用于多种类型的光学器件。
例如,它可以应用于有机EL器件,无机EL器件、发光二极管等。
在这里,将从透明衬底指向光学控制部分的方向定义为向上的方向。


通过对优选实施方案的详细描述并参考以下附图,本发明的上述及其它特点和优点对于本领域一般技术人员而言就更加明显了图1示出了根据本实施方案的发光器件衬底的典型截面示意图实例一。
图2示出了根据本实施方案的发光器件衬底的典型截面示意图实例二。
图3示出了根据本实施方案的发光器件衬底的典型截面示意图实例三。
图4示出了根据本实施方案的发光器件衬底的典型截面示意图实例四。
图5示出了根据本实施方案的发光器件衬底的典型截面示意图实例五。
图6示出了根据本实施方案的发光器件衬底的典型截面示意图实例六。
图7示出了根据本实施方案的发光器件衬底的典型截面示意图实例七。
图8示出了根据本实施方案的发光器件衬底的典型截面示意图实例八。
图9示出了根据本实施方案的发光器件衬底的典型截面示意图实例九。
图10示出了光学控制层结构的一个实例。
具体实施例方式
根据本发明的发光器件衬底可应用于发光器件,例如有机电致发光(EL)器件、无机EL器件、等离子体显示器或发光二极管(LED)等,它们响应于外部激励例如电压而发光。特别地,在发光区中的发射变成点发射的器件中发挥了显著效果。例如,EL器件的发射光为一系列来自发射中心的点发射。本发明的效果尤其明显。
本发明通过光学控制层的作用提高了光发射效率。和抗反射层相比,光发射效率对波长的依赖性更小。因此,例如,应用于白光发光器件时,在射出衬底的光量不会因波长的不同而有很大差异的情况下,白平衡能相对令人满意地得到保持。此外,本发明还具有不易因为制作因素而产生性能误差的优点。
在下文中,本发明的上述及其它目标、特点和优点将通过下述描述变得更为明显。现在将参考相应附图描述本发明的优选实施方案。此外,只要没有单独提到,这里的折射率是指基于从发光层发射出的光的峰值波长的折射率。在下面的实施例中,相同数字在整个说明书中是指相同元件,并且为避免重复描述将省略对这一部分的说明。
实施方案一图1是根据本实施方案的发光器件衬底的典型截面示意图。具体地,本发明的发光器件衬底50中,在光透明衬底10的一个表面上被提供有光学控制层20。光学控制层20包括折射率大于光透明衬底10的折射率的第一层30,以及折射率小于第一层30的折射率的第二层40,并且光学控制层20具有这样一种结构,即这两层依该次序叠置在光透明衬底10上。
通过在光学控制层20的上部上面固定发光区,就可将这种发光器件衬底用作发光器件的衬底。光学控制层20将从其上部射入的发射光的球面波形式的波前转换为平面波形式的波前。例如,在有机EL器件的发光层中,发光中心被看作是点光源,从该点光源发出的光沿360度的各个方向传播。在单独的典型光透明衬底上,当光是来自衬底外的发射中心时,由于出射角大于临界角的球面波形式的波前通过全反射被反射到衬底内部,因此这些光无法从衬底出射。
然而,在本实施方案中,第一层30和第二层40之间的界面可以将球面波形式的波前转换为平面波形式的波前,所以可获得高度定向的光。因此,点光源发出的球面波形式的波前经过光学控制层20后被转换为平面波形式的波前,从而定向地在光透明衬底10中传播。由于这个原因,被全反射的光量很少,更多的光出射到透明衬底10外部。因此,发光效率得到提高。出射到衬底外部的光为平面波形式的波前,它既不是球面波形式的波前,也不是柱面波形式的波前。此外,根据本实施方案,组成发光器件衬底的各层是光学平整的,而且还可以选用机械强度大的薄层材料,以便使发光器件具备高可靠性。换而言之,不仅可以控制由于衬底表面不平整引起的短路,还可以控制取决于衬底变形的薄层开裂。
图2是与图1中的发光器件衬底顶表面接触的衬底的截面示意图,并且配备有电极层60。电极层60的折射率低于第二层40的折射率。
至于发光器件衬底,两个界面在提高发光效率中起着重要作用。在这两个界面当中,一个位于光透明衬底10和第一层30之间,而另一个位于第一层30和第二层40之间。这两个界面可以将从发光层传播出来的光从球面波形式的波前转换为平面波形式的波前。因此,这两个界面的结构以及将光引导至这些界面的结构是本实施方案的重要因素。本实施方案采取这样的结构,使得从发光层出射的光依次穿过电极层60、第二层40、第一层30、光透明衬底10,然后传播到透明衬底10外部。因此,采用这样的方式来设计本实施方案,以便如图2的折射率相对值所示,折射率沿着朝向透明衬底10方向先降低,后升高,并在光透明衬底10处再次降低。
