α1β1整合蛋白受体抑制剂和TGF-β1抑制剂在治疗肾病中的用途的制作方法

文档序号:3551527阅读:737来源:国知局
专利名称:α1β1整合蛋白受体抑制剂和TGF-β1抑制剂在治疗肾病中的用途的制作方法
技术领域
本发明领域本发明涉及以肾小球性肾炎和/或肾纤维化为特征的肾病(即肾脏病变)领域。具体地讲,本发明涉及α1β1整合蛋白受体抑制剂在肾病中的用途。另外,本发明涉及将α1β1整合蛋白抑制剂与TGF-β1抑制剂组合用于肾病。
本发明背景在美国,现有大约12,000人患有Alport综合症。这种遗传学疾病会导致渐进性肾病,这种病只能通过透析和肾脏移植进行治疗。移植的肾脏通常会受到排斥。因此,需要其他治疗方法。不过,目前尚没有阐明这种病的发病或发展的机制的治疗方法。因此,所需要的是一种针对这种病发作和/或发展的机制的治疗方法,这种方法能够明显延缓疾病状态,如肾小球性肾炎和肾纤维化。
多种肾病都与基质内环境稳定的改变相关,其中,结构分子的合成和转化的微妙的平衡受到破坏。例如,Alport综合症是一种会导致渐进性肾衰竭的疾病,并且与感觉神经性听力丧失相关。男性携带者最容易受这种病的影响,并且,超级结构研究发现了受感染患者的肾小球基底膜(GBM)的异常。在20,000个人中大约有1人患有Alport综合症,使得这种病成为较流行的已知遗传学疾病之一。例如,参见Atkin等,“Alport综合症”,参见R.W.Schrier&C.W.Gottschalk(著),肾病,第4版,第19章,Little Brown,Boston,617-641页,1988。X一连锁Alport综合症是由在胶原蛋白4A5基因上的一系列突变中的任意一种引起的(Barker等,科学,348:1224-1227,1990)。在该基因上业已鉴定了至少60种不同的突变。Alport综合症的常染色体形式所表现出的表型范围与X-连锁形式的相同,并且是由于在基底膜胶原蛋白基因4A3(COL4A3)或4A4(COL4A4)上的突变引起的。例如,参见Lemmink等,人类分子遗传学3:1269-1273,1994和Mochizuki等,自然遗传学,8:77-81,1994。基底膜的其他疾病包括Goodpasture综合症-它是由于针对胶原蛋白4A3的NC1结构域上的表位的极性自身免疫反应引起的(Hudson等,Kidney Int.,43:135-139,1993)和扩散性平滑肌瘤——与胶原蛋白4A5和4A6的缺乏相关的良性平滑肌瘤(Zhou等,科学261:1167-1169,1993)。
基底膜是特化的胞外结构,它几乎与体内的每一种器官和组织相关。它通常存在于细胞和结缔组织的结合部位,但也可以存在于上皮细胞和内皮细胞之间,在肾小球(即,毛细管簇)中就是这种情况。基底膜的主要结构元件包括Ⅳ型胶原蛋白、层连蛋白、硫酸肝素蛋白聚糖、巢蛋白和有时是纤连蛋白和Ⅴ型胶原蛋白。在所有基底膜中,最具有代表性的成分是Ⅳ型胶原蛋白,它是仅存在于基底膜中的一种特殊类型的胶原蛋白。天然形式的Ⅳ型胶原蛋白与所有胶原蛋白一样,包括以三螺旋形式组装的三种胶原蛋白分子,它包括6个α链的不同组合(4A1-4A6)。4A1和4A2链(又被称作α1(Ⅳ)和α2(Ⅳ)链)是最常见的(Timpl,生物化学杂志180:487-502,1989)。Ⅳ型胶原蛋白与间隙胶原蛋白在很多方面都不相同。α链结合的螺旋结构不像在其他胶原蛋白中所看到的那样严格地连接于甘氨酸X-Y基序上;它含有3-羟基脯氨酸而不是4-羟基脯氨酸,并且,在碳水化合物中的含量丰富。所产生的胶原的超级结构是由基底膜胶原蛋白组成的鸡笼样网络。该网络是基础,辅助分子(层连蛋白,硫酸肝素等)结合在它上面。
基底膜是高度异源的结构,这就是它具有多种功能特性的原因。对所述结构复杂性的了解还很少。几种新型基底膜胶原蛋白链(α3、4、5、和6链)是最近才发现的。例如,参见Gunwar等,生物学化学杂志,266:15318-15324,1990,Hostikka等,美国科学院院报,87:1606-1610,1990;Butkowski等,生物学化学杂志,262:7874-7877,1987;和Zhou等,科学,261:1167-1169,1993。有趣的是,所述新型链仅存在于某些组织中(例如,肾小球、眼睛的Decimet’s膜、晶状体、皮肤、肺、睾丸、和耳蜗)。例如,参见Kleppel等,美国病理学杂志134:813-825,1989,和Tryggvason等,Kidney Int.,43:38-44,1993。所述新型链在基底膜结合中的作用和功能目前尚不清楚。据信,所述新型基底膜胶原蛋白构成不同于4A1(α1(Ⅳ))和4A2(α2(Ⅳ))胶原蛋白的网络的独立的网络。
肾小球基底膜(GBMs)是超滤过程所必需的(即,在这里对血液进行过滤,除去代谢物,以便以诸如尿液的形式排泄)。Alport综合症会导致胞外基质的被动积累,而受到损坏的基底膜会导致局部和部分肾小球性肾炎(即肾小球中毛细管回路的发炎),它最终会导致致命的尿毒症(即由于肾衰竭而在血液中存在过量的尿素)。在IDDM(胰岛素依赖型糖尿病)肾炎患者的GBM中也会逐渐积累很多相同的胞外基质分子(例如,Ⅰ型胶原蛋白、纤连蛋白、层连蛋白、和Ⅳ型胶原蛋白)。不过,在这种疾病中,GBM增厚,但缺乏GBM的局部变薄和开裂(分裂),这是Alport综合症的特征。
整合蛋白是结合于基底层和胞外基质的成分上的异源二聚体跨膜糖蛋白受体的家族。它们起着粘接分子的作用,与细胞聚合和细胞锚定在基底层上相关。它还向细胞核传导信号,并且与调节基因表达相关,特别是决定细胞迁移和细胞分化的基因表达(Hynes,细胞,69:11-25,1992)。有20种以上不同的整合蛋白受体是已知的,其中包括大约14种不同的α亚基和大约8种不同的β亚基(DiSimone,现代细胞生物学观点,6:182-194,1994)。
在肾小球中,存在不同类型的整合蛋白受体。它们与肾小球膜基质(即有助于支撑肾小球中的毛细血管回路的膜)或内脏上皮细胞相关(Patey等,细胞粘通,2:159-167,1994)。在成年肾小球内脏上皮细胞上最常见的整合蛋白受体是α3β1异源二聚体(Adler,美国病理学杂志,141:571-578,1992;和Patey等,细胞粘通,2:159-167,1994)。业已证实β5亚基在成年内脏上皮细胞中表达(Yamada等,细胞粘通,3:311-325,1995),而α1、α3、α5、αⅤ、β1和β3整合蛋白受体是在肾形态发生期间随着发育而表达的(Korhonen等,实验室研究,62:616-625,1990;Wada等,细胞生物学杂志132:1161-1176,1996;和Yamada等,细胞粘通,3:311-325,1995)。α1β1异源二聚体整合蛋白受体是在肾小球中肾小球膜细胞表面上鉴定的唯一的整合蛋白受体。
业已生产出了在α3整合蛋白受体亚基上的基因敲除小鼠。其后代在出生后不久就因为肾衰竭而死亡(Kreidberg等,发育,122:3537-3547,1996)。该模型的新生儿的GBM的超级结构病理学与在晚期Alport综合症上所观察到的现象十分相似。基底膜似乎发生畸变(即不规则地增厚、变薄和开裂),而内脏上皮细胞的足突似乎融合。由于α3β1受体的一种配体是Ⅳ型胶原蛋白(Krishnamurti等,实验室研究,74:650-665,1996;和Rupprecht等,Kidney Int.,49:1575-1582,1996),并且,由于该受体存在于内脏上皮细胞和GBM之间的平面上(Baraldi等,Nephron,66:295-301,1994),上面所说的有关α3整合蛋白敲除的发现支持了这样一种模型,其中,所述整合蛋白/配体相互作用在基底膜发育中起着重要作用。
在正常动物体内,在胚胎肾小球基底膜(GBM)中的Ⅳ型胶原到出生时完全由α1(Ⅳ)和α2(Ⅳ)链组成(被称为典型的胶原链)。在出生后不久,就发生了发育上的转变,在GBM中即可明确检测到α3(Ⅳ),α4(Ⅳ),和α5(Ⅳ)链(被称为新型胶原蛋白链),而α1(Ⅳ),α2(Ⅳ)链则主要存在于肾小球膜基质中(Minor&Sanes,细胞生物学杂志,127:879-891,1994)。
在成年人肾脏中,由α1(Ⅳ)和α2(Ⅳ)链组成的一薄层GBM位于靠近内皮细胞层处,而GBM的整个厚度的主要部分是由α3(Ⅳ),α4(Ⅳ),和α5(Ⅳ)链组成(Desjardins&Bendayan,细胞生物学杂志,113:689-700,1991;和Kashtan等,临床研究杂志,78:1035-1044,1996)。有生物化学证据表明,由以上两种不同类型的胶原链构成分离的网络(Kleppel等,生物学化学杂志,267:4137-4142,1992)。在家族性肾炎中,α3(Ⅳ)、α4(Ⅳ)、和α5(Ⅳ)基因上所发生的无效突变(即破坏基因表达的突变),会导致所有三种链在GBM中的缺乏,推测这是由于在GBM超级结构的大分子组装中的专性结合。这会导致α1(Ⅳ)和α2(Ⅳ)链在整个GBM厚度上的存在。因此,在Alport肾(即患有Alport综合症的人体的肾脏)中的内脏上皮细胞的表面上的Ⅳ型胶原蛋白受体与具有非典型Ⅳ型胶原链组成的GBM直接接触。至少有一个研究业已证实了内脏上皮细胞粘着于具有所述不同组成的Ⅳ型胶原蛋白上的相对能力,并发现与直接连接于典型的链α1(Ⅳ)和α2(Ⅳ)上相比,它与包括所述新型链的基底膜的粘接明显更好。这种粘接可以用抗α3整合蛋白受体的抗体抑制。
通过COL4A3胶原蛋白原基因的定向诱变,产生了常染色体形式的Alport综合症的小鼠模型(Cosgrove等,基因发育,10:2981-2992,1996),该动物模型形成了一种渐进性肾小球性肾炎,在近交129Sv/J背景中,在大约4周大小的时候蛋白尿发作,因为肾衰竭导致的平均死亡年龄为大约8.5周。在1周大小的早期阶段就在GBM中观察到了超级结构的改变,而在GBM中大多数肾小球是在3周大小时观察到,离蛋白尿发作还有很长一段时间。胞外基质成分包括在GBM中积累的层连蛋白-1、硫酸肝素蛋白聚糖、纤连蛋白、和巢蛋白。该小鼠在本文中被称作“Alport”小鼠。
由于肾病发展而导致的胞外基质在GBM和肾小球膜中的积累,是在患者和试验动物系统中观察到的多种肾小球疾病所具有的特征。例如,参见Goyal&Wiggins,Am.Soc.Nephrol.1:1334-1342,1991;Wilson等,Contrib.Nephrol.Basel,Karger,118:126-134,1996;Razzaque等,Clin.Nephrol.,46:213-214,1996;Yoshioka等,Kidney Int.,35:1203-1211,1989;和Klahr等,新英格兰医学杂志,318:1657-1666,1988。在糖尿病中,这种影响的主要介体被认为是长时间接触由于慢性高葡萄糖含量所导致非酶促葡萄糖化血清蛋白(Doe等,美国科学院院报,89:2873-2877,1992;和Roy等,临床医学研究杂志,93:483-442,1994)。
对于大多数渐进性肾小球疾病来说,转化生长因子TGF-β1的过量产生似乎与导致纤维化(即形成纤维组织)的胞外基质的积累密切相关。例如,参见Border&Ruoslahti,自然(伦敦)346:371-374,1992;Yang等,J.Am.Soc.Nephrol.,5:1610-1617,1995;和Yamamoto等,Kidney Int.,45:916-927,1994。在自身免疫肾炎的动物模型中,注射TGF-β1的抗体或相应的mRNA的反义寡核苷酸能够抑制渐进性肾小球性肾炎,并抑制胞外基质的积累(Border等,自然(伦敦)346:371-374,1990;和Akaji等,Kidney Int.,50:148-155,1996)。
通过用3H-脯氨酸进行的脉冲追踪研究,估计大鼠的GBM中的基底膜胶原蛋白的半衰期为16-40天(Daha等,Nephron.22:522-528,1978)。与硫酸肝素蛋白聚糖(t1/2=20小时)或GBM中的其他硫酸化大分子(t1/2=20-60小时)的转化相比,上述转化是非常缓慢的。基底膜蛋白在Alport小鼠模型的GBM中的积累(Cosgrove等,基因发育,10:2981-2992,1996)很可能是所述蛋白合成和降解的变化的净效应。在与GBM和基底膜基质转化相关的蛋白酶中,鉴定得最清楚的是金属蛋白酶MMP-2(72kD胶原酶)和MMP-9(92kD胶原酶),以及MMP-3(溶基质素-1)。除了多种其他胞外基质成分之外,这些酶能够降解Ⅳ型胶原。
肾小球膜细胞(并且可能还有其他类型的肾小球细胞)也能产生金属蛋白酶的天然抑制剂,这些抑制剂被称为TIMP’s(是金属蛋白酶的组织抑制剂的缩写)。它们是具有较低分子量的糖蛋白。其中,TIMP-1对溶基质素-1和MMP-9具有特异性,而TIMP-2和TIMP-3能抑制MMP-2(Goldberg等,美国科学院院报,86:8207-8211,1989;Staskus等,生物学化学杂志266:449-454,1991;和Stetler-Stevenson等,生物学化学杂志264:17374-17378,1989)。
金属蛋白酶及其相应的抑制剂的调节有可能在维持GBM转化的合适水平方面起作用。尽管对编码肾小球中所述蛋白的基因的调控所知甚少,但通过整合蛋白受体/ECM(胞外基质)相互作用而进行的信号传导可能是该过程的一个重要方面。
仍然需要Alport综合症的动物模型,特别是其中的疾病发展得到明显延缓的模型。还需要治疗与肾小球膜基质扩张和在肾小球基底膜中渐进性的基质积累和管间质相关的肾病的新的疗法,例如,所述肾病包括Alport综合症和胰岛素依赖型糖尿病。
概述本发明提供了用于治疗或限制(即推迟发作、延缓发展、和/或恢复)患者(优选哺乳动物,更优选人)体内的肾病的各种治疗方法。肾脏疾病优选包括肾小球性肾炎、肾纤维化,或这两者。例如,以上疾病有可能与Alport综合症、IDDM肾炎、肾小球膜增殖肾小球性肾炎、膜增殖肾小球性肾炎、新月型肾小球性肾炎、糖尿病型肾病、和肾间质纤维化相关。
在一种实施方案中,所述方法包括给所述患者给药有效量的α1β1整合蛋白受体抑制剂。所述α1β1整合蛋白受体抑制剂可能是能结合在α1β1整合蛋白受体在肾细胞表面的结合位点上的抑制剂。所述抑制剂可能是选自下列一组的蛋白的至少九聚体的肽片段,这组蛋白包括层连蛋白、纤连蛋白、巢蛋白、和4型胶原。另外,所述抑制剂可能是一种抗体。也可能使用通过其他机制抑制(即使其失活)α1β1整合蛋白受体的其他抑制剂。
