锂离子二次电池正极材料的制作方法

文档序号:6828135阅读:104来源:国知局
专利名称:锂离子二次电池正极材料的制作方法
技术领域
本发明涉及便携式电子设备或电动汽车中使用的锂离子二次电池正极材料。详细而言,涉及代替现有的钴酸锂、锰酸锂的廉价且安全性高的磷酸铁锂正极材料。
背景技术
锂离子二次电池作为移动电子终端、电动汽车中不可或缺的、高容量且轻量的电源的地位已经得到确立。锂离子二次电池的正极材料以往使用钴酸锂(LiCoO2)、锰酸锂 (LiMnO2)等无机金属氧化物。但是,随着近年来电子设备的高性能化导致的消耗电カ的增大,要求锂离子二次电池的进ー步高容量化。另外,从环境保护问题、能源问题的观点考虑, 要求从Co、Mn等环境负荷大的材料向更为环境和谐型的材料转换。此外,近年来,钴资源的枯竭问题受到关注,从这样的观点考虑也期望向代替钴酸锂、锰酸锂的廉价的正极材料转换。近年来,由于在成本及资源等方面有利,在含有铁的锂化合物中由通式 LiMxFe1^xPO4(0 ^ χ < 1、M为选自Nb、Ti、V、Cr、Mn、Co、Ni中的至少ー种)表示的橄榄石型结晶受到关注,正在进行各种研究和开发(例如,參考专利文献1)。LiM/ei_xP04与LiCoO2 相比温度稳定性更优良,可望在高温下安全地工作。另外,由于其具备以磷酸为骨架的结构,因此具有对充放电反应引起的结构劣化的耐性优良的特征。现有技术文献专利文献专利文献1 日本特开平9-134725号公报

发明内容
使用含有橄榄石型じ1^^_ア04结晶的现有的正极材料的锂离子二次电池,当放电时的电流増大吋,存在电池的内部电阻升高,输出电压降低的问题。认为这是由干,在正极材料与存在于其周围的电解质的界面处,锂离子和电子的传导性降低,从而容易产生内部电阻。另外,使用含有橄榄石型LiMxFei_xP04结晶的现有的正极材料的锂离子二次电池, 当反复充放电时,存在电解液中会生成树枝状结晶而在电池内部发生短路的问题。本发明的目的在干,提供即使放电时增大电流而输出电压的降低也较小的锂离子二次电池正极材料。本发明的另一目的在干,提供作为锂离子二次电池的正极材料使用时、不会因反复充放电而发生短路、长期可靠性优良的锂离子二次电池用正极材料。本发明人等进行了深入研究,结果发现,在由使橄榄石型LiMxFehPO4结晶析出而成的结晶化玻璃粉末构成的锂离子二次电池正极材料中,通过对结晶化玻璃粉末的表面进行改性,能够得到锂离子和电子的传导性优良的正极材料,并且将其作为本发明而提出。S卩,本发明涉及一种锂离子二次电池正极材料,由含有通式LiMxFei_xP04(0彡χ<1、M为选自Nb、Ti、V、Cr、Mn、C0、Ni中的至少ー种)所示的橄榄石型结晶的结晶化玻璃粉末构成,其特征在干,在结晶化玻璃粉末的表面具有非晶质层。如前所述,锂离子二次电池中,存在如下问题在正极材料与电解质的界面处锂离子和电子的传导性降低,容易产生内部电阻。因此,通过采用在构成正极材料的结晶化玻璃粉末的表面具有非晶质层的构成,能够改善正极材料与电解质的界面处的锂离子和电子的传导性。結果,能够抑制放电时的电流増大时的电池内部电阻的上升,能够减少输出电压的降低。第二,本发明的锂二次电池正极材料中,优选结晶化玻璃粉末含有以摩尔%表示时Li2O为20 50 %、Fe2O3为5 40 %、P2O5为20 50 %的组成。根据该构成,容易获得含有通式LiMxFei_xP04所示的橄榄石型结晶的结晶化玻璃。第三,本发明的锂二次电池正极材料中,优选结晶化玻璃粉末还含有以摩尔%表示时 Nb205+V205+Si&+B203+Ge&+Al203+G£i203+Sl3203+Bi203 为 0. 1 25%的组成。通过使结晶化玻璃粉末还含有这些成分,玻璃形成能力提高,容易获得均质的玻
ο第四,本发明的锂二次电池正极材料中,优选非晶质层含有以原子%表示时P为 5 40%、Fe+Nb+Ti+V+Cr+Mn+Co+Ni 为 0 25%、C 为 0 60%、0 为 30 80%的组成。通过使非晶质层含有上述組成,锂离子传导性和电子传导性两种特性优良,容易降低正极材料与电解质之间的界面电阻。第五,本发明的锂二次电池正极材料中,优选结晶化玻璃粉末的平均粒径为
