半导体发光元件的制作方法

文档序号:6865054阅读:106来源:国知局
专利名称:半导体发光元件的制作方法
技术领域
本发明涉及氮化镓类发光二极管等半导体发光元件。
背景技术
蓝色发光二极管元件例如被如下构成,即,在蓝宝石基板的表面形成InGaN半导体发光部,另外在该InGaN半导体发光部的P侧及N侧分别形成电极(参照下述专利文献1)。但是,由于蓝宝石基板的热传导差,因此难以实现高输出化。此外,由于蓝宝石基板为绝缘性,因此必须在InGaN半导体发光部侧形成P侧及N侧的两电极,并且必须从它们中引出电线。由此,来自InGaN半导体发光部的光就被电极等遮挡,光的输出效率差。
该问题可以通过采用如下的构成来改善,即,将InGaN半导体发光部与安装基板相面对地接合,并且从蓝宝石基板侧输出光的倒装晶片型的构成(参照特开2003-224297号公报)。但是倒装晶片型的元件必须在InGaN半导体发光部设置P侧电极及N侧电极,将它们正确地对齐接合在安装基板上。由此,就会有组装工序变得复杂的问题。
专利文献1专利第3009095号公报本发明人等对如下形成的发光二极管元件进行了研究,即,如图5所示,在作为透明的导电性基板的SiC基板1上配置InGaN半导体发光部2,另外,在该InGaN半导体发光部2的表面形成P侧半透明电极3,并且形成了由与SiC基板1的背面的全面电阻接触的金属构成的N侧电极层4。N侧电极层4例如被银焊剂与安装基板8管芯焊接,这样就将该发光二极管元件封装。在P侧半透明电极3上,接合有P侧垫块电极6,电线被与该P侧垫块电极6连接。
此种构成中,由于在来自InGaN半导体发光部2的光的输出方向仅配置有P侧垫块电极6,因此光的输出效率被改善,另一方面,由于在安装基板侧仅配置有N侧电极层4,因此组装工序变得简单。
另外,由于从InGaN半导体发光部2射向SiC基板1的光在N侧电极层4处被反射,而朝向P侧半透明电极3侧,因此可以期待获得良好的光输出效率。
但是,在对此种构造的发光二极管中的光输出效率的提高的研究进一步深入后,发现由于形成SiC基板1的背面和N侧电极层4之间的欧姆接合部的合金层中的能带的弯曲,在该N侧电极层4和SiC基板1的界面上产生了光吸收。
所以,又增加了对如下的构造的研究,即,如图6所示,不是在SiC基板1的背面全面形成N侧电极层4,而是仅在与SiC基板1的背面的局部的区域接触的图案上形成而减少了欧姆接合部的面积。
但是,在该图6的构造中,也不一定能够获得令人满意的光输出效率。即,用于管芯焊接的银焊剂5将会进入SiC基板1的背面上未形成N侧电极层4的区域中。这样,在SiC基板1的背面和银焊剂5之间,就会形成半导体/金属的界面,在该界面上产生光吸收。

发明内容
所以,本发明的目的在于,提供可以有效地提高光输出效率的半导体发光元件。
本发明的半导体发光元件,其特征是,包括半导体发光部、配置于该半导体发光部的一方侧的表面电极、配置于所述半导体发光部的另一方侧并对于所述半导体发光部的发光波长来说透明的导电性基板、在所述导电性基板的作为与所述半导体发光部相反一侧的面的背面的第1区域进行欧姆接合而被图案形成的背面电极、以覆盖所述导电性基板的背面的所述第1区域以外的第2区域的方式形成,并对于所述半导体发光部的发光波长来说透明的背面绝缘层。
根据该构成,在透明的导电性基板的背面侧,背面电极与第1区域电阻接触,背面绝缘层与作为第1区域以外的区域的第2区域相接,在该第2区域中未形成欧姆接合部。所以,就可以减少欧姆接合部中的光的吸收。另外,由于背面绝缘层与第2区域相接,因此焊料等金属材料就不会在第2区域与导电性基板的表面相接。所以,即使当该导电性基板由半导体材料制成时,由于未形成半导体/金属的界面,因此就可以减少此种界面上的光吸收。像这样,由于可以减少半导体发光元件的内部的光的吸收,因此就可以提高光输出效率。
形成背面电极的第1区域最好被形成于尽可能小的面积上。具体来说,第1区域最好被制成线状(包括直线状、曲线状、折线状。)图案。但是,为了提高发光效率,背面电极最好在导电性基板的背面导致均等地分布。另外,第1区域的总面积优选导电性基板的背面的面积的1~30%以下(例如7%左右)。该面积比最好被按照将由导电性基板的背面侧的2次的反射造成的光的损失抑制在50%以下的方式来确定。