在另一种实施方案中,所述方法包括除了α1β1整合蛋白受体抑制剂之外,给所述患者给药有效量的TGF-β1抑制剂。所述抑制剂可以同时给药(例如,以混合物形式给药)或依次给药。TGF-β1抑制剂可以是能不可逆地结合于TGF-β1上并抑制其与它的受体结合的能力的抑制剂。另外,TGF-β1抑制剂可以是能抑制TGF-β1向肾细胞的细胞核传导信号的能力的抑制剂。后一种类型的抑制剂优选是钙调磷酸酶抑制剂,如tacrolimus(以FK06为商标出售)。还可以使用以其他机制抑制(即使其失活)TGF-β1的其他试剂。
优选地是,本发明提供了用于推迟患者体内的Alport综合症发作和/或延缓其进展的方法。在一种实施方案中,该方法包括给药有效量的能抑制通过肾细胞的α1β1整合蛋白受体进行的信号传导的试剂。在另一种实施方案中,该方法包括抑制患者肾细胞表面上的α1β1整合蛋白受体结合位点。所述方法还可以通过给所述患者给药有效量的TGF-β1抑制剂得到加强。
优选地是,本发明还提供了用于推迟患者体内由于胰岛素依赖型糖尿病所导致的肾病的发作和/或延缓其发展的方法。在一种实施方案中,该方法包括给药有效量的能抑制通过肾细胞的α1β1整合蛋白受体进行的信号传导的试剂。在另一种实施方案中,该方法包括抑制患者肾细胞表面上的α1β1整合蛋白受体结合位点。所述方法还可以通过给所述患者给药有效量的TGF-β1抑制剂得到加强。
另外,提供了用于限制患者体内肾纤维化的方法。在一种实施方案中,该方法包括降低患者体内的TGF-β1活性,同时,抑制患者肾细胞的α1β1整合蛋白受体。该活性可以通过给所述患者给药一种能不可逆地结合于TGF-β1上的试剂,并抑制其与其受体结合的能力而得到降低。另外,该活性还可以通过给所述患者给药一种能够抑制TGF-β1向肾细胞的细胞核传导信号的能力的试剂而得到减弱。
在另一种实施方案中,提供了限制Alport综合症患者的GBM中基质积累的方法。在一种实施方案中,该方法包括降低患者体内的TGF-β1活性。这一目的可以通过按本文所述方法给药TGF-β1抑制剂而实现。
在一种特别优选的实施方案中,提供了一种通过给患者给药钙调磷酸酶抑制剂,优选tacrolimus限制肾纤维化的方法。
另外,本发明提供了肾病的小鼠模型,其中,所述小鼠由于敲除了胶原蛋白α3(Ⅳ)基因而不能在GBM中表达正常的4型胶原蛋白成份。就是说,该小鼠不能将胶原α3(Ⅳ)、α4(Ⅳ)、或α5(Ⅳ)链结合到肾小球基底膜上(因此,GBM的Ⅳ型胶原链的组成完全是由胶原蛋白α1(Ⅳ)和α2(Ⅳ)链组成)。另外,由于敲除了胶原α1亚基基因,它不能表达α1β1整合蛋白受体。
与现有的Alport小鼠模型相比,在所述双敲除小鼠中,推迟了蛋白尿的发作。另外,所述动物的生活时间几乎为Alport同窝崽的两倍。在大约8周龄时(这是Alport小鼠的平均死亡年龄),所述双敲除小鼠表现出明显减轻了的肾小球病变。就是说,与同龄的Alport小鼠相比,所述双敲除小鼠具有明显减轻了的超级结构损害,GBM变少的程度减轻,并且足细胞足突很少消失。另外,相对Alport小鼠而言,在GBM中出现了纤连蛋白、层连蛋白-1和硫酸肝素蛋白聚糖积累的减少,而巢蛋白和Ⅳ型胶原的积累没有改变。以上结果表明,α1β1整合蛋白受体在Alport肾病的病理学中起着特殊作用。考虑到敲除单一的α1整合蛋白对肾的生理学或功能没有明显影响,这一结果是值得注意的。
该小鼠可用于研究Alport综合症,胰岛素依赖型糖尿病,和以肾小球炎症和/或纤维化为特征的其他疾病。该小鼠还可用于筛选能用于治疗Alport综合症和胰岛素依赖型糖尿病以及以胞外基质沉积和/或纤维化为特征的其他疾病的治疗剂。
附图的简要说明

图1表示在Alport和双突变型小鼠体内蛋白尿的发作,是通过每周一次收集所述小鼠的尿液进行研究的。数字表示在采集尿液时小鼠的年龄(周数)。A=Alport小鼠;B=双突变型小鼠;Mr=分子量标准物。
图2表示对对照小鼠和双突变型小鼠的肾小球毛细血管回路的超级结构的破坏。在7周大时收获正常(A)、Alport(B)、和双突变型(C)小鼠的肾皮质,包埋在环氧树脂里。对超薄切片进行染色,并用透射电子显微镜进行分析。箭头表示足突。C=毛细管腔;U=尿间隙。放大线条表示1.5微米。
图3提供了正常、Alport、和双突变型小鼠的胞外基质蛋白的免疫荧光分析。让肾皮质的冷冻切片与对在Y-轴标记上所表示的胞外基质蛋白专一的抗体起反应。用合适的荧光素偶连的二级抗体显现信号,并通过数码方法采集图象,并用Cytovision超级软件(应用图象公司)进行加工。箭头表示肾小球毛细管回路。4A1,2=胶原α1(Ⅳ)和α2(Ⅳ)链;Lam-1=层连蛋白-1;Fib=纤连蛋白;HSP=硫酸肝素蛋白聚糖;ent=巢蛋白。α1+/+=在α1整合蛋白基因上纯合的正常个体;α1-/-=在α1整合蛋白基因上纯合的突变型;α3(Ⅳ)+/+=在α3(Ⅳ)胶原蛋白基因上纯合的正常个体;α 3(Ⅳ)-/-=在α3(Ⅳ)胶原蛋白基因上纯合的突变型。
图4表示在Alport肾病发展过程中从全肾中获得的mRNA的Northern分析。在变性琼脂糖凝胶上分离从在所标明的时间点(周数)采集的肾脏中提取的总RNA,吸印到尼龙膜上,并用编码TGF-β1或肾小球基底膜和/或胞外基质的各种成分的鼠cDNA进行检测。用于获得图中所表示的数据的探针如下A,TGF-β1;B,胶原蛋白α1(Ⅳ);C,胶原蛋白α2(Ⅳ);D,纤连蛋白;E,巢蛋白;F,层连蛋白β1链;G,层连蛋白β2链。
图5表示在Alport肾病发展期间mRNA诱导的定量分析。在对X光胶片进行曝光之后,用BioRad GS-525磷成像仪对用来产生图4的膜进行分析。作图的数值表示Alport样品中的具体mRNA与在正常同窝崽中所观察到的数据相比的诱导倍数。所有的带都扣除了背景。分析的具体mRNA的类型在内侧表示。
图6表示在发生蛋白尿以后的Alport小鼠体内的特定转录物的原位杂交分析。同时,对来自正常同窝崽(A、D、G、和J)的肾和来自Alport小鼠(B、E、H、和K)的肾进行分析。反义探针对胶原蛋白α1(Ⅳ)(A和B)、TGF-β1(D和E)、纤连蛋白(G和H)、巢蛋白(J和K)、层连蛋白β1链(M和N)的NC1域专一。将对细菌β-半乳糖苷酶专一的探针用作非特异性结合的对照(C、F、I、L、和O)。
图7表示在源于正常和Alport小鼠的组织切片中对TGF-β1的免疫过氧化物酶染色。用免疫过氧化物酶检测可以将石蜡包埋的切片的活性形式的TGF-β1染色,P=足细胞;M=肾小球膜细胞。
图8表示正常和Alport人肾皮质的TGF-β1 mRNA的RNase检测分析。从正常和Alport人肾皮质中分离总RNA,并用人TGF-β1反义信使的放射性标记的部分作为探针对10微克每一种RNA进行RNase保护分析。该分析得到了一个264bp的保护片段。分子大小标记物是放射性标记过的MSP1裂解过的PBR322,并标出了合适的片段以便比较。N=正常;A=Alport。
图9表示源于正常、Alport、α1整合蛋白缺陷型、和同时缺乏α1整合蛋白和胶原蛋白α3(Ⅳ)的小鼠的肾皮质的RNA的Northern印迹。从具有所标明的基因型的7周龄小鼠(同窝崽)的肾皮质中分离总RNA:+/+=在两个等位基因上都正常;-/-=在两个等位基因上都是突变型。
图10是注射了对α1整合蛋白专一的中和抗体的7周龄Alport动物的GBM的透射电子显微照片。注意到了GBM的规则的3层外观,并且缺乏局部增厚区。放大倍数为10,500倍。
图11表示TGF-β1抑制剂对129Sv/J Alport小鼠的GBM超级结构的影响。用FK506或TGF-β1可溶性受体处理动物。将肾皮质包埋在环氧树脂中,切片,用乙酸双氧铀和柠檬酸铅染色,并用透射电子显微镜分析。A=对照;B=未处理过的Alport;C=用FK506处理过的Alport;D=用可溶性TGF-β1受体处理过的Alport。放大倍数为11,000倍。
图12是源于处理过的和未处理过的129Sv/J Alport小鼠的肾小球的扫描电子显微照片。对用于图11的小鼠的肾皮质进行冷冻干燥,切片,用乙酸双氧铀和柠檬酸铅染色,并用扫描电子显微镜对确定的肾小球进行曝光并照相。A=对照;B=未处理过的Alport;C=用可溶性TGF-β1受体处理过的Alport小鼠。放大倍数为2500倍。
图13表示在129Sv/J Alport小鼠上药物治疗对尿白蛋白的影响。在药物治疗期间,采集尿液,冷冻干燥,并在聚丙烯酰胺凝胶上对相等的0.5微升样品进行分析。用考马斯兰对所述凝胶进行染色,观察。头两个泳道是未注射过的对照,紧接着的两个泳道(Ⅰ组)是注射了FK506的,第3组(Ⅱ组)是注射了可溶性TGF-β1受体的。底部的数字表示在采集尿液时小鼠的年龄(周数)。
C=对照;A=Alport。
图14表示在双敲除小鼠中,TGF-β1抑制剂对GBM超级结构的影响。对动物不作处理,或者用FK506或TGF-β1可溶性受体处理。将肾皮质包埋在环氧树脂中,切片,用乙酸双氧铀和柠檬酸铅染色,并用透射电子显微镜分析。A=未注射过的对照;B=未注射过的双敲除;C=用FK506处理过的双敲除;D=用可溶性TGF-β1受体处理过的双敲除。放大倍数为8,000倍。
图15表示用TGF-β1抑制剂处理过的10周龄双敲除小鼠的正常肾小球结构的例子。在用TGF-β1抑制剂处理过的小鼠体内大约有25%的肾小球在形态学上与对照动物没有区别。动物是未处理过的或者用FK506处理过的。将肾皮质包埋在环氧树脂中,切片,用乙酸双氧铀和柠檬酸铅染色,并用透射电子显微镜分析。A=未注射过的对照;B=用FK506处理过的双敲除。
图16表示药物治疗对双敲除小鼠的尿白蛋白的影响。在药物治疗期间,采集尿液,冷冻干燥,并在聚丙烯酰胺凝胶上对相等的0.5微升样品进行分析。用考马斯兰对所述凝胶进行染色,观察。采集尿液时小鼠的年龄表示在图的底部(周数)。A=未注射过的双敲除小鼠;B=注射了可溶性受体的双敲除小鼠;C=注射了FK506的对照小鼠;D=注射了FK506的双敲除小鼠。
图17是源于Alport和双敲除小鼠的肾小球的扫描电子显微照片。将来自7周龄动物的肾皮质冷冻干燥,切片,用乙酸双氧铀和柠檬酸铅染色,并用扫描电子显微镜对确定的肾小球曝光并照相。A=对照;B=Alport;C=双敲除小鼠。
图18表示对正常和突变型小鼠的层连蛋白α2链的双重免疫荧光染色。用巢蛋白专一性一级抗体和FITC-缀合的二级抗体可将肾小球基底膜染成绿色。用Texas红偶联的二级抗体可将层连蛋白α2链染成红色。在毛细管回路中的同时沉积会导致黄色染色。Ⅰ组是源于7周龄小鼠的肾小球;A=未注射过的对照;B=未注射过的Alport;C=注射了可溶性受体的Alport;D=未注射过的双敲除小鼠。Ⅱ组是源于2周龄小鼠的肾小球;A=对照;B=Alport。箭头表示在肾小球的毛细管回路中的免疫染色。
图19是2周龄正常小鼠和Alport小鼠的GBM的透射电子显微照片。将肾皮质包埋在环氧树脂中,切片,用乙酸双氧铀和柠檬酸铅染色,并用透射电子显微镜分析。A=对照;B=Alport。
图20表示在正常和Alport小鼠中TGF-β1抑制剂对编码细胞基质分子或金属蛋白酶抑制剂的RNA在肾脏中表达的影响。总RNA是从用FK506(Ⅰ)处理过的或未处理过的(Ni)7周龄正常(C)或Alport(A)的小鼠的肾中分离的。在变性琼脂糖凝胶上分离RNA,并通过与编码胞外基质分子或金属蛋白酶抑制剂的放射性探针杂交进行分析。在杂交之后,洗涤杂交膜,并对X光胶片进行曝光。所使用的探针在图的左侧表示。α1(Ⅳ)=胶原蛋白α1(Ⅳ);fn=纤连蛋白;ent=巢蛋白;Timp2=金属蛋白酶抑制剂Timp-2;Timp3=金属蛋白酶抑制剂Timp-3。
图21表示在正常和双敲除小鼠中TGF-β1抑制剂对编码细胞基质分子或金属蛋白酶抑制剂的RNA在肾脏中表达的影响。总RNA是从用FK506(Ⅰ)、TGF-β1可溶性受体(Ⅱ)处理过的或未处理过的(NI)10周龄正常(C)或双敲除(Dko)小鼠的肾中分离的。在变性琼脂糖凝胶上分离RNA,并通过与编码胞外基质分子或金属蛋白酶抑制剂的放射性探针杂交进行分析。在杂交之后,洗涤杂交膜,并对X光胶片进行曝光。所使用的探针在图的左侧表示。α1(Ⅳ)=胶原蛋白α1(Ⅳ);fn=纤连蛋白;ent=巢蛋白;Timp2=金属蛋白酶抑制剂Timp-2;Timp3=金属蛋白酶抑制剂Timp-3。
图22表示用TGF-β1抑制剂抑制双敲除小鼠的管间隙中基质的积累。将来自10周龄正常或双敲除小鼠的肾包埋在塑料中,并用Jonessilver乌洛脱品方法对1μM的切片进行染色。A=正常肾;B=双敲除肾,未注射过的;C=用FK506处理过的双敲除肾;D=用TGF-β1可溶性受体处理过的双敲除肾。
图23表示用TGF-β1抑制剂抑制Ⅰ型胶原在双敲除小鼠的管间隙中基质的积累。将来自10周龄正常或双敲除小鼠的肾包埋在塑料中,并用对Ⅰ型胶原蛋白专一的抗体对1μM的切片进行免疫染色。用从Vector实验室购买的链霉亲合素AEC染色试剂盒对染色进行显影。A=正常肾;B=双敲除肾,未注射过的;C=用FK506处理过的双敲除肾;D=用TGF-β1可溶性受体处理过的双敲除肾。
图24用TGF-β1抑制剂抑制纤连蛋白在双敲除小鼠的管间隙中基质的积累。将来自10周龄正常或双敲除小鼠的肾包埋在塑料中,并用对纤连蛋白专一的抗体对1μM的切片进行染色。用从Vector实验室购买的链霉亲合素AEC染色试剂盒对染色进行显影。A=正常肾;B=双敲除肾,未注射过的;C=用FK506处理过的双敲除肾;D=用TGF-β1可溶性受体处理过的双敲除肾。
优选实施方案的详细说明本发明提供了针对肾病(肾疾病)的机制的治疗方法,该方法能明显延缓疾病状态的发作和/或发展,所述肾病如肾小球性肾炎和肾纤维化。据信,本发明的方法甚至能够恢复所述疾病。具体地讲,本发明提供了用于治疗与在肾小球中出现或增加出现产生肾小球性肾炎和肾纤维化的危险的相关的肾病的方法,如在肾小球膜增殖性肾小球肾炎、膜增殖性肾小球肾炎、新月型肾小球性肾炎、糖尿病型肾病、和肾间质纤维化中所出现的情况。肾小球性肾炎涉及肾小球的损坏,通常与GBM的增厚、变薄、和/或开裂的不规则性相关。这可能最终导致管间隙纤维化的共同途径。所述症状的典型特征是肌成纤维细胞的出现和基质(包括Ⅰ型胶原、纤连蛋白、层连蛋白和Ⅳ胶原)在管间隙中的积累。通过评估上述特征中的一项或几项可以确定用于本发明方法中的治疗剂的效果。
本发明还提供了用于研究治疗肾病患者的方法和筛选治疗肾病患者的治疗剂的小鼠模型,所述肾病与胞外基质的积累,特别是在肾小球和管间隙中的积累的出现或具有较大的出现这种情况的危险性相关的。因此,在一种实施方案中,本发明提供了Alport综合症的小鼠模型。该小鼠模型包括一个与失活的胶原蛋白(Ⅳ型)分子结合的失活的α1β1整合蛋白受体。在一种优选实施方案中,胶原蛋白(Ⅳ型)分子是通过破坏胶原蛋白(Ⅳ型)的α3亚基的表达而失活的。结果,所述小鼠不能将胶原蛋白α3(Ⅳ)、α4(Ⅳ)、或α5(Ⅳ)链结合到GBM中。