0. 01 20μ 。根据该构成,正极材料整体的表面积减小,因此容易进行锂离子、电子的交換,容易获得充分的放电容量。第六,本发明的锂二次电池正极材料,优选IOC倍率下放电时的平均输出电压为 2. 5V以上。第七,本发明的锂二次电池正极材料,优选IOC倍率下的放电容量为BmAhg—1以上。第八,本发明中,使用上述任何一种锂离子二次电池正极材料的本发明的锂离子二次电池,即使在放电时增大电流,输出电压的降低也较小。另外,本发明人等为解决上述课题进行了研究,结果发现,反复的充放电所致的电解液中树枝状结晶的产生原因在干,在含有橄榄石型LiM/ei_xP04结晶的正极材料中以杂质形式而含有的磁性粒子。并且发现,通过限制正极材料中的该磁性粒子的含量,能够抑制反复的充放电所致的树枝状结晶的产生,进而能够抑制树枝状结晶引起的短路的发生,并将其作为本发明而提出。S卩,本发明涉及一种锂离子二次电池用正极材料,含有通式LiMxFei_xP04(0 く χ
<1、Μ为选自Nb、Ti、V、Cr、Mn、Co、Ni中的至少ー种)所示的橄榄石型結晶,其特征在干, 磁性粒子的含量为IOOOppm以下。含有橄榄石型LiM/ei_xP04结晶的正极材料,通常通过将碳酸锂等锂原料、草酸铁或金属铁等铁原料、磷酸氢铵等磷酸原料等混合,在惰性或还原性气氛下在500 900°C进行煅烧的固相反应法来制造。在其制造ェ序的同时或者在其制造ェ序之后混合碳或有机化合物并进行煅烧,由此对正极材料赋予电子传导性。但是,若利用固相反应法进行制造时残留未反应的铁原料,则混合碳或有机化合物进行煅烧时,可知该铁原料会被还原,生成金属铁、磷化铁等磁性粒子。若正极材料中存在磁性粒子,则对使用该正极材料制作的电池进行充放电吋,磁性粒子会溶解于电解液中而生成树枝状結晶,从而成为电池内部的短路的原因。鉴于这样的发现,本发明的正极材料将磁性粒子的含量限制为IOOOppm以下,因此即使反复充放电也不易产生树枝状結晶,从而也能够尽量抑制该树枝状结晶引起的短路的发生。本发明的锂二次电池用正极材料,优选由含有以摩尔%表示时Li2O为20 50%、 Fe2O3为5 40%、P2O5为20 50%的组成的结晶化玻璃构成。通过使正极材料由具有上述組成的结晶化玻璃构成,能够减少磁性粒子的含量。 这是由干,与现有的固相反应产品不同,结晶化玻璃是经过玻璃熔融エ艺而制造的,因此不易残留导致磁性粒子产生的未反应的铁原料。本发明的锂二次电池正极材料,优选还含有以摩尔%表示时Nb205+V205+Si02+B203+ Ge02+Al203+Ga203+Sb203+Bi203 为 0· 1 25%的组成。本发明的锂二次电池正极材料,优选IOC倍率下的放电容量为BmAhg—1以上。本发明的锂二次电池正极材料,优选IOC倍率下放电时的平均输出电压为2. 5V以上。使用上述任意一种锂离子二次电池正极材料的本发明的锂离子二次电池,不会因反复充放电而发生短路,长期可靠性优良。
具体实施例方式本发明的第一实施方式的锂离子二次电池正极材料,由含有通式 LiMxFe1^xPO4(0 ^ χ < 1、Μ为选自Nb、Ti、V、Cr、Mn、Co、Ni中的至少ー种)所示的橄榄石型结晶的结晶化玻璃粉末构成。作为结晶化玻璃粉末,优选含有以摩尔%表示时Li2O为20 50%,Fe2O3为5 40%、Ρ205为20 50%的组成。对组成进行上述限定的理由说明如下。Li2O是LiMxFei_xP04结晶的主要成分。Li2O的含量为20 50 %、优选为25 45 %。 Li2O的含量少于20%或多于50%时,LiMxFe1^xPO4结晶难以析出。Fe2O3也是LiMxFe1^xPO4结晶的主要成分。Fe2O3的含量为10 40%、15 35%、 25 35%,特别优选为31. 6 34%。Fii2O3的含量少于10%时,LiMxFei_xP04结晶难以析出。I^e2O3的含量多于40%吋,じ1^^1_タ04结晶难以析出,并且容易析出不需要的!^203结