所谓「对于发光波长来说透明」具体来说是指例如发光波长的透过率在60%以上的情况。
相对于发光波长透明的导电性基板例如也可以是SiC基板或GaN基板之类的半导体基板。
另外,作为相对于发光波长透明的背面绝缘层的材料,可以例示出SiOy(0<y)、SiON、Al2O3、ZrO2及SiNz(0<z)。
半导体发光部最好具有使用了III-V族氮化物化合物半导体的LED(发光二极管)构造。更具体来说,半导体发光部优选将InGaN活性层用P型GaN层及N型GaN层夹持的构造。另外,也可以是将AlGaN活性层用P型AlGaN层及N型AlGaN层夹持的构造。另外,活性层也可以具有多重量子阱(MQW)构造。
最好所述半导体发光元件还包括反射层,该反射层由以与所述背面电极接触并且将该背面电极及所述背面绝缘层覆盖的方式粘附形成于它们之上的导电性材料(特别是金属材料)构成,而且,所述反射层对于所述半导体发光部的发光波长的反射率大于所述背面电极。
根据该构成,由于粘附形成有覆盖背面电极及背面绝缘层的反射层,因此在半导体发光部中产生而透过了透明的背面绝缘层的光就会在反射层上被向内侧方向反射。这样,就可以从表面电极侧有效地输出光。背面绝缘层和反射层之间成为绝缘体/金属的界面,实质上不会引起光的吸收。所以,可以抑制由元件内部的多重反射造成的光的衰减,可以实现很高的光输出效率。
另外,反射层被制成大于背面电极的面积,从而将该反射层作为电极的一部分使用。所以,就可以使用该反射层,将该半导体发光元件与安装基板接合。
所述反射层最好被利用蒸镀法或溅射法粘附形成于背面电极及背面绝缘层上。
另外,所述导电性基板优选按照使电阻率达到0.05Ωcm~0.5Ωcm的范围的方式控制了掺杂剂的添加量的碳化硅基板。像这样被控制了掺杂剂的添加量的碳化硅基板显示出良好的透明度(光透过率)。由此,由于可以抑制由碳化硅基板制成的导电性基板的内部的光的衰减,因此就可以实现更高的光输出效率。
另外,最好所述表面电极包括与所述半导体发光部相接并由相对于所述发光波长透明的导电性材料制成的透明电极膜。更具体来说,最好以Zn1-xMgxO(0≤x<1。x=0时为ZnO)为材料形成表面电极。这样,就可以进一步提高向表面电极侧的光输出效率。
本发明的所述的或者其他的目的、特征及效果将参照附图,由如下所述的实施方式的说明阐明。


图1是图解性地表示本发明的一个实施方式的发光二极管元件的构造的剖面图。
图2是用于表示N侧图案电极层的图案例的仰视图。
图3是用于说明SiC基板的光透过率(InGaN半导体发光部的发光波长的光的透过率)与掺杂剂浓度的关系的图。
图4(a)-(d)是以工序顺序表示SiC基板的背面侧的电极构造的形成工序的具体例的图解性的剖面图。
图5是表示本案发明人所研究了的半导体发光元件的构造的图解性的剖面图。
图6是表示本案发明人所研究了的其他的半导体发光元件的构造的图解性的剖面图。
具体实施例方式
图1是图解性地表示本发明的一个实施方式的发光二极管元件的构造的剖面图。该发光二极管元件具备SiC基板11、形成于该SiC基板11的表面11a上的InGaN半导体发光部12、被覆盖InGaN半导体发光部12的表面(光输出侧表面)地形成的P侧透明电极层13、与该P侧透明电极层13的表面的局部的区域(微小区域)接合的P侧垫块电极16。该发光二极管元件还具备被与SiC基板11的背面11b的局部的区域电阻接触地图案形成的N侧图案电极层14、在SiC基板11的背面11b上被按照将N侧图案电极层14所接合的区域以外的全部区域覆盖的方式粘附形成的透明绝缘层15、粘附形成于N侧图案电极层14及透明绝缘层15两者之上的高反射金属层17。