所述小鼠模型可用于试验治疗肾功能异常的制剂的方法中,如Alport综合症、胰岛素依赖型糖尿病、以及其早期疾病以肾小球膜基质膨大和肾小球膜细胞增殖为特征的其他肾病,所述肾病与肾小球基底膜损伤有关,其特征是基底膜增厚、变薄、开裂、以及足细胞足突的消失,或其组合。
在一种优选实施方案中,本发明提供了抑制或以其他方式破坏α1β1整合蛋白受体功能的抑制剂,以此作为在肾小球疾病发展过程中推迟肾小球性肾炎和/或纤维化(表现为肌成纤维细胞的出现和胞外基质在管间隙中的积累,包括层连蛋白、纤连蛋白、Ⅰ型胶原和Ⅳ胶原)的发作(通过白蛋白在尿液中的出现衡量)或延缓疾病的发展(通过尿液中血清白蛋白含量升高的速度衡量)或者甚至恢复(通过尿液中血清白蛋白含量增加的速度衡量)。可以使用合成的或天然的各种试剂,将在下面做更详细的描述。
在另一种实施方案中,本发明涉及TGF-β1在Alport肾病发病积累和其他所述肾病中的作用。在用于本发明的小鼠模型上在蛋白尿发作之后观察到TGB-β1的mRNA含量的显著增加。原位杂交证实,足细胞在蛋白尿发作之前能产生很少以至不产生TGB-β1的mRNA,而在蛋白尿发作之后一直到肾衰竭的晚期能表达TGB-β1的大量的mRNA。大体上在相同时间观察到了编码纤连蛋白、COL4A1和COL4A2的mRNA的激活。因此,降低TGB-β1含量的方法是治疗诸如肾小球性肾炎和/或纤维化的肾病的另一种途径。抑制TGB-β1活性的效果可以通过测定白蛋白在尿液中出现的时间(发作)和含量增加的速度而测定,和/或肌成纤维细胞的出现(出现于管间隙中)和/或胞外基质分子在GBM和管间隙中的积累。
在另一种实施方案中,通过将TGB-β1抑制剂用于α1整合蛋白缺陷型Alport小鼠,本发明通过α1β1整合蛋白抑制剂和TGB-β1抑制剂组合治疗对延缓肾小球性肾炎的发作和发展和/或预防纤维化产生协同作用。小鼠模型控制患有Alport综合症和其他疾病患者的一个重要方面是确定这种病发展的原因和/或机制,所述其他疾病与渐进性肾小球损伤相关,所述损伤与GBM上的增厚、变薄、或开裂的不规则性以及最终到达管间隙纤维化的共同途径相关,其特征是肌成纤维细胞的出现和基质(包括Ⅰ型胶原、纤连蛋白、层连蛋白、和Ⅳ型胶原)在管间隙中的积累为特征。例如,尽管在胶原α3(Ⅳ)和α4(Ⅳ)基因上的突变会导致Alport综合症的常染色体隐性形式,而在α5(Ⅳ)基因上的突变会导致这种病的X-连锁形式,但这些突变本身不会“导致”渐进性肾衰竭。相反,胶原蛋白α3(Ⅳ)、α4(Ⅳ)、或α5(Ⅳ)的缺乏似乎会导致由α1(Ⅳ)和α2(Ⅳ)胶原蛋白链组成的胚胎样GBM的保留。这种胚胎样GBM是人类生命中大约头10年(或小鼠模型的大约头3周)的合适的肾小球过滤器。不过,在此之后,胚胎样GBM似乎不再能有效地起作用。例如,在一个Alport综合症患者上,对9岁大的Alport综合症患者的GBM的超级结构分析发现了比较正常的超级结构(Cangiotti等,Nephrol.Dial.Transplant.,11:1829-1834,1996)。不过,在18岁时,同一个患者的GBM超级结构表现出发展了的Alport肾小球性肾炎。
在Alport综合症上,人的基底膜在5岁到10岁之间都比较正常,此时,基底膜完整性的丧失可以通过尿液中白蛋白的逐渐增加监测。活检研究业已证实了在蛋白尿之前的Alport患者体内基底膜的超级结构是正常的。从超级结构上看,GBM病表现为GBM的不规则增厚和变薄。基底膜的开裂被认为是由于与蛋白尿同时出现的微量血尿病(即在尿液中有少量的可检测红细胞)所导致的。
对Alport肾病发作和发展的机制所知甚少。不过,据推测,GBM成分的积累和GBM的稀少化可能是由于这种膜遭受蛋白水解的可能性增强,和/或由于正常调节途径的改变增加了基质分子的合成。
因此,需要一种Alport综合症的模型,因为研究人的样品具有局限性。这种病的发展在人体上会表现出不同程度的严重性,这可能是由于遗传背景的差别所致。了解疾病发作和发展的分子特征的有意义的研究从道理上讲在人体上是不可能的,这妨碍了Alport肾病研究的发展。
通过编码4型胶原α3(Ⅳ)链的基因的定向诱变生产出了常染色体Alport综合症的小鼠模型(Cosgrove等,基因发育10:2981-2992,1996)。这种动物模型会发生一种渐进性的肾小球性肾炎。最早在1周大时就观察到了GBM超级结构的改变。在本文中这种小鼠被称为“Alport小鼠”。
另外,通过编码α1整合蛋白受体亚基的基因的定向诱变生产出了一种小鼠(Gardner等,发育生物学,175:301-313,1996)。该整合蛋白亚基与整合蛋白β1亚基一起形成一种异源二聚体,产生具有生物学活性的α1β1整合蛋白异源二聚体,这种二聚体存在于肾小球中的肾小球膜细胞的表面上。整合蛋白α1β1受体是仅存在于肾小球基质中的整合蛋白受体,它不存在于其他部位。除了纤维细胞与胶原基质的粘接改变之外,所述敲除小鼠没有明显的表型。它能正常发育,可育,并且有正常的寿命。不存在肾衰竭,并且在这些小鼠的肾小球的分子组成或超级结构方面没有明显差别。由于α1β1异源二聚体整合蛋白受体是在肾小球中的肾小球膜细胞表面上所鉴定到的唯一的整合蛋白受体,令人吃惊的是,这种受体的缺乏居然对正常肾发育和/或功能没有影响。这表明,要么它是不必要的,要么丰余的途径能够弥补它的缺乏。
本发明提供了一种新型双敲除(即双突变型)小鼠模型。该模型是通过让α1敲除小鼠品质与胶原蛋白α3(Ⅳ)敲除小鼠品质(Alport小鼠)杂交以便产生在整合蛋白α1受体亚基基因和胶原蛋白α3(Ⅳ)基因上都具有缺陷的突变型。尽管α1β1整合蛋白受体的缺乏表面上看在正常的肾发育和功能方面没有作用,因为肾小球膜基质是合成金属蛋白酶和诸如TGF-β1的细胞因子的场所,并且Alport肾小球性肾炎早期与肾小球膜细胞的增殖和肾小球膜基质的扩张相关,但相信α1β1整合蛋白受体可能在肾病发病中具有特殊作用。事实上,对整合蛋白α1胶原蛋白α3(Ⅳ)双敲除小鼠的研究是十分特殊和重要的。下面的讨论披露了本发明的双敲除小鼠的很多特征。
对肾过滤器的完整性的最好整体评价方法是蛋白尿(即,在尿液中存在过量的血清蛋白)。如图1所示,与Alport同窝崽(即缺乏胶原蛋白α3(Ⅳ)基因,但含有α1整合蛋白亚基基因)相比,所述双敲除小鼠的蛋白尿至少推迟1周,并且在大约9周-大约9.5周达到高峰,而前者是在大约6周-大约6.5周达到高峰。蛋白尿(即在尿液中存在血清白蛋白)的发作和增加速度是评估本发明方法有效性的一个良好指标。可以通过凝胶电泳和考马斯兰染色(用等量的1微升的尿液进行电泳)或市售检验条测定血清白蛋白含量。Alport小鼠由于肾衰竭而导致的平均死亡年龄大约为8-9周,而无论这些小鼠的背景是129Sv/J或129Sv(为了确定这一点让每一种遗传背景的至少10只小鼠发展到晚期阶段)。双敲除小鼠的平均寿命为大约15-16.5周。
因此,清除α1β1整合蛋白受体对Alport肾病的发作和发展具有明显影响。另外,与其他试验小鼠相比,没有α1β1受体的小鼠具有改善了的肾小球功能。在不能表达α3(Ⅳ)基因,并且在α1敲除突变上是杂合的动物上,在肾小球功能和疾病发展方面具有中等程度的改善,这表明α1整合蛋白对Alport肾病的发展具有剂量依赖型影响(即α1整合蛋白的表达降低1/2,所产生的保护作用介于Alport小鼠和所述双敲除小鼠之间)。在α1整合蛋白突变上杂合的Alport动物上的中等程度的保护作用表明,部分抑制α1β1整合蛋白受体,能产生有用的优点。这是一个重大发现,因为它能在用于人类时,应用于包括抑制α1β1整合蛋白受体的治疗方法上。
对获自在两个等位基因上正常的(对照)、在胶原蛋白α3(Ⅳ)上无效并且在α1整合蛋白上正常的(Alport)、或在胶原蛋白α3(Ⅳ)和α1整合蛋白都无效(双敲除)的7周龄小鼠的肾进行透射电子显微镜分析。选择这一时间点,是因为Alport小鼠在此年龄已经接近晚期阶段。图2中所选择的照片是至少5个不同肾小球区的代表。如图2所示,正常小鼠的肾小球毛细管回路(图2A)具有三层基底膜,它具有均匀的厚度和规则的足突(在所有图片中的足突用箭头表示)。Alport小鼠的毛细管回路(图2B)表现出稀少化的基底膜,具有局部增厚和变薄(发病晚期的特征)。足突膨大,变得模糊,据信其作用是影响过滤效率。在双敲除小鼠上(图2C),基底膜所受的影响明显低于Alport小鼠(图2B)。尽管它的基底膜比对照的薄,但它稀少化的程度较低,并且,足细胞的足突似乎比较正常。在Alport小鼠上,大约有40%的肾小球纤维化,而在双敲除突变型上仅有50%纤维化。
用取自图2所示的相同动物的冷冻的肾皮质进行免疫荧光分析。让所述组织与对已知的由于Alport肾病发展而在GBM中积累的蛋白专一的抗体反应。图3中的结果表示对于Alport肾小球和双突变型肾小球来说,胶原蛋白COL4A1(α1(Ⅳ))和COL4A2(α2(Ⅳ))链的分布。在两种情况下,毛细管回路(在图3的图片中用箭头表示)和肾小球膜基质是阳性的(图3B、C)。与对照相比,Alport小鼠的GBM中明显积累了层连蛋白-1(比较图3D和图3E)。不过,在双突变型(图3F)中,相对Alport肾小球而言(图3E),层连蛋白-1的积累显著减少。正常情况下,纤连蛋白仅存在于肾小球膜基质中,但在Alport小鼠上发现它存在于GBM上,并且存在于肾小球膜基质中。另人吃惊的是,在所述双突变型中,未发现纤连蛋白在毛细管回路中的积累(图3I)。这一结果是高度可再现的。相反,与对照(图3J)或Alport小鼠(图3K)相比,对硫酸肝素蛋白聚糖进行染色,在双突变型肾小球膜基质中表现出减弱了的染色(图3L)。在Alport和双突变型样品都观察到巢蛋白在GBM中的积累,在两者之间没有可分辨的差别(图3N和图30)。
综上所述,以上资料说明双突变型中的α1无效突变会导致Alport肾病发展的延缓。这种延缓在生理学(如图1所示,推迟了蛋白尿的发作)和超级结构(如图2所示,减弱了GBM损伤和足突的消失)水平上都很明显。在图3中所提供的免疫影响研究说明,α1β1整合蛋白受体的消失会导致胞外基质成分在GBM和肾小球膜基质中积累的特殊变化。因此,本发明涉及治疗方法,其中,肾细胞表面的α1β1整合蛋白受体结合位点受到抑制。下面将更详细地披露所述治疗方法。另外,图9表明,尽管在Alport小鼠中诱导了细胞因子TGF-β1,但同时也具有α1整合蛋白突变的Alport小鼠中不能诱导。因此,在缺乏α1β1整合蛋白的情况下,未观察到TGF-β1诱导,这导致了基质在肾小球基底膜中积累的减少,并因此显著降低了肾病发展的速度。GBF-β1在肾病中的这种作用,将在以下部分作更详细的讨论。TGF-β1的作用本文的资料清楚地表明,TGF-β1是在本发明所使用的小鼠模型中的特殊肾小球细胞类型(足细胞)中诱导的。TGF-β1mRNA的诱导,是编码已知的肾小球基底膜中积累的基质分子诱导的反应,所述分子的积累是所述模型中渐进性肾小球性肾炎的结果(例如,层连蛋白、纤连蛋白、巢蛋白和4型胶原蛋白)。另外,本文的资料还表明,在人Alport肾皮质中也诱导了TGF-β1。这一结果支持了所述动物模型在模拟人类Alport肾中所发生的情况的能力方面的实用性。
为了证实TGF-β1的作用,从Alport动物的肾中分离总RNA,并用放射性标记过的,对α1(Ⅳ)或α2(Ⅳ)胶原蛋白链、巢蛋白、层连蛋白β1或β2链、纤连蛋白、或TGF-β1专一的探针检测。图4的结果表示上述所有蛋白的mRNA,所不同的是层连蛋白β1是在Alport小鼠中在蛋白尿发作之后诱导的。与此同时,还要对层连蛋白α1、层连蛋白β2、层连蛋白γ1、硫酸肝素蛋白聚糖核心蛋白、胶原α4(Ⅳ)、和胶原α5(Ⅳ)链进行Northern吸印。在比较所述对照和突变型时,没有发现上述其他基底膜蛋白在mRNA水平上有明显差别。
对上述Northern分析的结果进行分析,以便直接对在上述时间内特定mRNA表达的相对变化进行定量。图5表示在6周龄时,所述特定mRNA含量的诱导第一次显著。到第8周,mRNA的含量达到最高,编码TGF-β1和纤连蛋白的mRNA被诱导分别超过对照小鼠6.6倍和9.4倍。到第8周,胶原蛋白α1(Ⅳ)、α2(Ⅳ)、和巢蛋白的mRNA含量被诱导了大约3倍。相反,在肾病发展的任何时间,都没有发现编码层连蛋白β1β2链的mRNA有明显变化,这一结果是通过上述相同的总RNA的Northern印迹测定的。
肾小球仅占肾脏总质量的很小的百分比。肾小球中单个细胞类型所占的百分比更低。因此,总的肾RNA的Northern印迹不可能检测出对肾小球专一的,或者对特定的肾小球细胞类型专一的信息的诱导。为了确定编码TGF-β1或不同基底膜成分的mRM在特定肾小球细胞类型中是否被诱导,用洋地黄毒苷标记过的、对所述mRNA专一的反义探针进行原位杂交。结果如图6所示。在正常小鼠中,TGF-β1的转录物(图6D)、纤连蛋白的转录物(图6G)和层连蛋白β1的转录物(图6M)仅存在于肾小球膜细胞中,而在Alport小鼠中,相同的转录物(图6E、H、和N)明确存在于足细胞中(位于肾小球外面的细胞环),表明了在该肾小球细胞类型中的基因激活。还证实了胶原蛋白α1(Ⅳ)足细胞的激活(比较图6B和6A)。肾小球足细胞中的编码基质蛋白的基因的激活,能导致GBM组成的改变。
基于用对所述细胞因子的活性异构形式专一的抗体进行免疫过氧化物酶检测的TGF-β1蛋白的资料,证实了通过原位杂交分析所获得的TGF-β1 mRNA的资料。图7所示资料表明,TGF-β1 mRNA在足细胞中的较高水平的表达,可转译成较高的蛋白。
由于有关TGF-β1的资料是用小鼠模型获得的,要进行RNase保护分析,以便确定在获自Alport和对照患者的人肾皮质中,所述细胞因子的mRNA含量是否也提高了。图8中的资料表明,相对对照而言,人Alport肾皮质中的TGF-β1 mRNA的含量提高了3-4倍。这证实了所述细胞因子在人Alport肾中也是超量表达的。因此,抑制TGF-β1的活性可以作为治疗Alport综合症的合理的治疗方法,特别是用于限制、优选预防基质在GBM中的积累。如上文所述,图9表示,尽管TGF-β1在Alport小鼠中被诱导,但它在同时具有α1整合蛋白突变的双敲除小鼠中不能被诱导。因此,在缺乏α1β1整合蛋白的情况下,不会出现TGF-β1的诱导,这就是在肾小球基底膜中基质积累减少的原因,因此,明显降低了肾病发展的速度。
重要的是,抑制(或以其他方式失活)整合蛋白α1β1受体和抑制TGF-β1,在减缓肾病(特别是Alport肾病)发作、发展和/或恢复方面具有协同作用。例如,这种协同作用是用两种不同的试剂证实的,这两种试剂以三种不同方式抑制TGF-β1的活性。对两种试剂进行研究,以便确定这一结果是由于抑制了TGF-β1的活性,而不是由于药物治疗的副作用。