曰曰°P2O5也是LiMxFei_xP04结晶的主要成分。P2O5的含量为20 50%、优选为25 45%。P2O5的含量少于20%或多于50%时,LiMxFe1^xPO4结晶难以析出。另外,除上述成分以外,作为提高玻璃形成能力的成分,可添加例如Nb205、V205、 SiO2, B203> GeO2, A1203> Ga203> Sb2O3 R Bi2O30 这些成分的含量以总量计优选为 0. 1 25%。 上述成分的含量以总量计少于0. 吋,玻璃化容易变得困难,在多于25%吋,LiMxFe1^xPO4 结晶的比例可能会降低。其中,Nb2O5是对得到均质的玻璃有效的成分,容易在结晶化玻璃表面形成非晶质层。Nb2O5的含量为0.1 20%、1 10%,特別优选为4 6.3%。在Nb2O5的含量少于 0. 吋,难以得到均质的玻璃。另ー方面,Nb2O5的含量多于20%吋,结晶化时铌酸铁等异种结晶会析出,电池的充放电特性有降低的倾向。结晶化玻璃粉末中,LiMxFei_xP04结晶的含量优选为20质量%以上、50质量%以上、70质量%以上。在LiMxFei_xP04结晶的含量少于20质量%吋,放电容量有降低的倾向。 另外,对于上限没有特別限定,但从现实上而言为99质量%以下,进而为95质量%以下。结晶化玻璃粉末中的LiMxFei_xP04结晶的晶粒尺寸越小,越能够使结晶化玻璃粉末的粒径变小,从而能够提高导电性。具体而言,晶粒尺寸优选为IOOnm以下,更优选为 SOnm以下。对于下限没有特別限定,但从现实上而言为Inm以上,进而为IOnm以上。需要说明的是,晶粒尺寸是由有关结晶化玻璃粉末的粉末X射线衍射的分析結果,根据谢乐 (Scherrer)公式而求出的。构成第一实施方式的锂离子二次电池正极材料的结晶化玻璃,其特征在干,在其表面具有非晶质层。非晶质层优选含有以原子%表示吋P为5 40%、Fe+Nb+Ti+V+Cr+Mn+Co+Ni为 0 25%、C为0 60%、0为30 80%的组成。对组成进行上述限定的理由说明如下。P是用于形成锂离子传导性优良的磷酸盐结构的主要成分。P的含量为5 40%、 优选为6 37%。P的含量少于5%或多于40%时,无法形成磷酸盐结构,锂离子传导性有降低的倾向。0也是用于形成磷酸盐结构的主要成分。0的含量为30 80 %、优选为40 70 %。 0的含量少于30%或多于80%时,无法形成磷酸盐结构,锂离子传导性有降低的倾向。Fe、Nb、Ti、V、Cr、Mn、C0、Ni是用于提高非晶质层的电子传导性的成分。这些成分的含量以总量计为0 25%、优选为0. 1 20%。这些成分的含量多于25%时,锂离子传导性有降低的倾向。C也是用于提高非晶质层的电子传导性的成分。C的含量为0 60%、5 60%、 10 55%,特別优选为15 50%。C的含量多于60%吋,非晶质层的锂离子传导性有降低的倾向。另外,为了充分地赋予电子传导性,C的含量优选为5%以上。非晶质层的組成可以通过适当选择结晶化玻璃的組成、结晶化条件(热处理温度及热处理时间等)或者后述的碳或有机化合物等导电活性物质的添加量来进行调节。非晶质层的厚度为5nm以上、特別优选为IOnm以上。非晶质层的厚度小于5nm吋, 难以得到改善结晶化玻璃粉末与电解质的界面处的锂离子和电子的传导性的效果,电池的输出电压容易降低。另外,电极制作时采用以水为溶剂的水性糊吋,结晶中的Li离子会溶出,放电容量可能会降低。另ー方面,非晶质层的厚度的上限没有特別限定,但非晶质层的厚度过大时,反而会阻碍结晶化玻璃粉末与电解质的界面处的锂离子和电子的迁移,输出电压可能会降低。从这样的观点考虑,非晶质层的厚度为50nm以下、优选为40nm以下。非晶质层在结晶化玻璃粉末的表面上所占的比例为40%以上、45%以上,特别优选为50%以上。非晶质层的比例少于40%吋,难以得到改善结晶化玻璃粉末与电解质的界面处的锂离子和电子的传导性的效果,电池的输出电压容易降低。另外,非晶质层的厚度及非晶质层在结晶化玻璃粉末的表面上所占的比例可以通过适当选择结晶化条件(热处理温度及热处理时间等)或者后述的碳或有机化合物等导电活性物质的添加量来进行调节。