SiC基板11是相对于InGaN半导体发光部12的发光波长(例如460nm)透明并且具有导电性的透明导电性基板。InGaN半导体发光部12例如在SiC基板11侧具有掺杂了Si的N型GaN接触层123,在P侧透明电极层13侧具有掺杂了Mg的P型GaN接触层127,在它们之间具有InGaN活性层124、125。该InGaN活性层例如具有单一量子阱构造的InGaN层124和多重量子阱(MQW)构造的InGaN层125的叠层构造。更具体来说,InGaN半导体发光部12在SiC基板11上,可以层叠形成缓冲层121、未掺杂GaN层122、所述N型GaN接触层123、所述InGaN活性层124、125、掺杂了Mg的P型AlGaN包覆层126、所述P型GaN接触层127。P侧透明电极层13与P型GaN接触层127的大致全面电阻接触。
P侧透明电极层13例如由Zn1-xMgxO(0≤x<1。x=0时为ZnO)构成,是相对于InGaN半导体发光部12的发光波长透明的导电体层。Zn1-xMgxO(特别是掺杂了Ga的ZnO)晶格常数与GaN近似,不需要事后的退火,在与InGaN半导体发光部12的所述P型GaN接触层之间形成良好的电阻接触(参照Ken Nakahara等著,「Improved External EfficiencyInGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-DopedZnO as p-Electrodes」,Japanese Journal of Applied Physics,Vol.43,No.2A,2004年,pp.L180-L182)。此外,此种的Zn1-xMgxO例如相对于370nm~1000nm的波长的光显示出80%以上的透过率。
也可以取代此种P侧透明电极层13,使用Ni/Au叠层电极层之类的半透明电极层。但是,如果使用P侧透明电极层13,则由于可以抑制内部的多重反射,将来自InGaN半导体发光部12的光有效地输出,因此可以提高光输出效率。
N侧图案电极层14例如由Ni/Ti/Au金属叠层膜构成。另外,透明绝缘层15例如由SiOy、SiON、Al2O3、ZrO2或SiNx构成。另外,高反射金属层17例如由Al、Ag、Pd、In、Ti等高反射率金属构成,被通过将它们利用例如溅射法或蒸镀法粘附而形成。所谓高反射率金属在这里是指,在形成于SiC基板11的背面11b的状态下,与形成欧姆接合的N侧图案电极层14和SiC基板11的界面上的反射率相比反射率更高的金属材料。高反射率金属如图6所示,更优选与焊料与SiC基板的表面相接的状态下的它们的界面的反射率相比,透明绝缘层15和该高反射率金属的界面的反射率更高的材料。
透明绝缘层15被按照覆盖N侧图案电极层14的表面(与SiC基板11相反一侧的表面)的方式形成。所以,N侧图案电极层14与高反射金属层17接触,它们被电连接。
在将该发光二极管元件封装时,高反射金属层17的全面与银焊剂或焊锡等导电性焊料18相接,从而借助该焊料18将该发光二极管元件管芯焊接在安装基板19上。此外,在P侧垫块电极16上,连接有电极输出用的电线(未图示)。
利用该构成,当在P侧垫块电极16和高反射金属层17之间施加顺向的电压时,则从InGaN半导体发光部12中产生波长460nm的蓝色的光。该光被透过P侧透明电极层13而输出。从InGaN半导体发光部12射向SiC基板11侧的光透过该SiC基板11,朝向该SiC基板11的背面11b侧。该光当中的向N侧图案电极层14射入的光在该N侧图案电极层14和SiC基板11的背面11b的界面上,一部分被吸收,剩余的被反射。另外,从InGaN半导体发光部12射向SiC基板11的背面11b的光当中的射入透明绝缘层15的光被高反射金属层17反射。由于它们形成绝缘体/金属的界面,因此可以忽略这里的光的吸收。像这样在高反射金属层17上反射的光穿过SiC基板11而搬运,继而透过P侧透明电极层13而被输出。像这样,就可以实现较高的光输出效率。
图2是用于表示N侧图案电极层14的图案例的仰视图。该例子中,按照形成分布于SiC基板11的背面11b的整体上的龟甲模样的方式配置有多条电极线段14a,形成N侧图案电极层14。更具体来说,多条电极线段14a形成包围SiC基板11的中央区域的较大的六角形图案、从该六角形的各顶点成放射状延伸的放射线段图案。当然,N侧图案电极层14并不一定被制成此种图案,例如也可以被制成格子状图案。