第一个例子是由Fujisawa药物有限公司(大阪,日本)生产的药物,被称为tacrolimus或FK506。这种药物通常被用作免疫抑制剂,用于在器官移植之后预防排异作用。它通过抑制被称为钙调磷酸酶的T-细胞受体的关键亚基而起作用。所述酶是一种丝氨酸苏氨酸磷酸酶,并且是T-细胞受体信号传导的一个关键部分。正如在最近的综述中所指明的(Crabtree等,细胞,96:611-614,1999),钙调磷酸酶是各种受体的亚基。最近报导的所述受体之一是TGF-β1的受体(Wang等,细胞,86:435-444,1996)。药物FK506是作为TGF-β1的抑制剂试验的。因此,用适当剂量的FK506处理小鼠能抑制TGF-β1Ⅰ/Ⅱ型受体信号传导。
由于FK506除了抑制TGF-β1之外还具有其他生物学作用(通过T-细胞受体抑制实现的有效的免疫抑制最为突出),对第二种TGF-β1抑制剂进行了评估。第二种抑制剂是由Biogen Inc.(剑桥,MA)开发的实验药物。这种药物是所述细胞因子的竞争性抑制剂,能吸收所述活性细胞因子,形成失活的可溶性受体复合体。它是一种可溶性嵌合TGF-βRII/IgG1鼠融合蛋白(参见国际公开号WO98/48024)。在所述实验中,每周2次通过尾静脉将25微克抑制剂注射到小鼠体内。
由于FK506和Biogen的可溶性TGF-β1抑制剂的活性模式和潜在的副作用是如此不同,用所述动物模型系统进行的观察与这两种药物吻合,这可以归结为是由于抑制了TGF-β1的活性。
进行了两种类型的试验。用129Sv/J小鼠模型(Alport小鼠)对两种制剂进行试验,以便检验其对TGF-β1抑制的生物学效应。其次,在双敲除小鼠模型中对两种制剂进行试验,以便检验α1β1整合蛋白抑制和TGF-β1抑制的生物学效应。在所有情况下,本文所给出的数据都至少重复了3次,具有高度的一致性。
当Alport小鼠模型中TGF-β1受到抑制时,具有某些有益的效果。基底膜的形态学具有总体的改善,不过,仍然观察到了明显的足突消失。因此,TGF-β1可以通过降低基质积累的速度改善GBM形态学,但它对足突消失的机制没有明显影响。这意味着TGF-β1抑制剂尽管能提供某些改善,但不大可能成功地改善Alport综合症或其他诸如此类的疾病的所有特征。在双敲除小鼠中,到10周龄时,大多数足突看上去正常,不过,在GBM中有大量的基质积累。如果从4周龄时开始用任一种TGF-β1抑制剂处理相同的动物,并在10周龄时收获组织,大约有30%的肾小球在超级结构方面与正常小鼠没有差别。因此,可以通过组合使用TGF-β1抑制剂和α1β1整合蛋白受体抑制剂,实现本文所述治疗方法的显著改进。
获自用任一种TGF-β1抑制剂处理过的Alport小鼠或双敲除小鼠的肾脏的特定mRNA的Northern印迹资料,证实了TGF-β1或α1β1整合蛋白敲除突变在影响编码GBM中积累的任一种基质分子的信息的表达方式方面存在明显差别。编码金属蛋白酶(包括基质金属蛋白酶2(MMP-2))的mRNA及其相应的抑制剂(包括TIMP-2和TIMP-3)(该抑制剂被认为能调节构成GBM的分子的转化速度)同样以不同方式影响用任一种TGF-β1抑制剂处理过的Alport小鼠或双敲除小鼠。具体地讲,在正常小鼠中能以很高水平表达的Timp-3在Alport小鼠和双敲除小鼠中受到了抑制。用TGF-β1抑制剂处理双敲除小鼠,可预防TIMP-3的抑制,将其mRNA恢复到与对照小鼠相当的水平(图21)。
与此同时,层连蛋白α2正常情况下严格局限于在肾小球膜基质中表达。层连蛋白α2的沉积是所鉴定到的与Alport GBM疾病发作相关的最早的分子变化,与此同时,首先检测到基底膜的增厚。即使是在7周龄时,在GBM的双敲除小鼠中也未观察到层连蛋白α2的沉积(图18,1D组)。给SV/J Alport小鼠给药TGF-β1抑制剂不能抑制层连蛋白α2的沉积(图18,1C组)。这证实了α1β1整合蛋白和TGF-β1抑制剂在延缓疾病发展的作用方式方面存在其他不同,用有力的证据证实了组合治疗能产生协同效果的原因。据信,TGF-β1不能抑制足细胞足突的消失,直接与有关层连蛋白α2的发现相关。所述层连蛋白形成包括α、β、和γ链的异源三聚体。在基底膜中,它们相互交联形成层状超级结构,该结构是基底膜的一个整体部分。已知层连蛋白能与整合蛋白受体起作用,并在分化和组织功能的保持方面起着重要作用。在正常小鼠中,GBM主要包括层连蛋白-11,由α5、β2和γ1组成的异源三聚体。已知该层连蛋白能以很高的亲合力结合在足细胞表面上的整合蛋白α3β1受体上。很多人都认为这种相互作用在保持构成足突的复杂的细胞骨骼结构方面起着关键作用。包括α2链的层连蛋白异源蛋白三聚体(层连蛋白-2和层连蛋白-4)不能结合α3β1整合蛋白。因此,层连蛋白-2链在GBM中的存在会导致通过抑制α3β1整合蛋白与其正常底物(层连蛋白-11)结合而出现足突消失。如上文所述,在所述双敲除小鼠中,层连蛋白α2的沉积受到抑制,它与在该小鼠中足突的保持十分吻合。
其他观察与间质纤维化的组织相关,间质纤维化发生在Alport综合症发生的晚期。在129Sv/J Alport小鼠模型中,在7周之前很少观察到纤维化,平均死亡年龄为8周。不过,在双敲除小鼠中纤维化发作于8-9周,并且一直发展到15周的平均死亡年龄。因此,双敲除小鼠是研究纤维化的优良模型。在双敲除小鼠中存在明显的纤维化进程,这一进程可以用TGF-β1抑制剂有效抑制。治疗方法一方面,本发明涉及用抑制剂(例如,封闭剂)抑制或以其他方式破坏α1β1整合蛋白受体的功能,以此作为推迟肾小球疾病,特别是渐进性肾小球性肾炎和/或纤维化发作(通过在尿液中出现可检测水平的血清白蛋白衡量,使用市售检验条或凝胶电泳和凝胶染色方法)、延缓其发展(通过测定尿液中的白蛋白含量随时间而提高的速度确定,按上述方法测定)、或者甚至是恢复这种病的方法。例如,其中包括源于结合在α1β1整合蛋白受体上的蛋白的9聚体肽,如,(但不限于)层连蛋白、4型胶原蛋白、纤连蛋白和巢蛋白。可以根据蛋白/α1β1整合蛋白受体研究,生产出结合于α1β1受体的受体/配体位点内的小分子。可将能专一地结合于α1β1整合蛋白受体的结合位点上的抗体和抗体片段用于本发明中。所述抗体或抗体片段包括多克隆抗体、单克隆抗体、抗独特型抗体、动物产生的抗体、人源化抗体和嵌合抗体。
可将能抑制α1β1整合蛋白受体的结合位点的试剂(人工配体)用于本发明的方法中。所述试剂的例子包括,但不限于中和抗体、肽、或蛋白水解片段等。据信,所述试剂能够抑制通过所述受体进行的信号传导。可以通过评估诸如TGF-β1、纤连蛋白、层连蛋白链等的基因表达的下游效应、通过肾小球基底膜的形态变化和/或通过表现为蛋白尿的发作和发展速度降低的肾小球筛改善,来确定所述治疗的效果。
在实施例和图10中提供了能中和α1β1整合蛋白功能的抗体。作为说明一种能够抑制α1β1整合蛋白与其配体相互作用的可溶性试剂的例子,获得了Fabbri等(组织抗原,48:47-51,1996)披露的抗体,所述相互作用能够产生与α1基因敲除突变相同的对肾病发病的影响。注射该抗体(每周注射3次,每次腹膜内注射400ng),并证实能抑制Alport小鼠模型中的肾小球基底膜损伤,在很大程度上在双突变型中观察到的作用方式相同。
另一方面,本发明涉及使用能降低TGF-β1含量的制剂,以此作为在肾小球疾病,特别是渐进性肾小球性肾炎发病中延缓基质积累的方法。因此,所述试剂可用于治疗Alport综合症患者和胰岛素依赖型糖尿病患者,以及患有以下疾病的其他患者特别是渐进性肾小球性肾炎或以肾小球膜基质扩张、肾小球膜细胞增殖、会导致增厚、变薄、开裂、或某些诸如此类的不规则性、足细胞突起的消失的肾小球基底膜中基质的沉积,或上述表现的某种组合,以上所有疾病最终都会发展到肾纤维化的共同途径上(用α1β1整合蛋白抑制剂和TGF-β1抑制剂进行组合治疗对于预防以上疾病是特别有效的)。因此,现有技术中所披露的反义疗法,可用于抑制TGF-β1或α1β1整合蛋白受体蛋白表达。可以使用合成的或天然的多种试剂。
能中和TGF-β1细胞因子与其受体相互作用的能力的试剂可用于本发明的方法中。所述试剂的例子包括,但不限于中和抗体、钙调磷酸酶抑制剂(即microlide)如在US5260301中所披露的(Nakanishi等)(例如,FK506或tacrolimus以及结构上相关的化合物),一种可溶性受体,如披露于国际公开号WO98/48024(Biogen公司)中的可溶性重组TGF-β1受体(例如,可溶性嵌合TGF-βRII/IgG1融合蛋白),所述受体的肽片段,或某些具有能不可逆地(或稳定的)结合细胞因子并抑制其与其受体结合的能力的所述片段。另外,可以使用能抑制TGF-β1向细胞核传导信号的能力的试剂。可以通过评估诸如纤连蛋白、层连蛋白链等的基因表达的下游效应、通过肾小球基底膜的形态变化,和/或通过表现为蛋白尿的发作和发展速度降低的肾小球筛改善进行来确定所述治疗的效果。
在一种例子中,可将FK506或环孢菌素A用于抑制TGF-β1受体的钙调磷酸酶部分,抑制通过该受体复合体进行的信号传导,正如在某些其他肾病中业已披露过的(Wang等,细胞86:435-444,1996和Miller等,内分泌学,3:1926-1934,1989),并因此抑制(通过一种未知的机制)蛋白尿的发作,正如在相同的肾病上业已披露的(Callis等,Pediatt.Nephrol.,6:140-144,1992)。在本发明之前,还没有对Alport综合症、糖尿病或与肾小球中胞外基质的增加相关的疾病提出所述建议。
具体地讲,本发明说明了抑制α1β1整合蛋白受体和TGF-β1的组合疗法的作用,在预防肾小球疾病和与Alport综合症相关的纤维化方面具有协同作用。随之而来的是,与肾小球膜基质扩张、肾小球膜细胞增殖、表现为GBM增厚、变薄、开裂、足细胞足突消失的一种或几种的渐进性基底膜损伤或上述现象的任意组合相关的其他疾病也可以得益于该治疗方法。另外,我们说明了所述组合治疗在预防Alport综合症的管间隙纤维化方面的效果。纤维化是一种常见途径,据信其机制在所有与纤维化相关的肾病中是相同的。因此,这种在治疗纤维化方面的组合治疗的效果可适用于所有形式的肾纤维化,而无论启动通向纤维化的途径内在原因是什么。
用于本发明方法中的试剂可以与药理学上可以接受的载体组合给药。本发明的试剂被配制在药用组合物中(即制剂),然后以适应所选择的给药途径的各种形式给诸如人类患者的哺乳动物给药。所述制剂通常包括适用子肠胃外(包括皮下、肌内、腹膜内、和静脉内)给药和其他能保持所述试剂稳定性的方法的形式。
合适的药理学上可以接受的载体可以为液体、半固体、细碎的固体或其组合形式。适用于肠胃外给药的制剂通常包括所述试剂的无菌水制剂,或含有所述试剂的无菌粉末的分散剂,该制剂优选是与受体的血液等渗的。可以包含在所述液体制剂中的等渗试剂包括糖、缓冲液、和氯化钠。所述试剂的溶液可以用水制备,选择性地与无毒表面活性剂混合。所述试剂的分散液可以用水、乙醇、多元醇(如甘油、丙二醇、液体聚乙二醇等)、植物油、甘油酯及其混合物制备。最终的剂型是无菌的,并且在生产和储存条件下是稳定的。可以通过诸如使用脂质体、通过在分散液中采用合适的粒度或使用表面活性剂获得所需的流动性。液体的消毒可以用任何能保留所述试剂生物活性的常规方法完成,优选通过过滤器消毒。制备粉末的优选方法包括无菌可注射溶液的真空干燥和冷冻干燥。可以通过使用诸如抗细菌剂、抗病毒剂和抗真菌剂的各种抗微生物剂预防后续的微生物污染,所述抗微生物剂包括parabens,三氯叔丁醇、苯酚、山梨酸、硫柳汞。可以通过将试剂包含在用于缓释的诸如单硬脂酸铝和明胶的材料中实现所述试剂的较长时间的吸收。
除了上述成分之外,本发明的制剂还可以包括一种或几种辅助成分,其中包括稀释剂、缓冲剂、粘接剂、分解剂、表面活性剂、增稠剂、润滑剂、防腐剂(包括抗氧化剂)等。所述制剂通常以单一剂量形式存在,并可以通过制药领域所公知的任意方法制备。
本文所披露的试剂的有用的剂量(即能提供理想作用的有效剂量)可以通过比较其体外活性及在动物模型中的体内活性来确定。根据在小鼠和其他动物中的有效剂量推测在人体上有效剂量的方法在本领域中是公知的。例如,对于静脉内注射来说,剂量为每天2次,每公斤体重大约150-300毫克。一般,可以给药的合适剂量为能充分产生理想的效果,如通过诱导Ⅱ期酶表达的明显增加,或本文所述的其他特征。
实施例在实施例中对两种不同的动物模型进行了说明。第一种模型是“Alport”小鼠模型,它不能表达胶原蛋白α3(Ⅳ),而α1整合蛋白是正常的,并披露于Cosgrove等,基因发育,10:2981-2992,1996中,第二种模型被称为“双敲除”小鼠,这种小鼠是通过让Alport小鼠与α1整合蛋白基因无效的小鼠杂交产生的。在用于说明抑制α1β1整合蛋白对延缓肾小球疾病的作用的效力方面Alport小鼠和双敲除小鼠之间没有差别。将对这些效果进行详细说明。
Alport小鼠是纯合的129Sv/J遗传背景,而双敲除小鼠是97.5%纯合的129Sv背景。所不同的是,将所述动物用于产生图4、5和6。所述实验是在Alport小鼠模型的生命的早期进行的,因此,是通过让嵌合型雄鼠与C57B1/6雌鼠杂交产生的,然后再让得到的杂合型小鼠与所产生的纯合型Alport小鼠杂交,得到F2代。这是与用于Alport小鼠模型原始说明中的同一世代的小鼠(Cosgrove等,基因发育,10:2981-2992,1996)。这是早期基因敲除研究的习惯做法,因为它能加速敲除表现型的鉴定。从所述F2代获得的有关特定mRNA诱导的结果与由纯的129Sv/J敲除小鼠获得的结果一致。应当指出的是,对Alport小鼠和双敲除小鼠进行比较分析的所有实验都是用近交系进行的。
检验了TGF-β1在两种动物模型的肾病发展方面的作用,以及在纤维化发生方面的作用。这一目的是通过检验两种以很不相同的方式起作用的TGF-β1的不同抑制剂进行的。使用两种不同的抑制剂(FK506和可溶性TGF-β1受体),提供了有关作用是由于TGF-β1抑制,而不是由于所使用的试剂的副作用的证据。FK506在治疗与TGF-β1的超量表达相关的渐进性纤维化方面具有治疗作用。
在分析所披露的不同动物模型和药物治疗的过程中,有一个一直保留使用的特殊评估过程。对三个不同的方面进行评估。首先,检查肾功能,它可以对肾小球过滤器的总体完整性进行评价。这一目的是通过检验尿液中的血清白蛋白的输出而实现的。其次,在光学和电子显微镜水平上检验组织的结构完整性。采用透射和扫描电子显微方法,设计所述方法,是为了确定在不同条件下肾病理组织学的程度。最后,进行分子分析实验,以便检验在特定的基因上发生了什么样的变化,并由于这些不同的条件产生了什么样的相应的蛋白。这些检验是通过用Northern印迹、原位杂交、RNase保护观察特定的RNA,并通过用免疫组织化学检测特定蛋白而进行的。由于特定的方法被重复用于分析不同的动物模型,和在不同的动物模型上进行不同的药物治疗,为了避免重复,现在要指出的是,所述方法在所有情况下都是以相同方式进行的(几乎可以视为日常的实践),因此,只说明一次,然后在后面的特定实施例中加以引用。