在本实施方案中,由于第二层的折射率设成相对小于电极层60的折射率,因此有可能在大范围内增加第一层30和第二层40之间的折射率差值。所以,可能稳定实现令人满意的波前转换功能。最终,发光效率明显提高。
接下来将详细描述构成本实施方案的发光器件衬底的各个部件。
光透明衬底10用作发光器件的光提取衬底,并且传输可见光范围的至少一部分波长。本实施方案中,光透明衬底10可采用任何衬底,只要其能够传输至少部分波长约为400-800nm的光就可以。此外,光透明衬底10可以采用无机材料或者有机材料。无机材料例如玻璃,有机材料例如塑料材料。对于玻璃材料来讲,可以采用例如熔融石英、非碱性玻璃、钠玻璃、双火石玻璃(double flintglass)等光学玻璃。对于塑料材料来讲,可以采用例如聚醚砜(PES)、聚对苯二甲酸乙二醇酯(PET)等工程塑料。光透明衬底10的折射率优选为1.4~2.1。在光透明衬底10上涂敷阻挡层来控制水分和氧气的渗透是无关紧要的。此外,光透明衬底10还可以具有颜色转换滤光器或滤色器。光透明衬底10的厚度没有特别限制,但优选为约0.1mm~2.0mm。
图1和2中所示的衬底是用于发光器件的一种衬底。光透明衬底10上设有发光器件的驱动电路。图9示例性地示出了一个具有TFT(薄膜晶体管)的有机EL器件的结构示意图。光透明衬底10与TFT元件部分530一起形成。该元件适用于根据本实施方案的衬底。
此外,本实施方案中的发光器件衬底制作过程为,依次在光透明衬底10上沉积第一层30和第二层40。根据本实施方案所产生的发光器件衬底,制作时至少还要在其上沉积电极层60以及发光层。因此,如果光透明衬底10表面不均匀,这一不均匀的表面会影响电极层60和发光层,从而可能成为导致电极短路的原因。所以,应采用表面光滑的光学透明衬底10。此外,如果衬底用于有源矩阵驱动,优选的是,至少用于驱动发光器件的像素部分应当是光滑的。
第一层30的折射率大于光透明衬底10的折射率。例如,光透明衬底10的折射率为1.45时,第一层30的折射率为1.45~1.46之间,实际应用中优选为约2.5。优选的是第一层30和光透明层10的折射率之比(第一层30的折射率/光透明层10的折射率)较大。有益的是该比率大于1,优选大于或等于1.15,更优选大于或等于1.3。
遵从这些原则,可以采用很常见的折射率约为1.45的玻璃衬底作为光透明衬底10,并在光透明衬底10上形成具有高效波前转换功能的光学控制层。
在这里,当发光层的发射光的峰值波长用λ表示,第一层30的折射率用n1表示,并且第一层厚度表示为d1时,则第一层30的光学厚度即n1d1优选设定值为0.5λ或更大,更优选值为等于或大于1.0λ。因此,从第二层40入射的光被适当地进行波前转换,从而被转变为平面波形式的光。因此,可以稳定获得发光效率的提高。n1d1的上限优选设定为低于10λ的值,这样可以稳定实现向平面波形式的光的波前转换。
在用于发光器件的衬底中,使用哪一个有机材料和无机材料作为第一层30的材料是无关紧要的。对于有机材料,可使用聚酰亚胺、聚氨酯等。对于无机材料,可使用SiO2、TiO2、SiNx、Al2O3、Ta2O5、ZrO2、CeO2、Y2O3、MgO、Nb2O5、ITO等。这些材料可以单独使用,也可以两个或多个组合使用。考虑到热稳定性,优选使用无机材料。
任何材料都可以用作第一层30,只要其能至少部分透过波长为400~800nm之间的光。这些光学薄层的制作可采用湿层或干层形成法等方法。对于湿层形成法来讲,可采用溶胶-凝胶法等。此外,对于干层形成法来讲,可采用诸如蒸发、等离子体溅射法、离子束溅射法等物理气相沉积(PVD)或者化学气相沉积(CVD)方法。特别地,对于CVD方法来讲,使用了等离子体增强CVD、金属有机物CVD、激光CVD、光化学CVD、电子回旋共振CVD等。此外,对于蒸发法来讲,使用了电阻加热沉积、电子束沉积、激光沉积、电弧放电沉积、高频加热沉积等。对于等离子体溅射方法来讲,包括直流电溅射法、高频溅射法、对靶溅射法、磁控溅射法等。此外,对于离子束溅射法的离子源来讲,存在有潘宁型(panic type)、空心阴极型、双等离子体型等。
