制造纳米纤维电极的方法

文档序号:9332896阅读:292来源:国知局
制造纳米纤维电极的方法
【专利说明】
【背景技术】
[0001 ] 随着电池用量一直增加,消费者要求在电池的充电和放电速度以及电池容量方面有较佳性能。
[0002]随着供应增加,碳纳米管(及其他纳米级物体)在制造时变得更受欢迎。然而,用于涂覆碳纳米管的方法已受限于传统涂覆技艺,其导致不均匀的涂层特性,特别是当该碳纳米管在涂覆前被形成网络时。

【发明内容】

[0003]本发明提供一种快速纤丝(fibril)电池,其可具有高功率密度而能获得快速充电及放电性质,以及具有高的能量密度而能反映容量增加。快速充电及放电性质可通过以下方式被提供:利用传导性纳米纤维及纳米级活性材料以提供在集电器与活性材料(例如该纳米级活性材料)之间具有短距离的电极。高充电容量可通过以下方式被提供:利用高表面积载体(例如纳米纤维),形成具有大而连续的孔的网络,以容纳较大量的活性材料。
[0004]本发明还提供一种包含纳米级经涂覆网络的电极,该网络包含一或多个第一碳纳米管,其电连接至一或多个第二纳米管以形成纳米级的网络,其中该一或多个第二碳纳米管的至少一个与该一或多个第二纳米管的另一个电接触。该电极另外包含活性材料涂层,其覆盖至少一部分的该一或多个第一碳纳米管的至少一部分且不覆盖该一或多个第二碳纳米管,以形成该纳米级的经涂覆网络。
[0005]本发明还提供一种电池,其包含两个电极;及电解质,其中至少一个电极包含:纳米级的经涂覆网络,其包含一或多个第一碳纳米管,其连接至一或多个第二碳纳米管以形成纳米级的网络,其中该一或多个第二碳纳米管的至少一个与该一或多个第二碳纳米管的另一个电接触。该电池另包含活性材料涂层,其经分布以覆盖该一或多个第一碳纳米管的部分及该一或多个第二碳纳米管的部分,其中该一或多个第二碳纳米管的多个与其他第二碳纳米管在该活性材料涂层下电连通。
[0006]本发明还提供一种包含第一电极的电化学电容器,该第一电极包含纳米级的经涂覆网络,该网络另包含一或多个第一碳纳米管,其与一或多个第二碳纳米管电连接以形成纳米级的网络。该电化学电容器的该一或多个第二碳纳米管的至少一个与该一或多个第二碳纳米管的另一个电接触;且所述电化学电容器具有活性材料涂层,其经分布以覆盖该一或多个第一碳纳米管的部分及该一或多个第二碳纳米管的部分。此外,所述电化学电容器的该一或多个第二碳纳米管的多个与其他第二碳纳米管在该活性材料涂层下电连通;且所述电化学电容器包含第二电极;及电解质。
[0007]本发明还提供一种电池,其包含两个具有不同电极化学的电极,其中所述电极之一包含碳纳米管(CNT),该含CNT的电极具有大于50%的体积孔隙率。该电池的CNT电极另包含少于25重量%的CNT。当该电池在环境条件下以IC速率放电时,具有大于80%理论电压的槽电压,该电池以2C速率再充电时具有大于95 %的再充电效率。
[0008]本发明还提供一种形成电池的方法,其包括提供第一电极,其中形成该第一电极另包括:提供第一碳纳米管;提供第二碳纳米管;以纳米级物质涂覆该第一碳纳米管以形成经涂覆的碳纳米管。该方法另包括形成该经涂覆的碳纳米管及该第二碳纳米管的网络;提供第一电解质;及将该纳米级物质在该第一电解质中再分布到该网络上,以形成该第一电极。该方法另包括提供第二电解质;提供第二电极;及在该第二电解质中提供该第一电极及该第二电极以形成电池,其中该第一电解质及该第二电解质是不同的电解质。
[0009]本发明还提供一种形成电池的方法,其包括提供第一电极,其中形成该第一电极另包括:提供第一碳纳米管;提供第二碳纳米管;以及以纳米级物质涂覆该第一碳纳米管以形成经涂覆的碳纳米管。该方法另包括在该第一电解质中形成该经涂覆的碳纳米管及该第二碳纳米管的网络;提供第一电解质;及将该纳米级物质在该第一电解质中再分布到该网络上,以形成该第一电极。该方法另包括提供第二电解质;提供第二电极;及在该第二电解质中提供该第一电极及该第二电极以形成电池,其中该第一电解质及该第二电解质是不同的电解质,且该第一电解质及该第二电解质包括水性的离子传导性电解质。