如该图2的例子所示,N侧图案电极层14虽然最好由线状(既可以是直线状,也可以是曲线状)的电极层部分构成,但是也可以利用被分散地配置在SiC基板11的背面11b的多个垫块状电极层部分(矩形或圆形等任意的形状)来形成N侧图案电极层14。但是,该情况下,最好将多个垫块状电极层部分大致均等地分布配置于SiC基板11的背面11b的大致全部区域上。
图3是用于说明SiC基板的光透过率(InGaN半导体发光部12的发光波长的光的透过率)与掺杂剂浓度的关系的图。该图3中,取代掺杂剂浓度,表示有SiC基板的电阻率(单位Ωcm)。其掺杂剂浓度越大,则SiC基板的电阻率就越小。
SiC基板11被按照可以相对于InGaN半导体发光部12的发光波长(例如460nm)实现良好的光透过率的方式,确定其掺杂剂浓度。
SiC的折射率为2.7,波长460nm的光的透过率的上限值(理论值)为65.14%。如果增大掺杂剂浓度,则SiC基板11的电阻率就会降低,光透过率下降。
SiC基板11的光透过率优选40%以上,更优选60%以上。即,根据图3,SiC基板11优选被按照使其电阻率达到0.05Ωcm以上的方式控制了掺杂剂浓度的基板,更优选被按照使其电阻率达到0.2Ωcm以上的方式来控制掺杂剂浓度。由于SiC的折射率为2.7,因此波长460nm的光的透过率的上限为65.14%,如果电阻率超过0.5Ωcm,则即使减少掺杂剂浓度,也只是SiC基板11的电阻率变高而已。所以,SiC基板11的电阻率的优选范围的上限值是0.5Ωcm。
如果SiC基板11的电阻率高,则与之对应,发光二极管元件的消耗电能增多。但是,该实施方式的构成中,由于利用高反射金属层17上的良好的反射,可以抑制InGaN半导体发光部12中产生的光在元件内部的衰减,将其有效地输出,因此可以实现亮度的大幅度的提高。由此,由于可以减少为了获得给定的亮度而必需的电能,因此作为其结果,就可以减少消耗电能,或者即使消耗电能增加,也不会成为大幅度的增加。
像这样,根据该实施方式的发光二极管元件,在SiC基板11的背面11b侧,通过减少欧姆接合部(N侧图案电极层14)的面积,并且在SiC基板11和高反射金属层17之间夹隔透明绝缘层15,将半导体/金属的界面排除。这样,就可以提高SiC基板11的背面11b侧的反射率,可以将光向SiC基板11的表面11a侧(P侧透明电极层13侧)高效率地输出。其结果是,可以实现高亮度的发光二极管元件。而且,通过采用P侧透明电极层13,可以实现进一步的高亮度化。
图4(a)一(d)是依照工序顺序表示SiC基板11的背面11b侧的电极构造的形成工序的具体例的图解性的剖面图。首先,如图4(a)所示,在SiC基板11的背面11b上,以与N侧图案电极层14对应的图案形成Ni硅化物层(合金层)21。更具体来说,例如在利用溅射形成了膜厚100的Ni膜图案后,例如通过在1000℃下进行5秒钟的退火,形成Ni硅化物层21。
然后,如图4(b)所示,例如利用溅射法,在Ni硅化物层21上,例如层叠膜厚1000的Ti层22,继而在其上层叠例如膜厚2500的Au层23。更具体来说,在SiC基板11的背面11b形成将Ni硅化物层21的部分开口了的光刻胶膜,在该状态下在全面层叠形成Ti层22及Au层23。其后,与光刻胶膜一起,将不需要的部分的Ti层22及Au层23揭去。此种工序后,例如通过在500℃下进行1分钟的烧结,得到Ni/Ti/Au叠层膜构造的N侧图案电极层14。
该图4(b)的工序中,P侧透明电极层13上的垫块电极16被同时形成。该垫块电极16由与P侧透明电极层13相接的Ti层、层叠于该Ti层上的Au层的叠层膜构成。与SiC基板11侧的背面11b侧的情况相同,事先形成具有与垫块电极16对应的开口的光刻胶膜,在该状态下在全面层叠Ti层及Au层。其后,与光刻胶膜一起,将与垫块电极16对应的区域以外的部分的Ti层及Au层揭去。