第二层40与第一层30一起形成具有波前转换功能的界面。
当第一层30、第二层40、电极层60的折射率分别用n1、n2、n3表示时,则n1≥n2;n3≥n2且n1≥n3。
n1/n2的值等于或大于1已经足够,但是优选为等于或大于1.1,更优选为1.25。
在这里,当发光层的出射光的峰值波长用λ表示,第二层40的折射率用n2表示,第二层厚度表示为d2时,则第二层40的光学厚度即n2d2被优选设定为0.5λ或更大,更优选值为等于或大于1.0λ。因此,从第二层40射出的光在第一层30和第二层40之间的界面处被有效地进行波前转换,从而被转变为平面波形式的光。因此,可以稳定获得发光效率的提高。优选的是n2d2的上限被设定为低于10λ的值。这样可以稳定实现向平面波形式的光的波前转换。
在用于发光器件的衬底中,对第二层40的材料没有限制,采用有机材料或者无机材料均可。对于有机材料,可使用聚酰亚胺、聚氨酯等。对于无机材料,可使用SiO2、TiO2、SiNx、Al2O3、Ta2O5、ZrO2、CeO2、Y2O3、MgO、Nb2O5、ITO等。这些材料可以单独使用,也可以两个或多个组合使用。考虑到热稳定性,优选使用无机材料。
对于第一层30来讲可采用任何材料,只要能至少部分透过波长为400~800nm之间的光即可。这些光学薄层的制作可采用湿层或干层形成法等方法。对于湿层形成法来讲,可采用溶胶-凝胶法等。此外,对于干层形成法来讲,可采用诸如蒸发、等离子体溅射法、离子束溅射法等物理气相沉积(PVD)或者化学气相沉积(CVD)方法。特别地,对于CVD方法来讲,使用了等离子体增强CVD、金属有机物CVD、激光CVD、光化学CVD、电子回旋共振CVD等。此外,对于蒸发法来讲,使用了电阻加热沉积、电子束沉积、激光沉积、电弧放电沉积、高频加热沉积等。对于等离子体溅射方法来讲,包括直流电溅射法、高频溅射法、对靶溅射法、磁控溅射法等。此外,对于离子束溅射法的离子源来讲,存在有潘宁型(panic type)、空心阴极型、双等离子体型等。
在这里,由于第二层40在第一层30之后制备,故优选那些不会使第一层30分解等的层形成方法。
此外,选择第一层30和第二层40的材料时应当与其上形成的电极层和发光层的制备工艺相兼容。
在本实施方案中,第一层30或第二层40都可以作为辅助电极,这些辅助电极降低了电极层60的电阻。这些层对于发光器件的光学性质以及电学性质都有贡献。当被用作辅助电极时,每层在其组成材料中使用导电物质例如ITO并和电极层60连接,从而降低电极层60的电阻。当被用作辅助电极时,第二层40可直接和电极层60连接。当被用作辅助电极时,第一层30可以与电极层60、接触孔等相连。
在本实施方案中,发光器件的衬底被提供有抗反射层是无关紧要的。和本实施方案相关的一个方面是,当出射光经过发光器件的衬底出射到空气时,在界面提供抗反射层,即在空气层和光透明衬底10之间,因而发光效率得到提高。图3示出了一种具有抗反射层的光学器件的截面示意图。在光透明衬底10的一个表面上形成抗反射层70,由第一层30和第二层40组成的光学控制层20位于光透明衬底10的另一面上,其中第一层30的折射率大于光透明衬底10的折射率,第二层40的折射率小于第一层30的折射率。
在本实施方案中,由于第一层30的折射率大于电极层60的折射率,所以来自发光层的出射光在进入光学控制层20前不会被反射太多。因此,从发光层传播出来的光以球面波形式的波前在未经太多反射的情况下入射到光学控制层20,并在该层被转换为平面波形式的波前。反射较多的位置是空气层-光透明衬底的界面。因此,在这个界面设置抗反射层是有效的。然而,在其它位置设置抗反射层的情况下,有可能降低将球面波形式的波前转换为平面波形式的波前的转换效率。
实施方案二图4示出了一个采用根据本实施方案的发光器件衬底的无机EL器件的典型截面示意图的一个实例。在光透明衬底10的一个表面上被提供有光学控制层20,在光学控制层20上依次提供有电极层60、绝缘层90、无机发光层100、绝缘层90及电极层60。
光学控制层20包括折射率大于光透明衬底10的折射率的第一层30和折射率大于第一层30的折射率的第二层40,第一层30和第二层40依次位于光透明衬底10上。第一层30被布置在光透明衬底10上。而且,无机EL器件的结构或者其材料均可从已知的结构和材料中进行任意选择。