本领域技术人员可以使用多种其他技术和方法,这些技术和方法同样能够成功地完成本发明。所有试剂都是从Sigma化学公司(St.Louis,MO)获得的,除非另有说明。用于本发明所有研究中的PBS是以片剂形式购买的,每片被重溶于200毫升水中,形成pH7.4的PBS,所述片剂购自Sigma化学公司(St.Louis,MO),产品代号P-4417。
方法Ⅰ.肾功能A.蛋白分析尿蛋白的最初测定是用Albustix(Miles实验室,Elkhart,IN)进行的,并根据该试剂盒所提供的比色图表读出相对含量。
每隔1周采集1次尿样,并在10%的变性丙烯酰胺凝胶上通过电泳分离0.5微升的样品。用考马斯兰对凝胶上的蛋白进行染色,并照相。用牛血清白蛋白作为分子量标准物。Ⅱ.结构完整性A.透射电子显微术在4%的低聚甲醛中切碎新鲜的外肾皮质,将其固定2小时,并于5℃下保持在PBS(pH7.4)中。用0.1M Sorenson’s缓冲液(Sorenson’s缓冲液是通过混合100毫升的200mM磷酸二氢钠和400毫升的200mM磷酸氢二钠和500毫升的水,并调整到pH7.4而制成的)充分洗涤所述组织(在4℃下洗涤5次,每次10分钟),并在含有1%四氧化锇的Sorenson’s缓冲液中进行后固定1小时。然后在梯度乙醇中对该组织进行脱水(70%、然后80%、然后90%、然后100%,每次10分钟),然后在氧化丙烷中脱水,并包埋在Poly/Bed812环氧树脂中(Polysciences公司,Warrington,PA),按照生产商所提供的方法进行。简单地讲,将42毫升的polybed812与26毫升的十二烷基琥珀酸酐(DDSA,Polysciences公司)和24毫升的nadic甲基酸酐(Polysciences公司)混合。加入1.5毫升的2,4,6三(二甲基氨基甲基)苯酚作为催化剂,并将活化的树脂冷冻在10毫升样品中,在需要时用于包埋样品。在用甲苯胺兰染色的1微米的切片上鉴定肾小球,并用Reichert Jung Ultracut E ultramicrotome(剑桥仪器公司,维也纳,奥地利)切成厚度为70nm的薄切片。将切片安装在网格上,并用已知方法用乙酸双氧铀和柠檬酸铅染色。用飞利浦CM10电子显微镜检查安装在网格上的切片,并照相。
B.扫描电子显微术将肾皮质的小片(大约2立方毫米)放在3%磷酸缓冲的戊二醛中固定,然后在1%磷酸缓冲的四氧化锇中后固定。然后在梯度乙醇中对样品进行脱水,并在二氧化碳中进行临界点干燥。通过用剃须刀片的刀刃切割将所述样品块切碎成碎片,并用胶水将其安装在支柱上,使开裂的表面向上。通过已知方法用金/钯对所述表面进行喷射包衣,然后用扫描电子显微镜观察。
C.Jones Silver乌洛脱品染色Jones染色是用由Burna和Bretschneider披露的方法,用石蜡包埋的肾进行的(参见用于光学显微术的组织的塑料包埋,教育用品部,美国临床病理学家协会,芝加哥,IL,24-25页,1981)。Ⅲ.分子分析A.Northern印迹分析取出肾脏并在液氮中快速冷冻,并用研钵和研棒在液氮中研磨成粉末。将这种粉末溶解在TRIZOL试剂(GibCo/BRL,格兰特岛,NY),每个肾使用5毫升试剂。按照说明提取总的细胞RNA。通过在0.1%琼脂糖/甲醛/MOPS(3-(N-吗啉基)丙烷磺酸)凝胶上以80V的电压电泳4小时分离20微克RNA。将凝胶在水中浸泡45分钟,并通过毛细吸印过夜,转移到Hybond N(不带电荷的尼龙,新英格兰核公司,玻士顿,MA)上,使用750mM乙酸铵(溶解在水中)作为转移缓冲液。用Stratalinker(Stratagene,La Jolla,CA)将RNA通过UV交联到所述印迹上。在含有50%甲酰胺、10×Denhardt’s溶液,1M氯化钠,50mMTris-HCl,pH7.4,1%SDS,和200微克/毫升超声处理并变性的鲑鱼精DNA(Sigma化学公司,St.Louis,MO)的溶液中对印迹进行预杂交。用随机引物DNA标记试剂盒(BoeringerMannheim,Indianapolis,IN)通过随机启动标记探针(32P标记的cDNA探针片段),达到109cpm/μg的浓度。预杂交和杂交缓冲液含有5×盐水-柠檬酸钠缓冲液(SSC)、10×Denhardt’s溶液、0.5%的十二烷基硫酸钠(SDS)、200微克/毫升超声处理并变性的鲑鱼精DNA。让滤膜预杂交至少5小时,然后以每毫升杂交溶液一百万DPM(每分钟的衰减量)的探针的用量杂交过夜。然后在高严格条件下洗涤滤膜(在65℃下,在含有300mM氯化钠、30mM柠檬酸钠、和溶解在水中的0.2%的十二烷基硫酸钠的溶液中洗涤2次,每次30分钟),并对X光胶片进行曝光。通过用溴化乙锭染色测定RNA制剂的质量和加样的一致性,并用凝胶成像2000数码成像系统装置和软件包(应用成像,SantaClara,CA)扫描18S和28S核糖体RNA带。适当的核糖体带的比例,证实了该RNA制剂具有高度一致的质量。当量光密度扫描证实样品的加样误差不超过10%。采用以上措施,而不使用对照探针,是因为考虑到随着渐进性纤维化所发生的细胞生理学的改变使得这种对照探针不可靠。通过用BioRad GS-525磷成像仪(BioRad公司,Hercules,CA)进行磷成像分析测定表达的定量差别,并扣除背景杂交。
通过PCR扩增从鼠肾5’cDNA片段文库(Clonetech)中分离探针,使用不同基底膜胶原蛋白cDNA的公开序列和相关蛋白的公开序列。对于基底膜胶原蛋白探针来说,扩增编码保守的NC1域的序列.所使用的引物和条件与Miner和Sanes(细胞生物学杂志,127:879-891,1994)所采用的相同。对于胶原蛋白COL4A1来说,引物是(Muthukumaran等,生物学化学杂志,264:6310-6317,1989)有义引物,5’TCTGTGGACCATGGCTTC3’(序列1);反义引物,5’TTTCTCATGCACACTTGGC3’(序列2)。对于胶原蛋白COL4A2来说,引物是(Saus等,生物学化学杂志,264:6318-6324,1989)有义引物,5’GGCTACCTCCTGGTGAAG3’(序列3);反义引物,5’TTCATGCACACTTGGCAG3’(序列4)。在相同条件下扩增COL4A1和COL4A2。通过热启动(95℃下10分钟)对毒粒(a×106)进行35轮PCR,然后在95℃下30秒,55℃下30秒,并在72℃下1分钟。对探针进行亚克隆,并通过DNA序列分析加以确定。
用于基底膜相关蛋白的探针是由与基底膜胶原蛋白相同的文库扩增的。引物获自3’序列。对于HSPG核心蛋白来说,引物是(Noonan等,生物学化学杂志,263:16379-16387,1988)有义引物,5’CGGGCCACATTCTCC3’(序列5);反义引物,5’GGAGTGGCCGTTGCATT3’(序列6)。对于层连蛋白B2来说,引物是(Sasaki和Yamada,生物学化学杂志,262:17111-17117,1987)有义引物,5’ACCAGTACCAAGGCGGA3’(序列7);反义引物,5’TCATTGAGCTTGTTCAGG3’(序列8)。对于层连蛋白B1来说,引物是(Sasaki等,美国科学院院报,84:935-939,1987)有义引物,5’TAGAGGTTATTTTGCAGCAGA3’(序列9);反义引物,5’TTGGATATCCTCATCAGCTTG3’(序列10)。对于巢蛋白来说,引物是(Mann等,EMBO杂志,8:65-72,1989)有义引物,5’GTGGTTTACTGGACAGACATC3’(序列11);反义引物,5’CCAATCTGTCCAATAAAGG3’(序列12)。对于层连蛋白A链来说,引物是(Duetzmann等,欧洲生物化学杂志,177:35-45,1988)有义引物,5’ACACACTCCAAGCCCACAAAAGCAAG3’(序列13);反义引物,5’GAGGGAAGACTCCTTGTAGGTCAA3’(序列14)。对于S-层连蛋白来说,引物是(Hunter等,自然,338:229-234,1989)有义引物,5’GCAGAGCGGGCACGGAGC3’(序列15);反义引物,5’TGTACCTGCCATCCTCTCCTG3’(序列16)。PCR条件与用于上述Ⅳ型胶原蛋白链的条件相同。
用于MMP-2、Timp2和Timp3的探针是用获自13天的小鼠胚胎的总RNA通过RT-PCR分离的。MMP-2的引物组扩增来自mRNA的237bp的片段(Reponen等,生物学化学杂志,267:7856-7862,1992),并包括上游引物5’CCCCTATCTACACCTACACCA3’(序列17)和下游引物5’TGTCACTGTCCGCCAAATAAA3’(序列18)。Timp-2的引物套扩增mRNA的195bp的片段(Shimizu等,基因,114:291-292,1992),并包括上游引物5’CAGAAGAAGAGCCTGAACCACA3’(序列19)和下游引物5’GTACCACGCGCAAGAACC3’(序列20)。Timp-3的引物套扩增mRNA的337bp的片段(Apte等,发育动力学,200:177-197,1994),并包括上游引物5’GGTCTACACTATTAAGCAGATGAAG3’(序列21)和下游引物5’AAAATTGGAGAGCATGTCGGT3’(序列22)。对所有三种探针来说,按照生产商披露的方法用GibCo超级转录+逆转录酶和下游引物对1微克的总RNA进行逆转录。用PFU聚合酶(Strategene公司)对1/10的反应物进行40轮热启动PCR。
TGF-β1探针是由H.L.Moses馈赠的(Miller等,分子内分泌学,3:1926-1934,1989),所不同的是RNase保护需要人探针。对该探针来说,通过PCR扩增来自人肾cDNA文库(Clonetech,Palo Alto,CA)的24个碱基对的TGF-β1片段。所用的引物组是GCAGAAGTTGGCATGGTAG(序列23)(下游)和GGACATCAACGGGTTCACTA(序列24)(上游)。用PFU聚合酶(Stratagene)对该片段进行再次扩增,并平端连接到pBlueScript SK+质粒上。
B.原位杂交首先通过心脏缓慢输液对肾脏进行固定(使用含有4%的低聚甲醛的PBS)。首先用Avertin(2,2,2-三溴乙醇,Aldrich化学公司,Milwalkee,WI)对动物进行深度麻醉。切开动物的胸腔,并通过用结核菌素针穿孔,在右心室上形成一个小孔,以便让灌注液流出。将连接在装有输注缓冲液的30毫升的注射器上的结核菌素针插入左心室的最高点。以每分钟大约3毫升的速度,以每克体重1毫升固定液的用量输入固定液。适当固定的肾脏是坚固的,并具有大理石般的外观。在输液之后,用虹膜镊子取出肾囊,将肾脏纵向切成两半(将肾盂、髓质和皮质一分为二),并放入固定液中,在4℃下再固定1小时。将固定的两半包埋在石蜡中,切成6微米的厚度,并转移到SUPERFROST PLUS显微镜载玻片上(Fisher科学公司,Pittsburg,PA),将所述载玻片放在载玻片加热器上在60℃下烤20分钟,并在4℃下保存待用(载玻片可以使用6周时间)。将取自对照和Alport同窝崽的肾并列包埋,以便控制在杂交过程中有可能出现的细微的差别。
将所述切片放入真空烘箱中在60℃下烤1小时,然后通过在二甲苯中连续3次进行2分钟的洗涤脱蜡。在乙醇中对所述组织进行脱水,通过在0.2N氯化氢中培养15分钟脱蛋白化,用PBS洗涤,并在37℃下用3微克/毫升的蛋白酶K(Boeringer Mannheim,Indianapolis,IN)消化10分钟。通过用在PBS中配制的2毫克/毫升甘氨酸洗涤终止消化。然后在梯度乙醇溶液中对所述组织进行脱水(分别在70%、80%、90%、100%的乙醇中,在室温下脱水10分钟),按照披露于Genius原位杂交试剂盒(Boeringer Mannheim,Indianapolis,IN)中披露的方法对所述组织进行预杂交、杂交、和洗涤,对所述方法做了以下改进。在预杂交和杂交溶液中添加了10毫克/毫升苯酚/氯仿提取的面包酵母tRNA。该步骤能显著降低非专一信号。在杂交之后,在50℃下,在2×SSC中洗涤所述组织2次,然后在室温下用RNaseA消化6分钟。确定每一种探针的RNaseA的用量(在200ng/ml-5微克/毫升范围内波动)。阴性对照探针包括细菌β-半乳糖苷酶或新霉素磷酸转移酶的编码序列。所有探针的长度均大约为200个碱基,将其克隆到BlueScriptSK+(Stratagene公司,La Jolla,CA)的SacⅠ位点上,然后从T3一侧进行转录(在线性化之后)。唯一的区别是TGF-β1为974个碱基,并克隆到pmT载体上。
C.RNase保护试验按照试剂盒中所提供的方法用RPAⅡ试剂盒(Ambion公司,Austin,TX)进行实验。对于一种探针来说,通过PCR由人肾cDNA文库(Clonetech,Palo Alto,CA)扩增264个碱基对的TGF-β1片段。引物组为GCA GAAGTTGGCATGGTAG(序列25)(下游)和GGACATCAACGGGTTCACTA(序列26)(上游)。用PFU聚合酶(Stratagene)对该片段进行再次扩增,并平端连接到BlueScript SK+质粒(Stratagene)上。由T7启动子制备反义探针。
D.免疫荧光分析取出新鲜的肾脏,切成3毫米厚的截面,包埋在组织Tek OCT含水化合物(产品编号4583,Miles实验室,Elkhart,IN)中,并放入-150℃的冰箱中冷冻。用Microm型HM505N(Zeiss公司,Walldorf,德国)冷冻切片机将切片切成3微米的厚度,并在聚-L-赖氨酸-涂敷过的载玻片上解冻。将载玻片固定15分钟,如果要用基底膜胶原专一性抗体染色的话,是通过浸泡在冷的(-20℃)95%的乙醇中进行固定,如果是用对基底膜相关的蛋白专一的抗体染色的话,则在冷的(20℃)丙酮中固定。将载玻片风干过夜,并在-80℃下保存待用。
让样品达到环境温度,然后在室温下用PBS(pH7.4)洗涤3次。为了用抗Ⅳ型胶原的抗体染色,要用0.1M甘氨酸和6M尿素(pH3.5)对该组织进行预处理,以便使蛋白变性并暴露出抗原位点。将一级抗体的合适的稀释液(根据经验确定)加在所述样品上,并让其在潮湿的培养箱中在5℃下反应3小时。用由PBS制备的5%的脱脂干奶(pH7.4)溶液稀释抗体。脱脂干奶的使用能显著降低背景荧光。在室温下用PBS(pH7.4)洗涤样品4次,每次10分钟,以便除去所述一级抗体,然后与合适的FITC-缀合的二级试剂反应。使用的所有二级试剂都是1∶100的稀释液,用由PBS制备的7%的脱脂干奶作为稀释剂。在4℃下让二级试剂反应2小时。用冷的PBS(pH7.4)洗涤载玻片4次,然后涂上抗退色安装介质(Vector实验室公司,Burlingame,CA)。用透明的指甲光亮剂将样品密封在盖玻片下面。以1000倍的放大倍数对载玻片进行照相。对塑料包埋的样品进行Jones silver乌洛托品染色。
