全固态锂离子电池及其制备方法

文档序号:6791487阅读:208来源:国知局
专利名称:全固态锂离子电池及其制备方法
技术领域
本发明涉及电化学领域,具体地,涉及一种全固态锂离子电池及其制备方法。
背景技术
自二十世纪九十年代初商用化以来,锂离子电池凭借着其较高的能量密度与功率密度,在电子消费产品,如移动电话、笔记本电脑与数码相机等领域,逐步占据了越来越大的市场份额。随着国民经济的不断繁荣,与现代科技水平的不断提升,锂离子电池在当今社会又大大扩展了其应用领域。如近年来为降低二氧化碳排放而兴起的电动汽车,以及伴随电子器件小型化、集成化而产生的薄膜电池等。锂离子电池技术的改进与完善,扩展了其应用领域,同时新的使用条件又对锂离子电池提出了更为苛刻与高端的要求;两者相互影响与促进,带动了科学研究与产业经济的共同进步。目前,市场上的商用锂离子电池广泛使用液体电解质,它是易燃易爆的有机物,具有发生泄漏和温度过高时爆炸等安全隐患,会造成较大的人身伤害与经济损失。同时,对于某些极端环境,如高度集成的小型电子产品和高能、稳定的储能电站等,现有的锂离子电池技术都受到了严峻的挑战。锂电池安全事故屡有发生,锂电池电动汽车着火事故也使目前商用动力锂电池的发展受阻。因此,对锂离子电池的开发有待于进一步开发。

发明内容
本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商业选择。为此,本发明的一个目的在于提出一种全固态锂离子电池。该全固态锂离子电池,具有良好的热稳定性,化学稳定性及机械加工性,因而可以从根本上杜绝漏液、爆炸,使安全性能得到根本保障。根据本发明实施例的第一方面,本发明提供了一种全固态锂离子电池,包括:正极材料、正极集流体、固体电解质材料、负极材料、负极集流体和不锈钢外壳,其中,所述固体电解质材料为锆酸锂镧、锶掺杂锆酸锂镧、锗掺杂锆酸锂镧、铝掺杂锆酸锂镧或硅掺杂锆酸锂镧中的至少一种。由于锆酸锂镧具有立方石榴石结构,其凭借着较高的室温离子电导率(如1(T4S/Cm)和电化学稳定性(如与金属锂不发生反应)可以优化改善电极与电解质之间的界面接触,有望提升全固态锂离子电池的性能表现,具有极大的应用前景。根据本发明实施例的第二方面,本发明提供了一种上述全固态锂离子电池的制作方法,包括以下步骤:对固体电解质材料进行表面抛光处理;将正极活性物质和负极活性物质分别涂覆在所述经过表面抛光处理的固体电解质材料的两面;在所述正极活性物质和所述负极活性物质的外表面分别加上正极集流体和负极集流体,以便获得全固态锂离子电池结构;用不锈钢外壳封装所述全固态锂离子电池结构。通过本发明提供的制作方法得到的全固态锂离子电池,大大提高了锂电池的安全性,同时相对于商用电池,具有操作过程简便、成本低、能耗小等 优势,在未来的锂电池技术及市场中具有极大的应用前景。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。


本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:图1是根据本发明实施例的全固态锂离子电池的结构示意图;图2是根据本发明实施例的全固态锂离子电池的充放电曲线,其中正极为锰酸锂,电解质为锗掺杂错酸锂镧,负极为金属锂,充放电电压范围为2.3V 4.6V。