结晶化玻璃粉末的平均粒径(D5tl)为0. 01 20 μ m、优选为0. 1 15 μ m、进ー步优选为0. 5 10 μ m。结晶化玻璃粉末的平均粒径超过20 μ m吋,正极材料整体的表面积减小,难以进行锂离子和电子的交換,因此放电容量有降低的倾向。另ー方面,结晶化玻璃粉末的平均粒径小于0. 01 μ m吋,电极密度降低,因此电池的単位体积的容量有降低的倾向。 另外,制作电极糊时结晶化玻璃粉末有难以分散到溶剂中的倾向。需要说明的是,本发明中结晶化玻璃粉末的平均粒径D5tl是指通过激光衍射法測定的值。如前所述,第一实施方式的锂离子二次电池正极材料,通过对结晶化玻璃粉末的表面进行改性,能够抑制放电时的电流増大时的电池内部电阻的上升,能够减轻输出电压的降低。具体而言,本发明的第一实施方式的锂离子二次电池正极材料在IOC倍率下放电时的平均输出电压为2. 5V以上、2. 6V以上,特別优选为2. 7V以上。另外,第一实施方式的锂离子二次电池正极材料在IOC倍率下的放电容量为 ISmAhg-1以上、ZOmAtig-1以上,特别优选为25-1^1以上。另外,第一实施方式的锂离子二次电池正极材料的电导率为1.0X10_8S · cnT1以上、优选为2. OX 10_8S · cm—1以上、更优选为LOXlO-7S · cm—1以上。下面,对第一实施方式的锂离子二次电池正极材料的制造方法进行说明。首先,按照上述组成调配原料粉末,对所得的原料粉末实施熔融急冷法、溶胶-凝胶法、向火焰中喷雾溶液雾等化学气相合成方法、机械化学法等,由此得到作为前体的结晶性玻璃。通过这些方法,容易促进玻璃化,结果容易在结晶化玻璃表面形成非晶质层。通过对所得的结晶性玻璃实施热处理而得到结晶化玻璃。在此,可以在对块状的结晶化玻璃实施热处理而得到结晶化玻璃后将该结晶化玻璃粉碎而制成结晶化玻璃粉末, 也可以将结晶性玻璃粉碎后实施热处理而得到结晶化玻璃粉末。结晶性玻璃的热处理例如在温度及气氛可控的电炉中进行。热处理温度因结晶性玻璃的組成、所期望的晶粒尺寸而异,因此没有特別限定, 但至少在玻璃化转变温度以上、进而在结晶化温度以上(具体而言,为500°C以上、优选为 550°C以上)进行热处理是适当的。在热处理温度低于玻璃化转变温度吋,结晶的析出变得不充分,放电容量可能会降低。另ー方面,热处理温度的上限为900°C、特別优选为850°C。 热处理温度超过900°C吋,容易析出异种結晶,锂离子传导性可能会降低。热处理时间以使结晶性玻璃的结晶化充分进行的方式加以适当调节。具体而言, 为10 180分钟、特別优选为20 120分钟。在热处理吋,优选向结晶性玻璃粉末中添加碳或有机化合物等导电活性物质,并在惰性或还原气氛中进行煅烧。根据该方法,容易在结晶化玻璃粉末表面形成非晶质层。另外,能够使非晶质层中含有C成分,从而能够提高非晶质层的电子传导性。另外,碳或有机化合物等导电活性物质通过煅烧而显示出还原作用,因此结晶化时玻璃中的铁的价数容易变成ニ价,能够以高比例选择性地得到橄榄石型的LiMxFei_xP04結晶。作为导电活性物质的添加量,相对于结晶性玻璃100质量份为0. 1 50质量份、 1 30质量份,特别优选为5 20质量份。导电活性物质的添加量少于0. 1质量份时,难以充分获得使非晶质层的电子传导性提高的效果。导电活性物质的添加量超过50质量份吋,锂离子二次电池中正极与负极的电位差变小,可能得不到所期望的电动势。
下面,对本发明的第二实施方式的锂离子二次电池用正极材料进行说明。在第二实施方式的锂离子二次电池用正极材料中,磁性粒子的含量为IOOOppm以下、700ppm以下, 特別优选为500ppm以下。磁性粒子的含量多于IOOOppm吋,反复充放电时,磁性粒子会溶解到电解液中而生成树枝状結晶,因此可能会在电池内部引起短路,从而损害电池性能。另外,根据情况电池可能会过热而起火。作为磁性粒子,可列举金属铁、磷化铁等。磁性粒子的平均粒径一般为10 500 μ m、特别是20 300 μ m左右。当锂离子二次电池用正极材料由结晶化玻璃构成吋,容易减少正极材料中的磁性粒子含量。