根据本实施方案的结构,从发光层前方(向上)出射的球面波形式的波前在光学控制层20处被转换为平面波形式的波前。因此,光可以有效地出射到衬底外部。
实施方案三本实施方案示出了实施方案一描述的发光器件衬底被应用在有机EL器件中的实例。图5示出了根据本实施方案的有机EL器件结构的截面示意图的实例。在本实施方案中,发光器件衬底上依次设有正电极(阳极)80、发光层130、负电极(阴极)120。
图6示出了另一个和本实施方案相关的有机EL器件结构截面示意图的例子。在本实施方案中,发光器件衬底上依次设有正电极(阳极)80、空穴输运层140、发光层130以及负电极120。此外,还可以例举其它结构,例如由正电极/空穴输运层/发光层/电子输运层/负电极组成的结构、由正电极/发光层/电子输运层/负电极等组成的另一结构。在本实施方案中,有机EL器件采用低分子型或高分子型均可。对于本实施方案中涉及的有机EL器件,发光器件的衬底被设计成允许从发光层出射的光穿过发光器件衬底。
空穴输运材料可采用多种材料。特别地,这类材料的例子包括例如双(二(对甲苯)氨基苯基)-1、1-环己烷、N,N’-联苯-N,N’-双(3-甲基苯基)-1、1’-联苯-4,4’-二胺及N,N’-联苯-N-N-双(1-萘基)-1,1’-联苯)-4,4’-二胺的三苯基二胺、星爆型(starburst)分子等。
电子输运材料可采用多种材料。特别地,这种材料的例子包括例如2-(4-联苯)-5-(4-叔丁基苯基)-1,3,4-恶二唑和双{2-(4-叔丁基苯基)-1,3,4-恶二唑}-m-亚苯基的恶二唑衍生物、三唑衍生物、喹啉醇基金属复合物等。
对于光发射材料可采用诸如三(8-羟基喹啉)铝复合物(Alq3)、二联苯乙烯基联苯(BDPVBi)、1,3-双(对叔丁基苯基-1,3,4-恶二唑)苯基(OXD-7)、N,N’-双(2,5-二叔丁基苯基)二萘嵌苯(perylenetet)-羰基二酰亚胺(racarboxydiimide)(BPPC)、1,4-双(对甲苯-对甲基苯乙烯基)氨基苯基)萘等。此外,发光材料可采用掺杂有荧光材料的电荷输运材料层。这种层的实例包括掺杂了诸如4-双氰亚甲基(dicyanomethylene)-2-甲基-6-(对二甲基氨基苯乙烯基)-4H-吡喃(DCM)的二羟基喹啉并吖啶衍生物、或者掺杂了诸如3-(2’-苯并噻唑)-7-二乙氨基香豆素的香豆素衍生物的诸如Alq3的喹啉醇金属复合物的层,掺杂了诸如二萘嵌苯的浓缩多环芳香物的电子输运材料双(2-甲基-8-羟基喹啉)-4-苯基苯酚-铝复合物的层、或者是掺杂了红荧烯的空穴输运材料4,4’-双(间甲苯基苯基氨基)联苯(TPD)的层等。
对于图5和图6中的器件,正电极80的作用是把空穴注入至空穴输运层,优选功函数等于或大于4.5eV。本实施方案中用到的正电极材料具体实例包括铟锡氧化物(ITO)、氧化锡(NESA)、金、银、铂和铜,其中ITO尤为有效。在本实施方案中,第二层40的折射率高于有机EL器件的正电极80的折射率或者低于正电极80的折射率是无关紧要的。然而,当第二层40和正电极80接触时,第二层40的折射率优选高于正电极80的折射率。
同时,为了将电子注入电子输运带或发光层,负电极120优选功函数较低的材料。负电极材料的选取没有明确的限制,具体实例可包括铟、铝、镁、镁铟合金、镁铝合金、铝锂合金、铝钪锂合金、镁银合金等。在本实施方案中,有机EL器件既可使用无源驱动模式,也可通过增加如薄膜晶体管(TFT)的有源元件而使用有源驱动模式。本实施方案中各层的制作方法没有特别的限制。因此可以适当选用任何一种已知的方法。例如,这些方法的实例包括真空沉积、分子束外延(MBE)方法、或者将化合物溶解到溶剂中的溶液的浸渍、旋涂、注塑、棒式涂敷(bar coating)或者滚动涂敷等。
光学控制层20的作用是将从发射源的发光中心出射的球面波形式的波前转换为平面波形式的波前。因此,通过光学控制层20的光具有平面波形式的波前,并定向地传播到光透明衬底10中。因此,在形成颜色转换滤光器或者滤色器的情况下,其功能可有效发挥。换而言之,优点在于,发光层发射的光线受到限制不能进入相邻的像素,并且颜色的纯度没有恶化。