然后,如图4(c)所示,例如利用溅射法或CVD法(化学气相生长法),形成粘附于SiC基板11的背面11b的由SiO2膜构成的透明绝缘层15。该SiO2膜由于被形成于包括N侧图案电极层14的表面的全面上,因此在SiO2膜的形成之后,利用光刻工艺,进行用于使N侧图案电极层14的表面露出的蚀刻工序。
SiO2膜(透明绝缘层15)的膜厚t虽然只要在可以确保绝缘性的范围中任意地确定即可,但是例如优选设为800×奇数倍。该膜厚t相对于InGaN半导体发光部12的发光波长λ(=460nm)、SiO2的折射率n(=1.46),形成t=λ/(4·n)×奇数倍的关系。该膜厚t满足用于在透明绝缘层15和高反射金属层17的界面上获得最大的反射效率的条件。
在像这样形成了透明绝缘层15后,如图4(d)所示,粘附形成覆盖N侧图案电极层14的露出面及透明绝缘层15的全面的高反射金属层17。该高反射金属层17例如被利用铝的蒸镀形成,其膜厚例如被设为1000。像这样,就可以获得图1所示构造的发光二极管元件。
以上虽然对本发明的一个实施方式进行了说明,但是本发明也可以用其他的方式实施。例如,在所述的实施方式中,虽然作为透明导电性基板使用SiC基板,但是除此以外,例如也可以将GaN基板作为透明导电性基板使用。
另外,在P侧透明电极层13上,除了Zn1-xMgxO以外,还可以使用Ag、Al、Pa、Pd等。
另外,所述的实施方式中,虽然以氮化镓类半导体发光元件为例,但是本发明也可以适用于GaAs、GaP、InAlGaP、ZnSe、ZnO、SiC等其他的材料类的半导体发光元件。
另外,在透明绝缘膜15和高反射金属层17之间,也可以设置用于提高密接性的粘接层。粘接层例如也可以通过利用溅射设置0.1μm左右的氧化铝(Al2O3)来形成。
虽然对于本发明的实施方式详细地进行了说明,但是它们只不过是用于阐明本发明的技术内容的具体例,本发明应当被理解为不受这些具体例限定,本发明的精神及范围仅由附加的技术方案的范围限定。
本申请与2004年7月12日向日本国专利局提出的专利2004-205095号对应,该申请的全部公布内容在这里通过引用而被组入。
权利要求
1.一种半导体发光元件,其特征是,包括半导体发光部、配置于该半导体发光部的一方侧的表面电极、配置于所述半导体发光部的另一方侧并对于所述半导体发光部的发光波长来说透明的导电性基板、在所述导电性基板的作为与所述半导体发光部相反一侧的面的背面的第1区域进行欧姆接合而被图案形成的背面电极、以覆盖所述导电性基板的背面的所述第1区域以外的第2区域的方式形成,并对于所述半导体发光部的发光波长来说透明的背面绝缘层。
2.根据权利要求1所述的半导体发光元件,其特征是,还包括反射层,该反射层由以与所述背面电极接触并且将该背面电极及所述背面绝缘层覆盖的方式粘附形成于它们之上的导电性材料构成,而且,所述反射层对于所述半导体发光部的发光波长的反射率大于所述背面电极。
3.根据权利要求1所述的半导体发光元件,其特征是,所述导电性基板是按照使电阻率达到0.05Ωcm~0.5Ωcm的范围的方式控制了掺杂剂添加量的碳化硅基板。
4.根据权利要求1所述的半导体发光元件,其特征是,所述表面电极包括透明电极膜,该透明电极膜与所述半导体发光部相接并由对于所述发光波长来说透明的导电性材料制成。
全文摘要
本发明提供一种半导体发光元件,其特征是,包括半导体发光部、配置于该半导体发光部的一方侧的表面电极、配置于所述半导体发光部的另一方侧并对于所述半导体发光部的发光波长来说透明的导电性基板、在所述导电性基板的作为与所述半导体发光部相反一侧的面的背面的第1区域进行欧姆接合而被图案形成的背面电极、以覆盖所述导电性基板的背面的所述第1区域以外的第2区域的方式形成,并对于所述半导体发光部的发光波长来说透明的背面绝缘层。
文档编号H01L33/38GK1860621SQ20058000045
公开日2006年11月8日 申请日期2005年7月11日 优先权日2004年7月12日
发明者浅原浩和, 酒井光彦, 西田敏夫, 园部雅之 申请人:罗姆股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1