抗COL4A1和COL4A2链的山羊抗血清是从Southern生物技术公司(Birmingham,AL)购买的。生产商测试了这种抗体的交叉反应性,并在肾小球上产生了一种染色模式,该染色模式与在抗所述链的其他抗体制剂上观察到的模式吻合(Miner和Sanes,细胞生物学杂志,127:879-891,1994)。抗硫酸肝素蛋白聚糖(HSPG)抗体是抗从EHS小鼠肿瘤中纯化的HSPG核心蛋白的大鼠单克隆抗体。生产商通过Western印迹和斑点印迹免疫测定测定了所述抗体与层连蛋白、4型胶原蛋白、纤连蛋白、和巢蛋白的交叉反应性(Chemicon International,Temecula,CA),并披露于其他文献中(Horiguchi,组织化学细胞化学杂志,37:961-970,1989)。抗层连蛋白-1抗体是兔抗血清。免疫原是从EHS基底膜中纯化的,并且是从Sigma免疫化学公司(St.Louis,MO)购买的。由生产商(Sigma)进行的斑点印迹免疫试验证实了对4型胶原蛋白、纤连蛋白、玻连蛋白、和A、B、和C型硫酸软骨素的交叉反应性的缺乏。抗纤连蛋白是抗从人血浆中纯化的兔抗血清。生产商(Sigma免疫化学公司)通过斑点印迹免疫测定测定了对4型胶原蛋白、层连蛋白、玻连蛋白、和A、B、和C型硫酸软骨素的交叉反应性。抗-巢蛋白是用EHS-衍生的巢蛋白作免疫原生产的大鼠单克隆抗体。该试剂是从Upstate生物技术公司(Lake Placid,NY)购买的,并通过Western印迹分析,测定合适的免疫反应性以及对其他主要基底膜成分的交叉反应性的缺乏(Ljubimov等,Exp.Cell Res.,165:530-540,1986)。
用连接了应用成像Cytovision Ultra成像分析系统(应用成像公司)的Olympus BH2RFLA荧光显微镜记录并处理免疫荧光和Jones染色的图象。用高分辨的黑白摄象机摄取图象。用所述系统软件修饰图象。在处理这些图象时,要加以小心,以便尽量接近在显微镜上直接观察到的荧光。
E.免疫过氧化物酶检测将免疫过氧化物酶检测方法,用于肾小球中的TGF-β1的免疫染色以及用于管间隙中的纤连蛋白和Ⅰ型胶原蛋白的免疫染色。Ⅰ型胶原蛋白的抗体是从Biogenesis公司(Sandown,AH)购买的兔抗小鼠抗体。以1∶100的稀释比例将所述抗血清用于免疫过氧化物酶染色。用于所使用的纤连蛋白抗体与用于荧光染色的抗体相同(购自Sigma化学公司,St.Louis,MO的兔抗人纤连蛋白抗血清),并且以1∶100的稀释比例使用。二级试剂是购自Vector实验室(Burlingame,CA)的生物素化的抗兔抗体,并且以1∶100的稀释比使用。将所述组织包埋在石蜡中(使用与原位杂交相同的方法),并切成3微米的切片。用溶解在100mM Tris-HCl(pH7.4)中的5微克蛋白酶K(Boeringer Mannheim,Indianapolis,IN)对脱石蜡的切片进行预处理,以便暴露出表位。通过在含有2毫克/毫升甘氨酸的PBS中培养30秒终止蛋白酶消化。用PBS洗涤脱蜡的、蛋白酶K处理过的组织3次,并在室温下与所述一级抗体反应1小时,用PBS洗涤3次,再在室温下与生物素化的二级抗体反应1小时。用PBS(pH7.4)洗涤3次,然后在室温下用链霉亲合素辣根过氧化物酶(3微克/毫升,Vector)培养载玻片30分钟。用PBS洗涤3次,然后按照生产商披露的方法,用AEC底物系统(Vector AEC SK-4200,Vector实验室)显现抗体结合。
对于TGF-β1来说,一级抗体是鸡α-人TGF-β1(R&D系统,Minneapolis,MN),使用时按1∶15稀释,用含有7%脱脂干奶的PBS稀释(将其用作所有抗体的稀释剂)。在室温下让其至少反应3小时,二级抗体是生物素标记的山羊抗鸡TGF-β1(Vector实验室,Burlingame,CA),并以1∶100的稀释比使用,并让其反应至少1小时。在经过3次洗涤之后,用AEC试剂盒(Vector实验室,Burlingame,CA)进行免疫过氧化物酶检测。
实施例1Alport/α1整合蛋白双突变型的生产常染色体形式的Alport综合症的小鼠模型,是通过早先披露的方法(Cosgrove等,基因发育,10:2981-2992,1996)对COL4A3前胶原基因进行定向诱变产生的。该小鼠模型在本文中被称为“Alport小鼠”,并且是从位于Bar Harbor,Maine的Jackson实验室购买的,保藏号为2908。这种α3(Ⅳ)敲除小鼠是129Sv/J背景的,让它杂交(与纯的129Sv进行5次连续回交,然后与整合蛋白α1无效小鼠杂交,后者是纯的129Sv),以便产生“双敲除”小鼠,它是纯度超过97.5%的129Sv。这种α1敲除小鼠是由位于LaJ olla,CA的Scripps研究所的Humphrey Gardner提供的,并由Gardner等披露(发育生物学,175:301-313,1996)。
实施例2在小鼠模型中评估Alport肾病的发展在该实施例中研究的小鼠包括Alport小鼠,它不能表达胶原α3(Ⅳ),而具有正常的α1整合蛋白(由位于Bar Harbor,Maine的Jackson实验室提供);以及双敲除小鼠(即双突变型),它不能表达胶原蛋白α3(Ⅳ)或整合蛋白α1。这种双突变型的背景为97.5%的129Sv和2.5%的Sv/J。
每隔1周采集所述小鼠的尿液,并按方法部分所披露的方法进行蛋白分析。如图1所示,对于不能表达胶原蛋白α3(Ⅳ),而具有正常的α1整合蛋白的动物来说,Alport肾病发作的平均年龄(基于对6只动物的研究)为3.5-4周,通过蛋白尿的发作测定。蛋白尿的发展很快,在6-6.5周龄达到最高含量。由于肾衰竭导致的平均死亡年龄为8-9周。这种基因型的动物(试验了9只)无一能活过9周。在7-7.5周大时,血液尿氮含量(BUN)开始升高。在双敲除突变型中(该测定中试验了4只动物),蛋白尿的发作是在5-5.5周龄时,并且发展的更缓慢一些,在9-9.5周达到最高值。由于肾衰竭导致的平均死亡年龄为15-16.5周。动物在10-11周龄时产生较高的BUN。
实施例3双敲除小鼠模型的鉴定用多种不同技术在4-7周龄时对3组不同的动物(正常的对照,不能表达α3(Ⅳ)基因而具有正常的α1整合蛋白的动物(Alport小鼠)和双突变小鼠)进行分析。
进行透射电子显微术,以便评估基底膜的完整性。在4周大时(资料未显示),Alport同窝崽在100%的肾小球毛细管回路中表现出稀少化的基底膜。双突变型表现出某些肾小球基底膜(GBM)稀少化(即不规则的增厚、变薄、和开裂),不过,这种现象不常见,而且程度不深。在双突变型小鼠中大约有20%的肾小球根本就没有明显的基底膜稀少化。在该时间点,在Alport小鼠中大约有5%的肾小球发生了纤维化,而在双突变型同窝崽中未发现纤维化的肾小球。图2表示在7周龄时不同的小鼠所特有的肾小球基底膜损伤的程度。示出了一种典型的肾小球毛细管回路。在该发育时间点上,在Alport小鼠中,几乎在所有的肾小球上的肾小球基底膜都受到严重损伤。图2B中表示明显的不规则地增厚和变薄,以及足细胞足突的严重消失。不过,在双敲除小鼠中(图2C),大部分GBM的超级结构正常,仅有少量的不规则性,并且足细胞足突保持正常的结构(比较图2A中所示的正常小鼠和图2C所示双敲除小鼠的用箭头标出的部分)。在该时间点上,Alport小鼠的30%-50%的肾小球纤维化,而在双突变型小鼠中只有不到5%纤维化。
对7周龄小鼠进行的扫描电子显微术(资料未显示)表明,Alport小鼠表现出足细胞足突的明显膨大,破坏了所述细胞的正常的完美和复杂的结构。在Alport肾小球性肾炎上披露过这种足突的消失。在双突变型小鼠中,尽管其结构并不完美,但它非常接近在对照小鼠上所观察到的肾小球。所述足突膨大决定了肾小球过滤器的抑制,并导致尿毒症。因此,考虑到双突变型小鼠相对Alport同窝崽的改善了的肾小球功能,这一发现是重要的。
用Jones’方法对获自7周龄小鼠的完整的肾脏进行石蜡包埋,并统计纤维化的肾小球的总数(数据未显示)。几乎所有来自Alport小鼠的肾小球都在某种程度上受到影响。大多数表现出肾小球细胞过多和肾小球膜基质的膨大,并有大约1/3纤维化。相反,来自双突变小鼠的肾小球在肾小球基质和细胞数量方面大多正常。大约有25%确实表现出肾小球膜细胞增殖的迹象,并有5%纤维化。用两组不同的小鼠重复以上分析,得到了非常相似的结果。
用取自相同动物的冷冻的肾皮质进行免疫荧光分析。让该组织与对由于Alport肾病发展而在GBM中积累的已知蛋白专一的抗体反应。其中包括层连蛋白-1(Lam-1)(使用1∶200的稀释液),胶原蛋白α1(Ⅳ)和α2(Ⅳ)链(COL4A1,2)(使用1∶15的稀释液)、纤连蛋白(Fib)(使用1∶200的稀释液)、硫酸肝素蛋白聚糖(HSP)(使用1∶100的稀释液)、以及巢蛋白(ent)(使用1∶200的稀释液)。所有抗体都用含有7%脱脂干奶的PBS稀释。结果如图3所示。与对照相比,在7周龄时,在Alport小鼠的GBM中以上所有成分都明显增加。在纤维化的肾小球中,以上所有成分都过量。在双突变小鼠中,在非纤维化肾小球中对胶原α1(Ⅳ)和α2(Ⅳ)链的免疫染色与Alport小鼠相当。这是出乎预料的,因为在双突变型小鼠的GBM中的Ⅳ型胶原的组成与Alport小鼠的相同(即完全由胶原蛋白α1(Ⅳ)和α2(Ⅳ)链组成)。与Alport小鼠相比,在双突变型小鼠的GBM中对层连蛋白-1和硫酸肝素蛋白聚糖的染色明显减弱(分别比较图3F和图3E以及图3L和图3K),而对双突变型的GBM中的纤连蛋白没有明显染色(图3I),这种成分在Alport小鼠的GBM中含量丰富(图3H)。在双突变型小鼠和Alport小鼠之间所述蛋白在肾小球膜基质中的免疫染色相当,不过,对硫酸肝素蛋白聚糖来说,与正常对照(图3J)或Alport小鼠(图3K)相比,在双突变型中的肾小球膜染色减弱(图3L)。
用从7周大的正常、Alport、和双突变小鼠身体上获得的全肾皮质中分离的RNA进行Northern印迹分析。在琼脂糖凝胶上对20微克的每一种RNA样品进行分离,通过毛细吸印转移到尼龙膜上,并与相当于小鼠TGF-β1 cDNA的部分的放射性标记过的探针杂交。在经过一系列高严格性的洗涤之后,用所述膜对X光胶片进行曝光。图9表示尽管TGF-β1在Alport小鼠中得到诱导(从左边数第4泳道与作为对照的第2泳道比较),但在具有α1整合蛋白突变的Alport小鼠(双敲除小鼠)中不能诱导(从左边数第3泳道与作为对照的从左边数第2泳道比较)。正是由于这一资料使得研究者推测α1抑制剂的作用是否可以通过抑制TGF-β1调节。因此,为了澄清这一问题,进行了下面的TGF-β1抑制剂试验。
实施例4TGF-β1在蛋白尿以后的Alport肾病发展中的作用收获来自129Sv/J建立者动物(founder animal)回交到C57B1/6背景上的F-2的组织(参见上文)。至少重复该试验2次(用获自两组不同动物的样品)。本文所提供的结果是明确的,并且是一致。
进行以上试验是为了说明两个问题。首先,在TGF-β1 mRNA和编码由于Alport肾病发展而积累的基质蛋白的mRNA的诱导之间是否存在时间上的关系,其次,在肾小球中所述mRNA是否确实被诱导?(由于肾小球仅占肾脏湿重的5%,在总的肾皮质中特定mRNA的诱导与肾小球性肾炎的渐进性纤维化的关系更密切)。
从第6周开始每隔2周从Alport动物和对照同窝崽的肾脏中分离总的RNA,在第12周时结束。用于本研究的F2小鼠在大约5.5-6周龄时开始蛋白尿(资料未显示)。在变性的琼脂糖凝胶上分离RNA,转移到尼龙支持物上,并用对α1(Ⅳ)或α2(Ⅳ)胶原链、巢蛋白、层连蛋白β1或β2链、纤连蛋白或TGF-β1专一的放射性标记过的探针检测。图4中的结果说明,在Alport小鼠模型中在蛋白尿发作之后,除了层连蛋白β1之外,以上所有蛋白的mRNA都被诱导。
与此同时,还对层连蛋白α1、层连蛋白β2、层连蛋白γ1、硫酸肝素蛋白聚糖核心蛋白和胶原蛋白α4(Ⅳ)和α5(Ⅳ)链进行Northern印迹(资料未显示)。对照和所述突变型相比,以上所有其他基底膜蛋白的mRNA含量没有明显差别。
用磷成像仪对所述Northern分析的结果进行分析,以便对在所述时间过程中特定mRNA表达的相对变化进行直接定量。图5表示特定mRNA水平的诱导在6周龄时第1次显著,或者说这一时间大体上是在F2小鼠中尿液中的蛋白达到最高含量的时间(Cosgrove等,基因发育,10:2981-2992,1996)。到8周时,mRNA水平达到最高,编码TGF-β1和纤连蛋白的mRNA的诱导倍数分别超过对照小鼠6.6倍和9.4倍。到第8周时,编码胶原蛋白α1(Ⅳ)、α2(Ⅳ)和巢蛋白的mRNA水平被诱导了大约3倍。相反,通过用相同的总的RNA Northern印迹进行的测定证实在肾病发展的任何时间编码层连蛋白β1和β2链的mRNA都没有明显变化。
为了证实在特定肾小球细胞类型中编码TGF-β1或不同基底膜成分的mRNA得到诱导,用对所述mRNA专一的洋地黄毒苷标记过的反义探针进行原位杂交。在向心脏中输注含有4%低聚甲醛的PBS之后,从10周大的F2 Alport小鼠体内收获肾脏。并按照在方法部分所述进行原位杂交分析。反义探针对胶原蛋白α1(Ⅳ)的NC1域、TGF-β1、纤连蛋白、巢蛋白、或层连蛋白β1链专一。将对细菌β-半乳糖苷酶专一的探针用作非特异结合的对照(阴性对照),因为该探针不能与Northern印迹上的小鼠肾的总RNA杂交(资料未显示)。所述对照探针与每一种特异性探针同时进行杂交,并用相同浓度的RNaseA按照杂交方法进行处理。以0.25微克/毫升的浓度用RNaseA对α1(Ⅳ)、TGF-β1和纤连蛋白进行处理,而巢蛋白和层连蛋白β1的处理浓度为3微克/毫升。结果如图6所示。