本实施方案中滤光器可安装在发光器件衬底的任一表面。然而,在本实施方案的发光器件衬底中,滤光器即使安装在和发光层相对的表面上,在显示期间仍可保持高的颜色纯度。通常地,就制作工艺而言,在颜色转换滤光器或滤色器上形成电极或发光层是有难度的。形成对照的是,当颜色转换滤光器或滤色器被布置在和发光层相对的光透明衬底10的表面上时,滤光器的制作工艺就不依赖于电极或发光层的制作工艺,因此较容易实施。例如,在发光器件形成以后,有可能形成颜色转换滤光器或滤色器。在使用颜色转换滤光器的情况下,可任意使用发光层发射的颜色或者多种颜色转换滤光器。例如,通过使用蓝色发光层,当将蓝色转换为红色的红色转换滤光器和将蓝色转换为绿色的绿色转换滤光器平行排列时,则可获得全彩色显示。
图7示出具有颜色转换滤光器的一种有机EL器件的典型截面示意图的一个实例。光透明衬底在其一个表面上被提供有红色转换滤光器510和绿色转换滤光器511,其另一个表面上被提供有光学控制层20、正电极80、蓝色发光层150、负电极120。蓝色出射光501在红色转换滤光器处被转换为红色出射光503,在绿色转换滤光器处被转换为绿色出射光502。此时,蓝色出射光是直接出射或者经过颜色滤光器以进一步提高颜色纯度之后出射是无关紧要的。如前所述,由于经过光学控制层20的光具有平面波形式的波前,并且在光透明衬底10中定向传播,尽管各个红、绿、蓝像素尺寸小,但仍可获得无洇色的显示。
图8示出具有彩色滤光器的有机EL器件的典型截面示意图的一个实例。使用白色发光层,可以通过红色、绿色、蓝色滤色器实现全彩色显示。特别地,光透明衬底10在其一个表面上提供有红色滤光器520、绿色滤光器521、蓝色滤光器522,其另一个表面提供有光学控制层20、正电极80、白色发光层160、负电极120。来自白色发光层的发射光被红色滤色器520、绿色滤色器521、蓝色滤色器522分成红色出射光503、绿色出射光502和蓝色出射光501。如前所述,由于经过光学控制层20的光具有平面波形式的波前并且在光透明衬底10中定向传播,即使各个红、绿、蓝像素尺寸较小,但仍可获得无洇色的显示。
本实施方案中,发光器件的衬底可以用作有机EL器件的密封材料。前面曾提到,在本实施方案的有机EL器件中,将发光器件衬底进行配置,使得从发光层发射的光穿过发光器件的衬底。对于顶部或者背面发射型的有机EL器件,发光层发射的光的出射方向和提供有电极层60或发光层的衬底方向相反,本实施方案中的发光器件的衬底可用作密封材料。当被用作密封材料时,优选的是,衬底被结合(bonded)到发光器件的表面。
图4至图8示出了发光器件部分的层结构,但是实际上光透明衬底10被提供有用于诸如TFT元件的发光器件的驱动电路。图9示出具有TFT元件的有机EL器件结构示意图。光透明衬底10在形成驱动电路的区域(称为“驱动电流形成区域”)中配有TFT元件部分530。同时,在光透明衬底10中形成发光器件的区域(称作“发光器件形成区域”)内,提供了包括光学控制层20、正电极80、发光层130和负电极120的发光器件。发光器件的层结构并不仅限于图中所示,还可使用其它各种类型的结构。此图没有示出滤色器或颜色转换滤光器。在这里,TFT衬底的像素显示部分被构造成具有高折射率的层,该高折射率层可以用作第一层30。
实施方案四在本实施方案中,发光器件衬底的结构如图10所示。光学控制层25由在其中掺杂了至少一种杂质金属的介质制成。调节光学控制层25中的杂质浓度分布使其从光透明衬底10向电极层60方向逐渐增加。因此,从光透明衬底10向电极层60方向折射率逐渐降低。
光学控制层20是由例如SiO2或MgF2以及杂质金属的混合物构成。杂质金属可包括铬、银、铝等。金属的掺杂量可适当选择,通常为组成光学控制层25的整体材料的5mol%或更少。因此,可以防止由于金属的吸收而引起的透射率降低。
本实施方案中,通过调整杂质浓度可调节光学控制层25内的折射率。在折射率沿光的传播方向增加的区域内,采用发生波前转换的这样一种方式来调节将要增加的光的方向性,从而将光从球面波形式转换为平面波形式。本实施方案中,波形转换不是在单一界面处进行,而是在光学控制层25内的折射率被调制处发生好几次波形转换。因此,稳固实现了向平面波形式的光的波前转换。