[0010]本发明还提供一种形成电池的方法,其包括提供第一电极,其中形成该第一电极另包括:提供第一碳纳米管;提供第二碳纳米管;以及以纳米级物质涂覆该第一碳纳米管以形成经涂覆的碳纳米管。该方法另包括形成该经涂覆的碳纳米管及该第二碳纳米管的网络;提供第一电解质;及将该纳米级物质在该第一电解质中再分布到该网络上,以形成该第一电极。该方法另包括提供第二电解质;提供第二电极;及在该第二电解质中提供该第一电极及该第二电极以形成电池,其中该第一电解质及该第二电解质是不同的电解质,且该第二电解质另包括pH在7-12.5范围的电解质。
[0011]本发明还提供一种形成电极的方法,其包括提供第一碳纳米管;提供第二碳纳米管;以及以纳米级物质涂覆该第一碳纳米管以形成经涂覆的碳纳米管。该方法另包括提供局部缓冲剂;形成该经涂覆的碳纳米管、该第二碳纳米管及该局部缓冲剂的网络;提供电解质;及将该纳米级物质在该电解质中再分布到该网络上以形成该电极。
[0012]本发明还提供一种形成电池的方法,其包括提供第一电极,其中形成该第一电极另包括:提供第一碳纳米管;提供第二碳纳米管;以及以纳米级物质涂覆该第一碳纳米管以形成经涂覆的碳纳米管。该方法另包括提供局部缓冲剂;形成该经涂覆的碳纳米管、该第二碳纳米管及该局部缓冲剂的网络;提供第一电解质;及将该纳米级物质在该第一电解质中再分布到该网络上,以形成该第一电极。该方法另包括提供第二电极;及在第二电解质中提供该第一电极及该第二电极以形成电池,其中提供局部缓冲剂另包括提供固态的氧化物、氢氧化物或碳酸盐。
【附图说明】
[0013]被并入且构成本说明书一部份的附图举例说明了本发明的实施例。在附图中,
[0014]图1是作为活性材料载体的纳米纤维和粗纤维的总体积的概述;
[0015]图2是可借以形成电极的实例方法的概述;
[0016]图3A-3F是通过图2的实例方法形成电极的实例说明;
[0017]图3G是使用根据图2实例方法的电极形成电池的实例说明;
[0018]图4是纳米纤维网络的扫描电子显微镜(SEM)图像;
[0019]图5是在纳米纤维内再分布活性材料之前,在其上包含活性材料的纳米纤维的SEM图像;
[0020]图6是在纳米纤维内再分布活性材料之后,在其上包含活性材料的纳米纤维的SEM图像;
[0021]图7是图2的实例方法的步骤的实例流程;
[0022]图8A-8B是当将活性材料再分布于纳米纤维之间时,纳米纤维和活性材料的实例说明;
[0023]图9是在活性材料再分布之前及之后,实例的纳米纤维-纳米级活性材料电极的充电-放电结果的实例作图说明;
[0024]图10是含Ni化合物的实例的纳米纤维-纳米级电极的实例作图说明;
[0025]图11是含Zn化合物的实例的纳米纤维-纳米级电极的实例作图说明;
[0026]图12是作为独立的电极在2次充电-放电循环后、作为独立的电极在9次充电-放电循环后、及作为电池槽(battery cell)(即复合电极)在18次充电-放电循环后,实例的纳米纤维-纳米级电极的放电结果的实例作图说明。
【具体实施方式】
[0027]以下详述涉及附图。不同图中相同的附图标记可指相同或类似的组件。并且,以下详述描述本发明的实施例,无意限制本发明。本发明的范围由所附权利要求书及等同方式定义。
[0028]A.概述
[0029]如本文所述,可通过使用比传统电池较小尺度的载体及活性材料提供具有快速充电和放电性质及高电荷容量的快速纤丝电池。通过提供较小尺度的载体及活性材料,可使得载体与活性材料之间的电子输送距离更短,且因此提供较高的充电和放电速率。目前,使用载体结构(诸如栅极)以容纳活性材料而形成电池的电极。栅极表面涂覆有活性材料层;该层通常由较小粒子制备。电子由该栅极行经该活性材料层(其传导性通常远比栅极低),到达在活性材料粒子与电解质之间的边界上的电化学反应的实际位置。活性材料层的电阻是电池的速度和功率特性的限制因素。为降低活性层的电阻,通常将传导性材料(诸如碳黑、碳纤维和纳米纤维、以及其他类型的传导性添加剂)添加至该层。