具体实施例方式下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。根据本发明 实施例的第一方面,本发明提供了一种全固态锂离子电池,包括:正极材料、正极集流体、固体电解质材料、负极材料、负极集流体和不锈钢外壳。根据本发明的实施例,该固体电解质材料为锆酸锂镧、锶掺杂锆酸锂镧、锗掺杂锆酸锂镧、铝掺杂锆酸锂镧或硅掺杂锆酸锂镧中的至少一种。由于锆酸锂镧具有立方石榴石结构,其凭借着较高的室温离子电导率(如10_4s/cm)和电化学稳定性(如与金属锂不发生反应)可以优化改善电极与电解质之间的界面接触,有望提升全固态锂离子电池的性能表现,具有极大的应用前景。根据本发明的具体实施例,该全固态锂离子电池具有层状结构。由此,可以进一步提高该全固态锂离子电池导电性能和电化学稳定性,以及安全性能。根据本发明的具体实施例,正极材料为由正极活性物质、粘结剂和导电剂按照X: (100-x-y):y (其中x彡70,y彡5)比例配制的具有流动性的衆料。根据本发明的实施例,该活性物质为钴酸锂、锰酸锂、镍钴锰三元材料或磷酸铁锂中的至少一种,优选地,该正极活性物质为锰酸锂。根据本发明的实施例,该粘结剂为聚偏氟乙烯溶液、聚四氟乙烯溶液和聚乙烯醇溶液的至少一种,优选地,该粘结剂为聚偏氟乙烯溶液。根据本发明的实施例,所述导电剂为Super P、乙炔黑和石墨粉中的至少一种,优选地,所述导电剂为Super P。根据本发明的实施例,该正极活性物质的比例不低于70%,所述导电剂的比例不低于5%。由此,可以进一步提高该全固态锂离子电池导电性能和电化学稳定性,以及安全性能。根据本发明的实施例,该负极材料为由负极活性物质、粘结剂和导电剂按照X: (100-x-y):y (其中x彡70,y彡5)比例配制的衆料。根据本发明的实施例,该负极活性物质为金属锂、石墨、硅或钛酸锂中的至少一种,优选地,所述负极材料为金属锂。根据本发明的实施例,该粘结剂为聚偏氟乙烯溶液、聚四氟乙烯溶液和聚乙烯醇溶液的至少一种,优选地,所述粘结剂为聚偏氟乙烯溶液。根据本发明的实施例,该导电剂为Super P、乙炔黑和石墨粉中的至少一种,优选地,所述导电剂为Super P。根据本发明的实施例,该负极活性物质的比例不低于70%,所述导电剂的比例不低于5%。由此,可以进一步提高该全固态锂离子电池导电性能和电化学稳定性,以及安全性能。根据本发明的具体实施例,所述正极集流体为不锈钢、铜或铝中的至少一种,优选地,所述正极集流体为铝。根据本发明的具体实施例,所述负极集流体为不锈钢铜或铝中的至少一种,优选地,所述负极集流体为铜。由此,可以进一步提高该全固态锂离子电池导电性能和电化学稳定性,以及安全性能。根据本发明实施例的第二方面,本发明提供了一种上述全固态锂离子电池的制作方法,包括以下步骤:对固体电解质材料进行表面抛光处理;将正极活性物质和负极活性物质分别涂覆在所述经过表面抛光处理的固体电解质材料的两面;在所述正极活性物质和所述负极活性物质的外表面分别加上正极集流体和负极集流体,以便获得全固态锂离子电池结构;用不锈钢外壳封装所述全固态锂离子电池结构。由此,可以获得导电性能佳、电化学稳定性好,安全性能高的全固态锂离子电池。根据本发明的实施例,对固体电解质材料的表面进行抛光处理的方式不受特别限制。例如可以根据本发明的一个示例,用200# 2000#砂纸进行打磨。由此可以得到表面平整光亮的固体电解质材料的表面。由此,可以获得导电性能佳、电化学稳定性好,安全性能高的全固态锂离子电池。根据本发明的实施例,将正极活性物质和负极活性物质分别涂覆在所述经过表面抛光处理的固体电解质材料的两面的方式并不受特别限制。例如根据本发明的具体实施例,可以将配置成具有流动性的浆料形态的正极和负极材料涂覆在固体电解质的表面。根据本发明的具体实施例,当负极材料选用金属锂时,可以直接装配到固体电解质的表面。