由于本实施方案的衬底具有上述结构,所以在光学控制层25和光透明衬底10之间的界面处光的反射或损耗降低,使得发光效率显著提高。如前所述,已经通过各实施方案对本发明进行了描述。这些实施方案只是对本发明的原理进行简单地说明。当然,可对这些方案进行许多其它的改变和修改,并且这些改变和修改仍在本发明的精神和范围之内,这一点本领域的技术人员应当清楚。
例如,虽然这些实施方案对EL器件进行了图解和描述,但是其也可应用于诸如发光二极管等其它发光器件。例如,该发光器件被用作显示器件。
此外,尽管图示中光学控制层20是双层结构,但是未必局限于这种双层结构,还可以采用三层或者更多层的结构。
实例接下来将通过实施例更加详细地描述本发明。下面将描述的实例中有机EL器件的发光特性是在如下条件下测量的在垂直衬底的方向上安装一光度计(例如TOPCON BM-5A),收集角度为0.1度。有机EL器件的电流效率是在如下条件下测量的有机EL器件的发光部分的面积为4mm2,给有机EL器件施加直流电压,并且亮度为100cd/m2。此外所有使用的光透明衬底厚度都为0.7mm。
实例1光透明衬底使用折射率为1.457的熔融石英。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.30且厚度为600nm的TiO2层作为光学控制层的第一层,以及折射率为1.70且厚度为600nm的TiO2/SiO2混合物层作为光学控制层的第二层。这样,光学衬底制备完毕。
随后,采用溅射法在制备好的光学衬底上形成ITO作为正电极,其薄层电阻为20Ω/□(欧姆每平方面积)。所形成的ITO层的厚度为100nm,折射率为1.78。接着,在ITO上形成下面的两层作为有机层。首先是用真空沉积法形成50nm厚的空穴输运层,即N,N’-联苯-N,N’-双(3-甲基苯基)-1,1’-联苯-4,4’-二胺,随后采用真空沉积法形成70nm厚的发光层,即三(8-羟基喹啉)铝。最后以9∶1的沉积速率比来共沉积厚度为150nm的镁银合金而形成负电极。这样,发射绿光(峰值波长为530nm)的有机EL器件制作完成。
这样制作的有机EL器件的电流效率为5.1cd/A。
实例2光透明衬底使用折射率为1.457的熔融石英。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.30、厚度为700nm的TiO2层作为光学控制层的第一层,以及折射率为1.50、厚度为826nm的SiO2层作为光学控制层的第二层。这样,光学衬底制备完毕。
在制作好的光学衬底上形成正电极(ITO)、有机层、负电极层(negative layer)。这些正电极(ITO)、有机层和负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.5cd/A。
实例3光透明衬底使用折射率为1.457的熔融石英。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.40、厚度为670nm的TiO2层作为光学控制层的第一层,以及折射率为1.43、厚度为1000nm的SiO2层作为光学控制层的第二层。这样,光学衬底制备完毕。
在制作好的光学衬底上形成正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.5cd/A。
实例4光透明衬底使用折射率为1.457的熔融石英。分别采用CVD和溅射的方法在光透明衬底的一个表面上形成折射率为2.01、厚度为800nm的SiNx层作为光学控制层的第一层,以及折射率为1.42、厚度为530nm的SiO2层作为光学控制层的第二层。这样,光学衬底制备完毕。在制作好的光学衬底上形成正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.4cd/A。
实例5除了使用折射率为1.95的双火石玻璃作为光透明衬底以外,其它条件同实例3。这样制作的有机EL器件的电流效率为4.4cd/A。
实例6光透明衬底使用折射率为1.457的熔融石英。分别采用CVD和溅射的方法在光透明衬底的一个表面上形成折射率为2.01、厚度为800nm的SiNx层作为光学控制层的第一层,以及折射率为1.42、厚度为720nm的SiO2层作为光学控制层的第二层。这样,光学衬底制备完毕。