图6的结果表明,对于所有检验过的特定mRNA来说,在COL4A3敲除小鼠(Alport小鼠)的肾小球的内脏上皮细胞足细胞中明确观察到含量的提高。对于胶原α1(Ⅳ)链来说,在对照动物的肾小球膜细胞和肾小球的内皮细胞中观察到mRNA的表达(图6A),这一结果与该分析存在于成熟的动物中吻合。在突变型中,在肾小球基质中的表达有可能提高,表现为在与对照样品的肾小球膜细胞染色相比时其染色更深,不过,对照和突变型的最明显的差别是位于肾小球周围的染色细胞环,相当于足细胞(图6B)。在对照肾小球中纤连蛋白的表达主要出现在肾小球膜细胞中(图6D)。尽管在突变型中也出现了肾小球膜细胞的染色,所述足细胞明显表现出较高含量的纤连蛋白mRNA(图6E)。在对照动物的肾小球中TGF-β1的表达很微弱,不过,在对照动物的肾小球膜细胞中观察到某些特异性染色(图6G)。在突变型中,肾小球膜细胞、内皮细胞、以及足细胞中TGF-β1mRNA的水平明显提高(图6H)。对于巢蛋白来说,mRNA在于对照的足细胞中,这一点是出乎预料的,因为这种蛋白专一性地存在于GBM上。出人预料的是,在对照动物中出现了某些肾小球膜细胞的特异性染色。尽管在突变型中内脏上皮细胞的染色似乎表明表达的增强,但这并不是定量的测定,并且对照和突变型之间的差别太小以至于无法确认(比较图6J和6K)。
Northern印迹发现,在以上时间过程中,在对照和突变小鼠体内层连蛋白β1链的mRNA水平未改变。对相同信息所做的原位杂交分析证实了在对照肾脏的肾小球中预期的肾小球膜细胞特异性定位(图6M)。不过,在源于突变型小鼠的肾小球中,内脏上皮细胞中的mRNA明显受到诱导(图6N)。
在3周和5周大时采集组织样品,并用相同的探针通过原位杂交进行分析。在所述肾小球中的染色形式与正常同窝崽的没有差别(资料未显示)。这表明所述基因在足细胞中的激活发生在蛋白尿发作之后。
基于用对所述细胞因子活性异构形式专一的抗体进行的免疫过氧化物酶检测所获得的TGF-β1蛋白资料证实了通过对TGF-β1 mRNA进行原位杂交所获得的资料(比较图7B和图7A的免疫染色)。这表明,在足细胞中TGF-β1 mRNA的较高的表达水平能翻译成较高的蛋白。
进行RNase保护分析,以便确定在源于Alport和对照患者的人肾皮质中所述细胞因子的mRNA的水平是否也提高了。人Alport肾皮质是在移植手术期间从15岁的男孩体内取出的。该样品受到了中等程度的损害,有大约50%的肾小球纤维化。马上取出所述样品,并在液氮中快速冷冻。正常的人肾RNA是从Clonetech(Palo Alto,CA)购买的,并且是从正常人体上获得的库存样品。用与从小鼠肾中分离RNA相同的方法从所述Alport样品中分离RNA。通过在琼脂糖凝胶上分离10微克样品,并用溴化乙锭对该凝胶进行染色(每毫升水10微克),检查所述RNA的完整性。根据28S和18S核糖体RNA带的相对量来看,正常的和Alport样品都是完整的。按照所述方法进行RNase保护试验。图8中的资料表明与对照相比,人Alport肾皮质中TGF-β1mRNA的水平提高了3-4倍。这证实了所述细胞因子在人Alport肾中也是超量表达的。这些数据证实了这样的预期,即该技术可用于人类。
实施例5用中和抗体抑制α1β1整合蛋白为了说明一种可溶性试剂能够抑制α1β1整合蛋白与其配体的相互作用,并能对Alport肾病病理学产生与α1基因敲除突变相同的作用,作为一种例子,获得了披露于Fabbri等,组织抗原,48:47-51,1996中的抗体。从2周龄开始注射这种抗体(注射量为400ng/注射,每周3次,腹膜内注射)到Alport小鼠体内。在6周龄时收集动物,并通过透射电子显微术分析基底膜。如图10所示,在这些处理过的动物体内的基底膜大多是规则的,具有正常的三层外观。由于对所述抗体的免疫反应观察到内皮细胞的膨大。这些结果表明,一种能够抑制整合蛋白α1β1的受体的可溶性制剂,能延缓Alport GBM疾病的发展,在很大程度上与在双敲除小鼠品系上观察到的情况相同。
实施例6在Alport(129Sv/J)小鼠模型中单独用TGF-β1抑制的效应试验方法是,从3周龄开始每周2次注射FK506(2微克/克体重,腹膜内注射,Fujisawa药物有限公司,大阪,日本),或可溶性TGF-β1受体(25微克/注射,通过尾静脉进行静脉内注射,Biogen公司,剑桥,MA)。在7周龄时收获肾脏,并进行所述分析。
在图11中示出了在各种条件下的基底膜超级结构的透射电子显微镜分析。图11A表示来自正常未处理动物的肾小球毛细管回路。注意规则的足突和三层基底膜染色。图11B表示来自典型的7周大的129Sv/JAlport小鼠的毛细管回路。注意膨大的足突和GBM的明显的局部增厚。图11C表示来自用FK506处理过的7周大的Alport动物的典型的毛细管回路。明显缺乏基底膜的增厚,这表明所述药物能够降低GBM中基质的积累速度。不过,在足突中有明显程度的膨大,明显缺乏足突的结构。在注射了TGF-β1可溶性受体的小鼠上进行相同的观察(图11D)。以上资料表明,TGF-β1抑制剂能抑制不规则的GBM增厚,但不能抑制与发展的Alport GBM病相关的足突的结构的改变。
对某些肾脏样品进行处理,以便进行扫描电子显微镜分析。通过对肾皮质进行冷冻破裂,暴露出肾小球。这样做可以去掉Bowman’s囊,暴露出足细胞的外层,因为该外层覆盖肾小球的毛细管回路。正常的肾小球示于图12A中,其中,足细胞的复杂结构是很明显的,因为分支的足突包围着毛细管回路.在典型的7周龄Alport小鼠上,在肾小球中的足细胞表面上明显缺乏细小的纤维状分支,这些分支由于膨大而消失了(图12B)。在用FK506或TGF-β1的可溶性受体处理过的Alport动物上,肾小球的表面看上去与未处理过的Alport小鼠十分相同(图12C)。该图明显表明,仅抑制TGF-β1不能避免与发展的Alport肾小球疾病相关的足突结构的改变。
通过对在药物治疗期间每周1次采集的冷冻尿液进行聚丙烯酰胺凝胶电泳测定蛋白尿。如上文所述,尿液中白蛋白的存在和含量的超标,可以对肾小球过滤器的完整性作出综合评估。图13表明,尽管给药TGF-β1抑制剂延缓了蛋白尿的发作,但尿液中高水平白蛋白的发展,发生的非常迅速(1周)。以上结果表明,单独使用TGF-β1抑制剂,虽然能够延缓蛋白尿的发作,但不能改善肾小球过滤器。这一特性很可能与这种抑制剂不能抑制上文在图11和12中所示的足细胞的足突消失直接相关。
应当指出的是,给正常的同窝崽给药药物,不会产生与未注射过的正常小鼠有明显差别。
例7TGF-β1抑制剂对双敲除(DKO)小鼠的作用从4周龄开始,给小鼠(在胶原蛋白α3(Ⅳ)和整合蛋白α1基因上都是无效的DKO小鼠)注射TGF-β1抑制剂FK506(2微克/克体重,每周2次,腹膜内注射)或Biogen’s TGF-β1可溶性受体(25微克/注射,每周2次,静脉内注射)。在10周大时取得肾脏并进行分析。选择10周这一时间点,是因为在双敲除小鼠上(疾病通常发展到可以观察到GBM的明显不规则增厚,并且该动物开始向肾衰竭的晚期发展。因为,如果TGF-β1抑制剂是要提供额外的保护作用,这种作用在GBM疾病发展的这一时期应当表现出来。透射电子显微镜分析证实了在注射了抑制剂的小鼠和未处理过的双敲除小鼠之间非常明显、并且一致的差别。这种差别的一个典型例子如图14所示。图14B表示10周大的双敲除小鼠上的肾小球毛细管回路的典型特征。很突出的是由发展的Alport肾小球性肾炎的基底膜增厚特征所表现出的明显的囊。即使是在病态的发展阶段,足细胞的足突也具有高度规则的结构,具有发育良好的开裂的隔膜。双敲除小鼠的这一特征是Alport小鼠所不具备的(比较图12B所示的足突)。
在用TGF-β1抑制剂处理双敲除小鼠时,局部GBM增厚和足突消失都明显减弱(图14C是用FK506处理的,而图14D是用可溶性TGF-β1受体处理的)。尽管大多数肾小球的GBM不具备完全正常的超级结构(注意图14D中出现的中等程度的GBM不规则性),在该发育阶段完全缺乏在未处理过的双敲除动物的大多数肾小球毛细管回路中出现的显著的GBM增厚囊(如图14B所示)。在用这种方法检查的肾小球中大约有25%能用TGF-β1抑制剂将肾小球超级结构恢复到与正常小鼠的DKO肾小球没有区别的程度(图15A表示10周龄正常小鼠的GBM;图15B表示用FK506处理过的10周龄双敲除小鼠的GBM)。考虑到这是在未处理过的Alport动物模型肾衰竭晚期平均年龄之后2周,这确实是一个独特的、并且是重要的发现。
在处理过程中,检查每周所采集的所述相同小鼠的蛋白尿。通过在聚丙烯酰胺凝胶上电泳分析样品(大体上相当于1/2微升)。通过用考马斯兰染色显示白蛋白。图16的结果说明与未处理过的双敲除小鼠相比(图16A),用FK506(图160)或TGF-β1的可溶性受体(图16B)处理能明显改善肾小球过滤器的功能。图16C表示用FK506处理过的正常小鼠的尿蛋白。注意在用FK506处理过的正常和DKO(图16D)小鼠上,在任何时间点都出现的一组模糊的带。这种现象在用所述药物处理的小鼠中经常观察到,有可能与在移植之后用所述药物治疗的某些患者上所报导的肾中毒效应相关(Solez等,移植,66:1736-1740,1998)。
例8α1整合蛋白抑制剂和TGF-β1抑制剂延缓Alport肾小球性肾炎发作和发展的协同作用的机制图11、12和14的资料综合表明,α1整合蛋白抑制剂能与TGF-β1抑制剂协同起作用的原因是,α1抑制能导致改善了的足细胞足突结构,而TGF-β1抑制能导致GBM中基质沉积的减少。图17是为了进一步证实α1整合蛋白抑制剂在改善足细胞足突结构方面的作用。与图12所示相同的方法制备肾皮质。图17A表示来自7周龄正常小鼠的肾小球的表面。图17B表示来自7周龄Alport小鼠的肾小球。注意由于足突的消失而导致的足细胞结构的消失。图17C表示7周龄双敲除小鼠的肾小球表面。注意几乎完全恢复了正常的足突结构。以上资料与图14B所示由透射电子显微术所提供的横切面视图吻合,其中,在双敲除小鼠上的足突具有完美的形态。
实施例9α1整合蛋白抑制作用在检验这种现象的一种似乎合理的机制时,对层连蛋白链进行了评估。由于已知存在于肾小球基底膜中的主要的层连蛋白是层连蛋白11(Miner等,细胞生物学杂志,137:65-701,1997),据信,Alport GBM中新型层连蛋白的出现,有可能导致了结合在GBM上的足细胞的消失。实际上,在检查Alport GBM的层连蛋白组成时,在Alport小鼠的GBM上发现了正常情况下仅存在于正常小鼠的肾小球膜基质中的层连蛋白α2链。图18表示用双荧光标记方法免疫染色的肾小球的一系列照片。
在双荧光分析中,将新鲜的肾皮质包埋在Tissue Tek含水包埋化合物中,快速冷冻,并在冷冻切片机上切成4微米的厚度。在冷的(-20℃)100%的丙酮中对载玻片进行后固定10分钟,然后空气干燥过夜。通过在PBS中洗涤3次,每次10分钟,对组织进行重新水合。将一级抗体与7%的脱脂干奶(BioRad)一起稀释。以1∶200的稀释比例将抗一巢蛋白抗体(Chemicon公司)用作肾小球基底膜的已知标记。层连蛋白α2链专一性抗体是由Peter Yurchenco博士(Robert Wood Johnson医学院,Piscataway,NJ)赠送的。这种抗体对层连蛋白α链的专一性披露于Cheng等,生物学化学杂志,272:31525-31532,1997中。所述抗体以1∶10的浓度使用。在4℃下,在潮湿的培养皿中让一级抗体反应过夜。用冷的PBS洗涤载玻片3次,每次10分钟,然后与二级抗体反应,二级抗体也是一起加入的。层连蛋白α2的二级抗体是Texas红偶连的抗兔抗体,而巢蛋白的二级抗体是FITC-偶连的抗大鼠抗体,这两种抗体都以1∶100的比例使用(Vector实验室,Burlingame,CA)。让二级试剂在4℃下反应4小时。用PBS洗涤载玻片3次,每次10分钟,在用盖玻片密封之前加一滴Vectashield抗退色安装介质(Vector实验室,Burlingame,CA)。用连接了Cytovision Ultra成像分析系统(应用成像公司)的BH-2落射荧光显微镜对每一种抗体的图象进行数字化显示。
肾小球基底膜专一性抗原(巢蛋白)是绿色的,而层连蛋白α2链是红色的。在同时存在巢蛋白和层连蛋白α2的地方的染色是黄色的。在图18的Ⅰ组中,照片A表示来自7周龄正常小鼠的肾小球的免疫染色。在这里,层连蛋白α2仅存在于肾小球膜基质中。照片B表示7周龄Alport同窝崽的染色。箭头表示主要染成黄色的毛细管回路,说明在Alport小鼠中,层连蛋白α2同时存在于肾小球膜基质和肾小球基底膜中。照片C表示来自用FK506处理过的129Sv/J Alport小鼠的肾小球的免疫染色(皮质取自用于上述实验中的动物,并且是用于上述实验并且示于图11、12和13中的动物)。在这里,大多数肾小球毛细管回路也是黄色的,表明抑制TGF-β1的活性不能阻止层连蛋白α2在Alport小鼠的GBM中积累。不过,在7周龄双敲除小鼠中,在肾小球毛细管回路中没有层连蛋白α2免疫染色(照片D,箭头)。位于足细胞表面的主要的整合蛋白受体是整合蛋白α3β1(Patey等,细胞粘接和通信,2:159-167,1994)。这种整合蛋白被普遍认为在足细胞与GBM的结合和维持正常的足突结构方面起着重要作用(Smoyer和Mundel,分子医学杂志,76:172-183,1998)。作为一种例子,最近证实了敲除整合蛋白α3基因会导致足细胞足突结构的完全消失(Kreidberg等,发育,122:3537-3547,1996)。最近,生产出了一种可溶性α3β1整合蛋白受体,并证实能以高的亲合力结合含有层连蛋白α5链的层连蛋白(如层连蛋白11,它是由α5、β2和γ1链组成的异源三聚体),但不能结合含有α2链的层连蛋白(Eble等,生物化学,37:10945-10955,1998)。综合以上信息,本文所提供的资料支持一种模型,其中,在Alport小鼠上,含有层连蛋白α2链的层连蛋白在GBM中的逐渐沉积,会导致通过整合蛋白α3β1受体进行的粘接的减弱,导致足突的消失。抑制整合蛋白α1链,会导致层连蛋白α2链在GBM中沉积的减少或缺乏,避免正常足突结构的消失。
为了进一步证实这一点,以与正常同窝崽比较的形式对层连蛋白α2链在2周龄Sv/J Alport小鼠中的分布进行了评估。在GBM疾病发展的如此早的阶段,就有明显的GBM增厚“囊”稀疏地分散在大约一半肾小球上。在图19B中示出了一个这样的GBM增厚的囊。在该发育阶段,在肾小球的未受影响的部位的GBM和足细胞足突在形态上是正常的,不过,在局部增厚部位足突膨大并消失,更像是在GBM疾病发展的晚期所出现的更普遍的变化。据推测,如果层连蛋白α2的沉积导致了与足细胞的局部粘接接触的丧失的话,就可以在2周龄Alport小鼠上观察到层连蛋白α2在GBM中的局部沉积。这正是在图18的Ⅱ组中所表示的情况。照片B上的箭头表示层连蛋白α2在2周龄Alport小鼠的GBM中的沉积。这是能在Alport小鼠模型上检测到的最早的分子变化(而不是4型胶原组成的变化,这种变化是由先天性遗传突变产生的),并与可检测的GBM损伤的发作完全吻合。