具体而言,优选由含有以摩尔%表示为Li2O 20 50%、!^e2O3 5 40%、P2O5 20 50%的組成的结晶化玻璃构成。对组成进行上述限定的理由说明如下。Li2O是LiMxFei_xP04结晶的主要成分。Li2O的含量为20 50 %、优选为25 45 %。 Li2O的含量少于20%或多于50%时,LiMxFe1^xPO4结晶难以析出。Fe2O3也是LiMxFe1^xPO4结晶的主要成分。Fe2O3的含量为10 40%、15 35%、 25 35%,特别优选为31. 6 34%。Fii2O3的含量少于10%时,LiMxFei_xP04结晶难以析出。I^e2O3的含量多于40%吋,じ1^^1_タ04结晶难以析出,并且容易析出不需要的!^203结晶。!^e2O3结晶在后续エ序中被还原而成为产生磁性粒子的原因。P2O5也是LiMxFei_xP04结晶的主要成分。P2O5的含量为20 50%、优选为25 45%。P2O5的含量少于20%或多于50%时,LiMxFe1^xPO4结晶难以析出。另外,除上述成分以外,作为提高玻璃形成能力的成分,可添加例如Nb205、V205、 SiO2, B203> GeO2, A1203> Ga203>5b203 & Bi2O30 上述成分的含量以总量计优选为 0. 1 25%。 上述成分的含量以总量计少于0. 吋,玻璃化容易变得困难,多于25%吋,LiMxFei_xP04结晶的比例可能会降低。其中,Nb2O5是对得到均质的玻璃有效的成分。Nb2O5的含量为0. 1 20%、1 10%,特別优选为4 6.3%。Nb2O5的含量少于0. 吋,难以得到均质的玻璃。另ー方面, Nb2O5的含量多于20%吋,结晶化时铌酸铁等异种结晶会析出,电池的充放电特性有降低的倾向。第二实施方式的锂离子二次电池用正极材料,在IOC倍率下的放电容量为 ISmAhg-1以上、ZOmAhg-1以上,特别优选为25-1^1以上。另外,第二实施方式的锂离子二次电池用正极材料,在IOC倍率下放电时的平均输出电压为2. 5V以上、2. 6V以上,特別优选为2. 7V以上。IOC倍率下的放电容量及平均输出电压,可以通过对!^e2O3或Nb2O5的含量进行上述限定来实现。在构成第二实施方式的二次电池用正极材料的结晶化玻璃中,LiMxFei_xP04结晶的含量优选为20质量%以上、50质量%以上、70质量%以上。LiMxFei_xP04结晶的含量少于 20质量%吋,导电性有不充分的倾向。另外,对于上限没有特別限定,但从现实上而言为99 质量%以下、进而为95质量%以下。第二实施方式的二次电池用正极材料,例如通过下述方法制造按照上述组成调配原料粉末,将所得的原料粉末熔融,得到作为前体的结晶性玻璃,然后,通过加热实施结晶化处理。在此,结晶性玻璃优选利用熔融急冷法来制造。利用熔融急冷法吋,容易促进
8玻璃化,不易产生未反应的铁原料,结果容易得到磁性粒子少的正极材料。另外,优选在 1200 1400°C的范围内调节熔融温度。通过将熔融温度设定在该范围内,不易产生未反应的铁原料,容易得到磁性粒子少的正极材料。也可以通过将所得的前体结晶性玻璃粉碎而制成结晶性玻璃粉末后、在例如温度及气氛可控的电炉中进行热处理而得到由结晶化玻璃粉末构成的正极材料。热处理的温度历史因结晶性玻璃的組成、所期望的晶粒的粒子尺寸而异,因而没有特別限定,但至少在玻璃化转变温度以上、进而在结晶化温度以上进行热处理是适当的。上限为1000°C、进而为 950°C。在热处理温度低于玻璃化转变温度吋,结晶的析出不充分,可能无法得到充分的导电性提高效果。另ー方面,热处理温度超过1000°C吋,结晶可能会熔化。作为具体的热处理的温度范围,为500 1000°C、特別优选为550 950°C。热处理时间以使前体玻璃的结晶化充分进行的方式适当调节。具体而言,为10 180分钟、特別优选为20 120分钟。此时,优选向结晶性玻璃粉末中添加碳或有机化合物等导电活性物质,并在惰性或还原气氛中进行煅烧。碳或有机化合物通过煅烧而显示出还原作用,因此结晶化之前玻璃中的铁的价数容易变成ニ价,能够以高含有率得到LiMxFei_xP04。