在制作好的光学衬底上沉积正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.2cd/A。
实例7光透明衬底使用折射率为1.457的熔融石英。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.40、厚度为670nm的TiO2层作为光学控制层的第一层,以及折射率为1.43、厚度为900nm的SiO2层作为光学控制层的第二层。此外,制作一个折射率为2.00、厚度为50nm的SiNx层作为光着色层。这样,光学衬底制备完毕。
在制作好的光学衬底上沉积正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.5cd/A。
实例8光透明衬底使用折射率为1.457的熔融石英。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.40、厚度为670nm的TiO2层作为光学控制层的第一层,以及折射率为1.43、厚度为900nm的SiO2层作为光学控制层的第二层。这样,光学衬底制备完毕。此外,使用溅射的方法在光学控制层第二层上形成厚度为100nm的层,该层折射率从1.45渐变到1.78,且折射率沿远离光学控制层的第二层的方向增加。
在制作好的光学衬底上沉积正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.6cd/A。
实例9光透明衬底使用折射率为1.457的熔融石英。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.40、厚度为670nm的TiO2层作为光学控制层的第一层,以及折射率为1.43、厚度为900nm的SiO2层作为光学控制层的第二层。这样,光学衬底制备完毕。此外,使用溅射的方法在光学控制层第二层上形成厚度为100nm的层,该层折射率从1.45渐变到2.0,且折射率沿远离光学控制层的第二层的方向增加。此外,形成折射率为2.00、厚度为50nm的SiNx层作为光着色层。这样,光学衬底制备完毕。
在制作好的光学衬底上沉积正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.8cd/A。
实例10作为光透明衬底,使用了钠玻璃,其具有1.512的折射率并且在其一个表面上具有折射率为1.38、厚度为97nm的MgF2层的抗反射层。通过溅射的方法在光透明衬底的一个表面上形成折射率为2.30、厚度为700nm的TiO2层作为光学控制层的第一层,以及折射率为1.50、厚度为826nm的SiO2层作为光学控制层的第二层。
在制作好的光学衬底上沉积正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.6cd/A。
实例11作为光透明衬底,使用了钠玻璃,其具有1.512的折射率并且在其一个表面上具有折射率为1.38、厚度为97nm的MgF2层的抗反射层,并且在其另一个表面上具有厚度为100nm且折射率沿远离光透明层的方向从1.52连续变化到2.30的另一抗反射层。通过溅射的方法在光透明衬底的一表面上形成折射率为2.30、厚度700nm的TiO2层作为光学控制层的第一层,以及折射率为1.50、厚度为826nm的SiO2层作为光学控制层的第二层。
在制作好的光学衬底上沉积正电极(ITO)、有机层、负电极层。这些正电极(ITO)、有机层、负电极层的条件同实例1。这样制作的有机EL器件的电流效率为4.7cd/A。
比较例1除了TiO2/SiO2混合物层的厚度为20nm以外,其它条件同实例1。这样制作的有机EL器件的电流效率为2.8cd/A,未观察到发光效率提高。
比较例2除了TiO2/SiO2混合物层的厚度为3.5μm以外,其它条件同实例1。这样制作的有机EL器件的电流效率为2.9cd/A,未观察到发光效率提高。
比较例3除了采用溶胶-凝胶法制作折射率为1.25的SiO2作为光学控制层的第二层以外,其它条件同实例2。这样制作的有机EL器件的电流效率为3.1cd/A,观察到许多不发光的点(暗点)。