由此可以得到具有良好的导电性能和电化学稳定性,且安全性能高的全固态锂离子电池。根据本发明的实施例,用不锈钢外壳封装所述全固态锂离子电池结构,需要有金属端子分别与正极集流体、负极集流体相连接,以便于进行电池的充放电过程。由此可以得到具有良好的导电性能和电化学稳定性,且安全性能高的全固态锂离子电池。根据本发明的具体实施例,所述全固态锂离子电池为扣式电池或者块式电池。通过本发明提供的制作方法得到的全固 态锂离子电池,大大提高了锂电池的安全性,同时相对于商用电池,具有操作过程简便、成本低、能耗小等优势,在未来的锂电池技术及市场中具有极大的应用前景。实施例1、制作锰酸锂正极全固态锂离子电池采用锰酸锂作为正极材料,锗掺杂的锆酸锂镧作为固体电解质,金属锂作为负极材料,组装固体锂离子电池。首先,对于锗掺杂的锆酸锂镧依次在300#、800#和1500#砂纸上打磨至光滑,在乙醇中超声处理10分钟,并在70°C烘干,得到表面洁净的固体电解质。将锰酸锂、PVDF和Super P按照80:5:15的比例混合均匀,涂覆到固体电解质的表面上。将金属锂片贴在固体电解质的另一表面。最后,分别在正极侧和负极侧加上铝箔和铜箔作为集流体。上述结构封装在不锈钢外壳中,完成全固态锂离子电池的制作。该全固态锂离子电池在2.3V 4.6V的电压范围内进行充放电测试,可稳定循环100次,其首次充放电曲线如图2所示,首次放电容量可达98mAh/g。实施例2、制作钴酸锂正极全固态锂离子电池采用钴酸锂作为正极材料,招掺杂的错酸锂镧作为固体电解质,石墨作为负极材料,组装固体锂离子电池。首先,对于铝掺杂的锆酸锂镧依次在500#、1000#和2000#砂纸上打磨至光滑,在乙醇中超声处理12分钟,并在90°C烘干,得到表面洁净的固体电解质。将钴酸锂、PVA和乙炔黑按照90:5:5的比例混合均匀,涂覆到固体电解质的表面上。将石墨和PVA按照95:5的比例混合均匀,涂覆到固体电解质的另一表面上。最后,分别在正极侧和负极侧加上铝箔和铜箔作为集流体。上述结构封装在不锈钢外壳中,完成全固态锂离子电池的制作。该全固态锂离子电池在3.0 4.3V的电压范围内进行充放电测试,可稳定循环10次,首次放电容量可达74.4mAh/g。实施例3、制作镍钴锰三元正极全固态锂离子电池采用镍钴锰三元材料作为正极材料,锗掺杂的锆酸锂镧作为固体电解质,石墨作为负极材料,组装固体锂离子电池。首先,对于锗掺杂的锆酸锂镧依次在400#、800#和1500#砂纸上打磨至光滑,在乙醇中超声处理15分钟,并在80°C烘干,得到表面洁净的固体电解质。将镍钴锰三元材料、PVDF和Super P按照85:5:10的比例混合均匀,涂覆到固体电解质的表面上。将石墨、导电碳黑和PVDF按照90:5:5的比例混合均匀,涂覆到固体电解质的另一表面上。最后,分别在正极侧和负极侧加上铝箔和铜箔作为集流体。上述结构封装在不锈钢外壳中,完成全固态锂离子电池的制作。该全固态锂离子电池在3.0V 4.2V的电压范围内进行充放电测试,可稳定循环15次,首次放电容量可达94.4mAh/g。实施例4、制作磷酸铁锂正极全固态锂离子电池采用磷酸铁锂作为正极材料,锶掺杂的锆酸锂镧作为固体电解质,石墨作为负极材料,组装固体锂离子电池。首先,对于锶掺杂的锆酸锂镧依次在400#、800#和1500#砂纸上打磨至光滑,在乙醇中超声处理12分钟,并在80°C烘干,得到表面洁净的固体电解质。将磷酸铁锂、PVDF和Super P按照80:5:15的比例混合均匀,涂覆到固体电解质的表面上。将石墨、导电碳黑和PVDF按照88:5:7的比例混合均匀,涂覆到固体电解质的另一表面上。最后,分别在正极侧和负极侧加上铝箔和铜箔作为集流体。上述结构封装在不锈钢外壳中,完成全固态锂离子电池的制作。该全固态锂离子电池在2.2V 3.65V的电压范围内进行充放电测试,可稳定循环10次,首次放电容量可达120.3mAh/g。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内 可以对上述实施例进行变化、修改、替换和变型。