作为导电活性物质的添加量,相对于结晶性玻璃粉末100质量份为0. 1 50质量份、1 30质量份,特别优选为5 20质量份。导电活性物质的添加量少于0. 1质量份吋, 难以充分获得赋予导电性的效果。导电活性物质的添加量超过50质量份吋,锂离子二次电池中正极与负极的电位差变小,可能得不到所期望的电动势。结晶化玻璃粉末的粒径越小,则正极材料整体的表面积越大,越容易进行离子、电子的交換,因而优选。具体而言,结晶化玻璃粉末的平均粒径为50 μ m以下、30 μ m以下,特别优选为20 μ m以下。对下限没有特別限定,但从现实上而言为0. 05 μ m以上。结晶性玻璃粉末或结晶化玻璃粉末根据需要过筛进行分级。在此,由于使用不锈钢等金属制的筛子时可能会混入铁化合物作为杂质,因此优选使用塑料等金属以外的筛子。结晶化玻璃粉末中的LiM/ei_xP04结晶的晶粒尺寸越小,越能够使结晶化玻璃粉末的粒径变小,从而能够提高导电性。具体而言,晶粒尺寸优选为IOOnm以下,更优选为SOnm 以下。对下限没有特別限定,但从现实上而言为Inm以上,进而为IOnm以上。需要说明的是, 晶粒尺寸是由有关结晶化玻璃粉末的粉末X射线衍射的分析結果,根据谢乐(Scherrer)公式而求出的。第二实施方式的锂离子二次电池用正极材料的电导率为1. OX 10_8S -cm-1以上,优选为LOXlO-6S · cm—1以上,更优选为LOXlO-4S · cm—1以上。实施例以下,基于实施例详细地说明本发明,但本发明不限于所述的实施例。(实施例1)以偏磷酸锂(LiPO3)、碳酸锂(Li2CO3)、氧化铁(狗203)、氧化铌(Nb2O5)为原料,按照以摩尔%表示为Li2O 33. 0%,Fe2O3 31. 7%,P20531. 2%,Nb2O5 4. 1 %的组成调配原料粉末, 在1250°C、大气气氛中进行1小时熔融。然后,将熔融玻璃注入ー对辊中,边急冷边成形为薄膜状,由此制作前体结晶性玻璃。然后,用球磨机将结晶性玻璃粉碎,相对于所得的结晶性玻璃粉末100质量份,混合酚醛树脂18质量份(以石墨換算相当于12. 4质量份)、作为溶剂的42质量份的乙醇,由此使其浆料化,通过公知的刮刀法成形为厚度500 μ m的片状后,在80°C干燥约1小吋。然后,将所得的片状成形体切割为规定的大小,在氮气气氛中在800°C进行30分钟热处理使其结晶化,由此得到了正极材料(结晶化玻璃粉末的烧结体)。对粉末X射线衍射图进行了确认,结果确认到来自于LiFePO4的衍射线。利用透射型电子显微镜对结晶化玻璃粉末的截面进行了观察。从所得的图像能够确认到表面上具有15nm的非晶质层。另外,非晶质层在结晶化玻璃粉末表面上所含的比例为60%。通过EDX測定非晶质层的组成,结果以原子%表示为P 9%,Fe 2%,Nb 3%,0 55%,C 31%。另外,所得正极材料在IOC倍率下的放电容量为^mAhg—1,平均输出电压为2. SV0需要说明的是,对IOC倍率下的放电容量及平均输出电压进行如下评价。相对于正极材料,以正极材料粘结剂导电性物质=85 10 5(质量比)的比例称量作为粘结剂的聚偏ニ氟乙烯、作为导电性物质的科琴黑(KetjenBlack 高导电性炭黑),将上述物质分散到N-甲基吡咯烷酮(NMP)中后,用自转/公转搅拌机充分搅拌使其浆料化。然后,使用间隙为150μπι的刮刀,在作为正极集电体的厚度20μπι的铝箔上涂布所得的浆料,用干燥机在80°C进行干燥后,使其在ー对旋转辊间通过,以1吨/cm2进行压制,由此得到电极片。将电极片用电极冲裁机冲裁为直径11mm,在140°C干燥6小吋,得到圆形的工作电极。然后,将所得的工作电极以铝箔面朝下的方式载置于纽扣电池的下盖上,在其上层叠由60°C减压干燥8小时后的直径16mm的聚丙烯多孔膜(Hoechst Celanese公司制 CELGARD#2400)制成的隔膜及作为对电极的金属锂,从而制作试验电池。作为电解液,使用 IM LiPF6溶液/EC (碳酸乙烯酷)DEC(碳酸ニ乙酷)=1:1。需要说明的是,试验电池的组装在露点温度-60°C以下的环境中进行。