各个实例和比较例的评估结果如下。在下述各表中,第一层的折射率用n1表示,第一层的厚度用d1表示,第二层的折射率用n2表示,第二层的厚度用d2表示,正电极的折射率用n3表示。此外,光透明衬底的折射率用n(sub)表示。
如前所述,本发明的结构中包含了将球面波形式的入射光转换为平面波形式的光并将转换后的光引到透明衬底的光学控制部分,因此出射光可以高效地穿出透明衬底。因此,有可能提供具有高亮度和良好可见度的发光器件。
虽然参照优选实施方案对本发明做了描述,但是本领域的技术人员应当理解的是,在附属的权利要求书所定义的本发明的精神和范围内可以进行各种改变和修改。
表1

表2

表3

权利要求
1.一种发光器件衬底,包括透明衬底;以及被提供在透明衬底上的光学控制部分,将球面波的入射光转换为平面波形式的光,并将转换后的光引导到透明衬底。
2.根据权利要求1的衬底,其中光学控制部分包括在被提供于透明衬底上的至少一层内存在折射率分布的光学控制层。
3.根据权利要求1的衬底,其中光学控制层包括被提供在透明衬底上的第一层以及被提供在该第一层上的第二层,且第二层的折射率小于第一层的折射率。
4.根据权利要求3的衬底,满足下式n1≥1.3n2其中n1为第一层的折射率,n2为第二层的折射率。
5.根据权利要求3的衬底,还包括在光学控制层上的电极层,且第二层的折射率小于电极层的折射率。
6.根据权利要求5的衬底,其中第一层的折射率大于电极层的折射率。
7.根据权利要求3的衬底,其中,当在发光器件的衬底上安装具有峰值发射波长的发光器件时,满足下式n1d1≥λ/2其中n1为第一层的折射率,d1为第一层的厚度。
8.根据权利要求3的衬底,其中,当在发光器件的衬底上安装具有峰值发射波长的发光器件时,满足下式n2d2≥λ/2其中n2为第二层的折射率,d2为第二层的厚度。
9.根据权利要求3的衬底,还包括在第二层上的光着色层,且该光着色层的折射率大于第二层的折射率。
10.根据权利要求3的衬底,其中透明衬底还被提供有用于发光器件的驱动电路。
11.一种发光器件,包括透明衬底;被提供在透明衬底上的光学控制部分,将球面波的入射光转换为平面波形式的光,并将转换后的光引导到透明衬底;被提供在光学控制部分上的电极层;以及被提供在电极层上的发光层。
12.根据权利要求11的发光器件,其中光学控制部分包括在被提供于透明衬底上的至少一层内存在折射率分布的光学控制层。
13.根据权利要求12的发光器件,其中光学控制层包括被提供在透明衬底上的第一层以及被提供在该第一层上的第二层,且第二层的折射率小于第一层的折射率。
14.根据权利要求13的发光器件,满足下式n1≥1.3n2其中n1为第一层的折射率,n2为第二层的折射率。
15.根据权利要求13的发光器件,其中第二层的折射率小于电极层的折射率。
16.根据权利要求15的发光器件,其中第一层的折射率大于电极层的折射率。
17.根据权利要求13的发光器件,满足下式n1d1≥λ/2其中λ为发光层的峰值发射波长,n1为第一层的折射率,d1为第一层的厚度。
18.根据权利要求13的发光器件,满足下式n2d2≥λ/2其中λ为发光层的峰值发射波长,n2为第二层的折射率,d2为第二层的厚度。
19.根据权利要求11的发光器件,其中透明衬底被提供有颜色转换滤光器。
20.根据权利要求11的发光器件,其中透明衬底被提供有滤色器。
21.根据权利要求11的发光器件,其中发光层的发射光为单色光。
22.根据权利要求21的发光器件,其中单色光为蓝光。
23.根据权利要求11的发光器件,其中该发光器件为有机电致发光器件。
全文摘要
提供了一种具有高发光效率的发光器件衬底以及使用该衬底的发光器件。光透明衬底10上叠置有折射率大于该光透明衬底10的折射率的第一层30,以及其折射率小于第一层的折射率的第二层40。第一层30的折射率设定为第二层40折射率的1.35倍。采用这种层状结构,在发光器件的发光层中,从点光源的前方发出的球面波形式的波前被转换为平面波形式的波前,并高效地出射到衬底外部。
文档编号H01L51/52GK1596041SQ20041007708
公开日2005年3月16日 申请日期2004年9月10日 优先权日2003年9月10日
发明者五藤智久, 武胁纪子, 柘植久尚, 上条敦, 东口达 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1