权利要求
1.一种全固态锂离子电池,其特征在于,包括:正极材料、正极集流体、固体电解质材料、负极材料、负极集流体和不锈钢外壳, 其中,所述固体电解质材料为锆酸锂镧、锶掺杂锆酸锂镧、锗掺杂锆酸锂镧、铝掺杂锆酸锂镧或硅掺杂锆酸锂镧中的至少一种。
2.根据权利要求1所述的全固态锂离子电池,其中,所述全固态锂离子电池具有层状结构。
3.根据权利要求1所述的全固态锂离子电池,其中,所述正极材料为由正极活性物质、粘结剂和导电剂配制的浆料, 其中,所述正极活性物质为钴酸锂、锰酸锂、镍钴锰三元材料或磷酸铁锂中的至少一种,优选地,所述正极活性物质为锰酸锂; 所述粘结剂为聚偏氟乙烯溶液、聚四氟乙烯溶液和聚乙烯醇溶液的至少一种,优选地,所述粘结剂为聚偏氟乙烯溶液; 所述导电剂为Super P、乙炔黑和石墨粉中的至少一种,优选地,所述导电剂为Super P ; 所述正极活性物质的比例不低于70%,所述导电剂的比例不低于5%。
4.根据权利要求1所述的全固态锂离子电池,其中,所述负极材料为由负极活性物质、粘结剂和导电剂配制的浆料, 其中,所述负极活性物质为金属锂、石墨、硅或钛酸锂中的至少一种,优选地,所述负极材料为金属锂, 所述粘结剂为聚偏氟乙烯溶液、聚四氟乙烯溶液和聚乙烯醇溶液的至少一种,优选地,所述粘结剂为聚偏氟乙烯溶液; 所述导电剂为Super P、乙炔黑和石墨粉中的至少一种,优选地,所述导电剂为SuperP ; 所述负极活性物质的比例不低于70%,所述导电剂的比例不低于5%。
5.根据权利要求1所述的全固态锂离子电池,其中,所述正极集流体为不锈钢、铜或铝中的至少一种,优选地,所述正极集流体为铝。
6.根据权利要求1所述的全固态锂离子电池,其中,所述负极集流体为不锈钢铜或铝中的至少一种,优选地,所述负极集流体为铜。
7.—种如权利要求1 6任一项所述的全固态锂离子电池的制作方法,其特征在于,包括以下步骤: 对固体电解质材料进行表面抛光处理; 将正极活性物质和负极活性物质分别涂覆在所述经过表面抛光处理的固体电解质材料的两面; 在所述正极活性物质和所述负极活性物质的外表面分别加上正极集流体和负极集流体,以便获得全固态锂离子电池结构; 用不锈钢外壳封装所述全固态锂离子电池结构。
8.根据权利要求7所述的全固态锂离子电池的制作方法,其中,所述全固态锂离子电池为扣式电池或者块式电池。
全文摘要
本发明提供了一种全固态锂离子电池及其制作方法。该全固态锂离子电池包括正极材料、正极集流体、固体电解质材料、负极材料、负极集流体和不锈钢外壳,其中,固体电解质材料为锆酸锂镧、锶掺杂锆酸锂镧、锗掺杂锆酸锂镧、铝掺杂锆酸锂镧或硅掺杂锆酸锂镧中的至少一种。该电池的制作过程简单,成本低、耗能小,在未来的锂电池技术及市场中具有极大的应用前景。
文档编号H01M10/058GK103247823SQ201310139528
公开日2013年8月14日 申请日期2013年4月19日 优先权日2013年4月19日
发明者南策文, 黄冕, 沈洋, 林元华 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1