充放电试验如下进行。充电(从正极材料中释放锂离子)通过2V至4. 2V的CC (恒流)充电来进行。放电(锂离子向正极材料的吸留)通过4. 2V至2V的放电来进行。(比较例1)以碳酸锂、草酸铁ニ水合物、磷酸氢ニ铵为原料,按照Li2O 33. 3%, Fe2O3 33. 3%, P2O5 33. 3%的摩尔比调配原料粉末,在800°C下、氮气气氛中进行48小时煅烧,得到结晶粉末。在所得的结晶粉末100质量份中,混合酚醛树脂18质量份(以石墨換算相当于 12. 4质量份)、作为溶剂的42质量份的乙醇,由此使其浆料化,通过公知的刮刀法成形为厚度500 μ m的片状后,在80°C下干燥约1小吋。然后,将该片材切割为规定的大小,在氮气中在800°C下进行30分钟热处理,得到正极材料粉末。对粉末X射线衍射图进行确认,结果确认到来自于LiFePO4的衍射线。利用透射型电子显微镜对正极材料粉末的截面进行观察,结果在表面未确认到非
日日旗メ所得正极材料在IOC倍率下的放电容量几乎为OmAhg—1。另外,内部电阻过大,未能测定输出电压。(实施例2)
以偏磷酸锂(LiPO3)、碳酸锂(Li2CO3)、氧化铁(狗203)、氧化铌(Nb2O5)为原料,按照以摩尔%表示为Li2O 31. 7%,Fe2O3 31. 7%,P20531. 7%,Nb2O5 4. 8%的组成调配原料粉末, 在1200°C、大气气氛中进行1小时熔融。然后,将熔融玻璃注入ー对辊中,边急冷边成形为薄膜状,由此制作作为前体的结晶性玻璃试样。然后,用球磨机将结晶性玻璃试样粉碎,相对于所得的结晶性玻璃粉末100质量份,混合丙烯酸树脂(聚甲基丙烯酸烷基酯)30质量份(以石墨換算相当于18. 9质量份)、 作为增塑剂的3质量份的邻苯ニ甲酸丁基苄酯、作为溶剂的35质量份的甲乙酮,由此使其浆料化,通过公知的刮刀法成形为厚度200 μ m的片状后,在室温下干燥约2小吋。然后,将所得的片状成形体切割为规定的大小,在氮气气氛中在800°C进行30分钟热处理,得到正极材料。对粉末X射线衍射图进行确认,结果确认到来自于LiFePO4的衍射线。測定所得的正极材料中磁性粒子的含量,结果为Oppm(未检出)。需要说明的是, 磁性粒子的含量通过使具有300mT的磁通密度的磁铁与粉碎成粉末的正极材料IOOg接触时附着在磁铁上的磁性粒子的量来进行评价。另外,所得的正极材料在IOC倍率下的放电容量为^mAhg—1,平均输出电压为 2. 8V。IOC倍率下的放电容量及平均输出电压如下进行评价。相对于正极材料,以正极材料粘结剂导电性物质=85 10 5(质量比) 的比例称量作为粘结剂的聚偏ニ氟乙烯、作为导电性物质的科琴黑,将上述物质分散到 N-甲基吡咯烷酮(NMP)中后,用自转/公转搅拌机充分搅拌使其浆料化。然后,使用间隙为150 μ m的刮刀,在作为正极集电体的厚度20 μ m的铝箔上涂布所得的浆料,用干燥机在 80°C进行干燥后,使其在ー对旋转辊间通过,以1吨/cm2进行压制,由此得到电极片。将电极片用电极冲裁机冲裁为直径11mm,在140°C干燥6小吋,得到圆形的工作电极。然后,将所得的工作电极以铜箔面朝下的方式载置于纽扣电池的下盖上,在其上层叠由60°C减压干燥8小时后的直径16mm的聚丙烯多孔膜(Hoechst Celanese公司制 CELGARD#2400)制成的隔膜及作为对电极的金属锂,从而制作试验电池。作为电解液,使用 IM LiPF6溶液/EC (碳酸乙烯酷)DEC(碳酸ニ乙酷)=1:1。需要说明的是,试验电池的组装在露点温度-60°C以下的环境中进行。充放电试验如下进行。充电(从正极材料中释放锂离子)通过2V至4. 2V的CC (恒流)充电来进行。放电(锂离子向正极材料的吸留)通过4. 2V至2V的放电来进行。(比较例2)以碳酸锂、草酸铁ニ水合物、磷酸氢ニ铵为原料,按照Li2O 33. 3%, Fe2O3 33. 3%, P2O5 33. 3%的摩尔比调配原料粉末,在800°C、氮气气氛中进行48小时煅烧,得到结晶粉末。在所得的结晶粉末100质量份中,混合丙烯酸树脂(聚甲基丙烯酸烷基酷)30质量份(以石墨換算相当于18. 9质量份)、作为增塑剂的3质量份的邻苯ニ甲酸丁基苄酯、作为溶剂的35质量份的甲乙酮,由此使其浆料化,通过公知的刮刀法成形为厚度200 μ m的片状后,在室温下干燥约2小吋。然后,将该片材切割为规定的大小,在氮气中在800°C进行 30分钟热处理,得到正极材料。对粉末X射线衍射图进行确认,结果确认到来自于Lii^ePO4 的衍射线。