[0030]另一降低活性材料层的电阻的方式是降低活性材料层的厚度。当在所给栅极上活性材料层的厚度被减少时,活性材料的总量也将减少,而将导致较低的电池容量。为要在活性材料层较小厚度的情况下维持相同容量,可通过使用例如纳米级栅极来增加栅极的表面积。
[0031]另外,目前电池倾向于用高速度(即快速充电及放电性质)和高容量与尺寸(即用较大电池换得较高容量)或可燃性(即更具挥发性的电池化学)作为交换。考虑到重量和安全性作为速度和容量的权衡,大部份电池设计者被迫作出不理想的决定,而使折衷方案不能被接受(例如在高速度、高容量、质轻电池中的易爆性或可燃性,或以较低速度、较低容量及/或较重电池换得安全性)。
[0032]本发明提供在电池中可提供高速度、高容量、质轻及安全性的电极。这些电极可利用纳米纤维及纳米级活性材料的性质,联同集电器以增加速度和容量,却无额外重量和/或额外安全性的顾虑。
[0033]如本发明中所用的,术语集电器可包括金属或其他传导性材料(例如碳)且结构上可以是网格、箔、板、栅极等。另外,集电器被电性连接至负荷。与集电器相关的其他信息可见于例如 “Handbook of Batteries and Fuel Cells,,,ed.David Linden, McGraw HillInc.,1984,其整体通过引用被并入本文。
[0034]通过提供一种利用纳米纤维及纳米级活性材料的快速纤丝电池可实现速度增加。通过提供具有位于纳米纤维上的纳米级活性材料,以允许该纳米级活性材料与集电器(例如该纳米级载体材料)之间短的电路径的电极,可获得快速充电及放电性质。虽然不希望局限于理论,相信具有差的传导性的活性材料的厚度控制充电及放电二反应的速率。通过提供薄的活性材料层(即在传导性纳米级纤维上的纳米级活性材料),此限制可受控制,且电子必须行经活性材料的距离(及因此行经此距离的时间)可被减少。快速纤丝电池还可比其他高功率密度电池(诸如薄膜电池)具有更高的容量,因为该纳米级传导性载体(即该纳米纤维)的高孔隙率可允许该电池的大部分体积为活性材料。
[0035]图1描绘具有作为活性材料载体的纳米纤维110和较粗纤维120的总体积。如图1中所说明的,在纳米纤维110上的活性材料薄层在相同总体积下提供比在较粗纤维120上的活性材料薄层更多的容量。
[0036]电池包括在电解质中的电极。电极包含阳极和阴极。在放电期间,在阳极中的化学化合物或“活性材料”进行氧化反应以释出一或多个电子,同时在阴极中的活性材料进行还原反应以使自由电子与离子结合。可基于两电极化学的半电池电位来选择活性材料的类型。例如,可基于使彼此有尽可能不同的电位来选择电极(即相对标准氢电极(SHE),一电极可具有正电位且另一电极可具有负电位)。例如,电池可含有电位差在0.5V和3V之间的两个电极。阳极和阴极一同作用以经由其化学反应提供电能。
[0037]电池容量取决于电极的能量密度(即每一电极中的活性材料可持有的能量)以及工程因素诸如包装重量、集电器和薄膜的重量等,且电池的速度或功率密度取决于产生能量的化学反应可进行的速率(即可通过在每一电极中的活性材料提供电能的速度)。
[0038]能量密度可由活性材料的类型及活性材料的量决定。出于此理由,特定类型的活性材料(即化学化合物)基于特定应用是优越的。例如,锂离子电池可用于质轻、高效能应用,诸如移动装置及计算机,因为对这些高效能应用而言,所述电池具有合宜的能量密度。其他电池(诸如铅酸电池)具有较低的能量密度,因此由于其较大的质量而不能为质轻、高效能应用提供电力。另一方面,对于较低成本、高可靠性、较低能量密度需求的应用,诸如汽车SLI (启动、照明、点火)电池,较低成本及可接受重量可使铅酸电池比锂离子电池更合宜。
[0039]可通过提供更具活性的材料于特定空间而增加电池能量密度。在一实施方案中,通过使用较小载体结构(诸如纳米纤维或优选地纳米纤维的网络),可将较少体积分配至载体且可将更多体积分配至活性材料。同样地,通过使用传导
当前第1页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1