測定所得的正极材料中磁性粒子的含量,结果为1300ppm。产业实用性本发明的锂离子二次电池正极材料,适合用于笔记本电脑、手机等便携式电子设备或电动汽车等。
权利要求
1.一种锂离子二次电池正极材料,其特征在干,由含有通式LiM/ei_xP04所示的橄榄石型结晶的结晶化玻璃粉末构成,在结晶化玻璃粉末的表面具有非晶质层,在所述通式中,0 ^ χ < 1,M为选自Nb、Ti、V、Cr、Mn、Co、Ni中的至少ー种。
2.如权利要求1所述的锂离子二次电池正极材料,其特征在干,结晶化玻璃粉末含有以摩尔%表示为Li2O 20 50%、狗203 5 — 40%,P2O5 20 50% 的組成。
3.如权利要求2所述的锂离子二次电池正极材料,其特征在干,结晶化玻璃粉末还含有以摩尔%表示为Nb205+V205+SiA+B203+GeA+Al203+G£i203+Sl3203+B i203是0. 1 25%的组成。
4.如权利要求1 3中任一项所述的锂离子二次电池正极材料,其特征在干,非晶质层含有以原子%表示为P 5 40%、i^e+Nb+Ti+V+Cr+Mn+Co+Ni 0 25%、C 0 60%、0 30 80%的组成。
5.如权利要求1 4中任一项所述的锂离子二次电池正极材料,其特征在干,结晶化玻璃粉末的平均粒径为0. 01 20 μ m。
6.如权利要求1 5中任一项所述的锂离子二次电池正极材料,其特征在干,IOC倍率下放电时的平均输出电压为2. 5V以上。
7.如权利要求1 6中任一项所述的锂离子二次电池正极材料,其特征在干,IOC倍率下的放电容量为BmAhg—1以上。
8.一种锂离子二次电池,其特征在干,使用了权利要求1 7中任一项所述的锂离子二次电池正极材料。
9.一种锂离子二次电池用正极材料,其特征在干,含有通式LiM/ei_xP04所示的橄榄石型結晶,所述锂离子二次电池用正极材料中磁性粒子的含量为IOOOppm以下,在所述通式中,0彡χ < 1,M为选自Nb、Ti、V、Cr、Mn、Co、Ni中的至少ー种。
10.如权利要求9所述的锂离子二次电池正极材料,其特征在干,由含有以摩尔%表示为Li2O 20 50%、Fe2O3 5 40%、P2O5 20 50%的组成的结晶化玻璃构成。
11.如权利要求10所述的锂离子二次电池正极材料,其特征在干,所述结晶化玻璃还含有以摩尔%表示为Nb205+V205+SiA+B203+GeA+Al203+G£i203+Sl3203+B i203是0. 1 25%的组成。
12.如权利要求9 11中任一项所述的锂离子二次电池正极材料,其特征在干,IOC倍率下的放电容量为BmAhg—1以上。
13.如权利要求9 12中任一项所述的锂离子二次电池正极材料,其特征在干,IOC倍率下放电时的平均输出电压为2. 5V以上。
14.一种锂离子二次电池,其特征在干,使用了权利要求9 12中任一项所述的锂离子二次电池正极材料。
全文摘要
一种锂离子二次电池正极材料,由含有通式LiMxFe1-xPO4(0≤x<1、M为选自Nb、Ti、V、Cr、Mn、Co、Ni中的至少一种)所示的橄榄石型结晶的结晶化玻璃粉末构成,其特征在于,结晶化玻璃粉末的表面具有非晶质层。
文档编号H01M4/36GK102549818SQ20108004387
公开日2012年7月4日 申请日期2010年10月18日 优先权日2009年10月19日
发明者坂本明彦, 境哲男, 永金知浩, 结城健, 邹美靓 申请人:日本电气硝子株式会社, 独立行政法人产业技术综合研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1