实施例10TGF-β1抑制剂与α1整合蛋白抑制剂的协同效应如图3所示,由于Alport肾病的发病而导致的在GBM和间质中积累的基质包括胶原蛋白α1(Ⅳ)和α2(Ⅳ)链、纤连蛋白和巢蛋白。如图20所示(每一块凝胶的头两个泳道),相对正常的对照而言,在Alport肾脏中,编码所述每一种蛋白的mRNA都得到诱导。注射TGF-β1抑制剂能明显减弱诱导的程度(图20,凝胶的最后两个泳道),这可能是在用TGF-β1抑制剂处理过的Sv/J Alport小鼠上观察到的基底膜增厚减弱的原因(如图11所示)。
用获自未处理过的或注射了TGF-β1抑制剂的双敲除小鼠的肾脏的RNA进行一组类似的Northern印迹。所述小鼠与用于获得图14所示资料的小鼠相同,因此药物注射方案如例7所述。从图21所示资料可以看出,在比较未注射过的对照和双敲除小鼠时,可以发现给药TGF-β1抑制剂不会明显改变编码基质蛋白的mRNA的水平。不过,对编码加到探针上的金属蛋白酶抑制剂Timp-3的mRNA的表达有明显影响(图21,下面一排)。如泳道1和2所示,与对照小鼠相比,在10周龄未处理过的双敲除小鼠的肾脏中Timp-3的表达明显减弱(根据磷成像分析,有9倍的差别)。在注射了FK506(泳道3和4)或TGF-β1可溶性受体(泳道5和6)的双敲除小鼠上未发现这种Timp-3的表达的减弱。在Sv/J小鼠上观察到了对Timp-3表达的相同影响(图20,下面一排),表明在Alport小鼠中抑制Timp-3 mRNA抑制的能力是由TGF-β1抑制抑制剂产生的,而不是由α1整合蛋白和TGF-β1的双重抑制产生的。
这一观察的在功能上的重要性是基于这样的事实Timp-3是基质金属蛋白酶的调节剂,并且被认为在肾基底膜体内平衡和疾病中体内平衡的丧失方面起着重要作用(Esposito等,Kidney Int.50:506-514,1996;和Elliot等,J.Am.Soc.Nephrol.,10:62-68,1999).Timp-3金属蛋白酶抑制剂表达的减弱可以导致金属蛋白酶活性的相应增强。这种增强可能导致基底膜的损伤,导致TGF-β1的激活,并同时导致基质的积累。因此,打破这种循环可以导致基底膜体内平衡的恢复,这种恢复表现为6BM形态学的恢复,这正是所观察到的情况(图11、14和15)。
实施例11在用TGF-β1抑制剂处理的双敲除小鼠中抑制间质纤维化
TGF-β1在基质蛋白的上调和肾纤维化中的作用业已研究的十分清楚(Yand等,J.Am.Soc.Nephrol.,5:1610-1617,1994;Border和Ruoslahti,临床研究杂志,90:1-7,1992)。在双敲除小鼠中,肾间质纤维化被推迟,而在大约10周龄时未能广泛扩散,并且在大约15周龄时发展到肾衰竭的晚期。用三种标记对注射了TGF-β1抑制剂的动物的间质纤维化进行分析,并与未用抑制剂处理过的10周龄双敲除动物直接进行比较。使用在例7中用于制备图14的相同方法给动物注射。对于图22、23和24来说,照片A是对照,照片B是未处理过的双敲除小鼠,照片C是用FK506处理过的双敲除小鼠,而照片D是用TGF-β可溶性受体处理过的双敲除小鼠。这些附图都表示肾皮质的50倍的低倍放大视图。图22是Jones silver乌洛托品染色,它是基质的标准组织化学染色。可以看出,在未处理小鼠的肾皮质的间质中积累了基质(比较照片B和照片A)。不过,来自用任一种TGF-β1抑制剂处理过的动物的肾皮质与对照没有差别,表现出少有至没有纤维化。常用的肾间质纤维化的分子标记包括1型胶原蛋白和纤连蛋白(Yamamoto等,Kidney Int.,45:916-927,1994)。图23表示1型胶原蛋白的免疫染色。很显然,在未处理过的动物的肾皮质间质中有1型胶原蛋白的积累(比较照片B和照片A中的对照)。图23中的照片B和C表示来自分别用FK506或可溶性受体处理过的双敲除小鼠的肾脏中的1型胶原积累的相对缺乏。对于纤连蛋白来说情况也是这样,纤连蛋白在未处理过的双敲除小鼠的皮质中含量丰富(图24B),并且更像是在注射了TGF-β1抑制剂的小鼠的肾皮质对照(图24照片C和D)。总之,以上资料表明,TGF-β1抑制剂与整合蛋白α1抑制剂的组合能够在Alport小鼠模型上抑制(或延缓)间质纤维化。
本文所引用的所有文献、专利、专利申请和出版物都被收作本说明书的参考文献。本领域技术人员可以理解的是,尽管上面业已结合特定的实施方案和实施例对本发明进行了说明,但本发明并不一定局限于此,并且在不超出本申请发明范围的前提下,可以对所述实施方案、实施例和用途进行改进,以便提出多种其他的实施方案、实施例和用途。
序列表<110>BOYS TOWN NATIONAL RESEARCH HOSPITAL<120>USE OF alBl INTEGRIN RECEPTOR INHIBITORS AND TGF-BlINHIBITORS IN THE TREATMENT OF KIDNEY DISEASE<130>249.00010230<140>PCT/US99/11073<141>1999-05-19<150>60/086,587<151>1998-05-22<150>09/088,766<151>1998-06-02<150>09/150,485<151>1998-09-09<160>26<170>PatentIn Ver. 2.0<210>1<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400>1tctgtggacc atggcttc 18<210>2<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400>2ttctcatgca cacttggc 18<210>3<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400>3ggctacctcc tggtgaag 18<210>4<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400>4ttcatgcaca cttggcag 18<210>5<211>15<212>DNA<213>人工序列<220><223>人工序列描述引物<400>5cgggccacat tctcc 15<210>6<211>17<212>DNA<213>人工序列<220><223>人工序列描述引物<400>6ggagtggccg ttgcatt17<210>7<211>17<212>DNA<213>人工序列<220><223>人工序列描述引物<400>7accagtacca aggcgga17<210>8<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400>8tcattgagct tgttcagg 18<210>9<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>9tagaggttat tttgcagcag a 21<210>10<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>10ttggatatcc tcatcagctt g 21<210>11<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>11gtggtttact ggacagacat c21<210>12<211>19<212>DNA<213>人工序列<220><223>人工序列描述引物<400>12ccaatctgtc caataaagg 19<210>13<211>26<212>DNA<213>人工序列<220><223>人工序列描述引物<400>13acacactcca agcccacaaa agcaag 26<210>14<211>24<212>DNA<213>人工序列<220><223>人工序列描述引物<400>14gagggaagac tccttgtagg tcaa 24<210>15<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400> 15gcagagcggg cacggagc18<210>16<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>16tgtacctgcc atcctctcct g 21<210>17<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>17cccctatcta cacctacacc a 21<210>18<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>18tgtcactgtc cgccaaataa a 21<210>19<211>22<212>DNA<213>人工序列<220><223>人工序列描述引物<400>19cagaagaaga gcctgaacca ca 22<210>20<211>18<212>DNA<213>人工序列<220><223>人工序列描述引物<400>20gtaccacgcg caagaacc 18<210>21<211>25<212>DNA<213>人工序列<220><223>人工序列描述引物<400>21ggtctacact attaagcaga tgaag 25<210>22<211>21<212>DNA<213>人工序列<220><223>人工序列描述引物<400>22aaaattggag agcatgtcgg t 21<210>23<211>19<212>DNA<213>人工序列<220><223>人工序列描述引物<400>23gcagaagttg gcatggtag 19<210>24<211>20<212>DNA<213>人工序列<220><223>人工序列描述引物<400>24ggacatcaac gggttcacta 20<210>25<211>19<212>DNA<213>人工序列<220><223>人工序列描述引物<400>25gcagaagttg gcatggtag 19<210>26<211>20<212>DNA<213>人工序列<220><223>人工序列描述引物<400>26ggacatcaac gggttcacta 20
权利要求
1.一种限制患者的肾疾病的方法,包括给患者给药有效量的α1β1整合蛋白受体抑制剂。
2.如权利要求1的方法,还包括给所述患者给药有效量的TGF-β1抑制剂。
3.如权利要求2的方法,其中,同时给药所述α1β1整合蛋白受体抑制剂和TGF-β1抑制剂。
4.如权利要求2的方法,其中,所述TGF-β1抑制剂不可逆地结合在TGF-β1上,并抑制它与其受体结合的能力。
5.如权利要求2的方法,其中,所述TGF-β1抑制剂是一种抑制TGF-β1向肾细胞的细胞核传导信号的能力的试剂。
6.如权利要求5的方法,其中,TGF-β1抑制剂是钙调磷酸酶抑制剂。
7.如权利要求6的方法,其中,所述钙调磷酸酶抑制剂是tacrolimus。
8.如权利要求1的方法,其中,所述α1β1整合蛋白受体抑制剂是能结合在肾细胞表面上的α1β1整合蛋白受体结合位点上的抑制剂。
9.如权利要求8的方法,其中,所述α1β1整合蛋白受体抑制剂包括一种肽。
10.如权利要求9的方法,其中,所述肽是选自下列一组的蛋白的至少九聚体片段层连蛋白、纤连蛋白、巢蛋白、和4型胶原蛋白。
11.如权利要求8的方法,其中,所述肽是一种抗体。
12.如权利要求1的方法,其中,所述肾疾病包括肾小球性肾炎、肾纤维化或这两者。
13.如权利要求12的方法,其中,所述肾小球性肾炎或肾纤维化与Alport综合症、IDDM肾炎、肾小球膜增殖性肾小球性纤维化、膜增殖肾小球性肾炎、新月型肾小球性肾炎、糖尿病性肾病和肾间质纤维化相关。
14.一种推迟患者Alport综合症发作和/或延缓这种病发展的方法,该方法包括给所述患者给药有效量的能抑制通过肾细胞的α1β1整合蛋白受体进行的信号传导的试剂。
15.一种推迟患者Alport综合症发作和/或延缓这种病发展的方法,该方法包括抑制患者肾细胞表面上的α1β1整合蛋白受体结合位点。
16.如权利要求15的方法,其中,抑制α1β1整合蛋白受体结合位点包括让肾细胞与有效量的α1β1整合蛋白受体结合位点肽接触。
17.如权利要求16的方法,其中,所述肽是选自下列一组的蛋白的至少九聚体片段层连蛋白、纤连蛋白、巢蛋白、和4型胶原蛋白。
18.如权利要求15的方法,还包括给所述患者给药有效量的TGF-β1抑制剂。
19.如权利要求18的方法,其中,所述TGF-β1抑制剂能不可逆地结合TGF-β1,并抑制它与其受体结合的能力。
20.如权利要求18的方法,其中,所述TGF-β1抑制剂是一种能够抑制TGF-β1向肾细胞的细胞核传导信号的能力的试剂。
21.如权利要求20的方法,其中,TGF-β1抑制剂是钙调磷酸酶抑制剂。
22.如权利要求21的方法,其中,所述钙调磷酸酶抑制剂是tacrolimus。
23.一种推迟患者由胰岛素依赖型糖尿病导致的肾病发作和/或延缓这种病发展的方法,该方法包括给所述患者给药有效量的能抑制通过肾细胞的α1β1整合蛋白受体进行的信号传导的试剂。
24.一种推迟患者由胰岛素依赖型糖尿病导致的肾病发作和/或延缓这种病发展的方法,该方法包括抑制患者肾细胞表面上的α1β1整合蛋白受体结合位点。
25.一种限制患者肾纤维化的方法,该方法包括降低患者体内的TGF-β1活性,同时抑制患者肾细胞的α1β1整合蛋白受体。
26.如权利要求25的方法,其中,所述降低TGF-β1活性的步骤包括给所述患者给药能不可逆地结合在TGF-β1上,并抑制它与其受体结合的能力的试剂。
27.如权利要求26的方法,其中,所述降低TGF-β1活性的步骤包括给所述患者给药能够抑制TGF-β1向肾细胞的细胞核传导信号的能力的试剂。
28.一种限制患者肾纤维化的方法,包括给所述患者给药钙调磷酸酶抑制剂。
29.如权利要求28的方法,其中,所述钙调磷酸酶抑制剂是tacrolimus。
30.一种用于肾病的小鼠模型,其中,所述小鼠不能在该小鼠的肾小球基底膜中表达正常的4型胶原蛋白组份,并且不能表达α1β1整合蛋白受体。
31.如权利要求30的小鼠模型,其中,所述小鼠不能将胶原蛋白α3(Ⅳ)、α4(Ⅳ)、和α5(Ⅳ)链结合到其肾小球基底膜上。
32.一种筛选用于限制肾病的试剂的方法,包括给肾病的小鼠模型给药所述试剂,其中,所述小鼠不能在该小鼠的肾小球基底膜中表达正常的4型胶原蛋白组份,并且不能表达α1β1整合蛋白受体。
33.一种限制患有Alport综合症的患者GBM中基质积累的方法,包括降低患者体内的TGF-β1活性。
全文摘要
本发明提供了用于治疗(即推迟发作、延缓发展、和/或恢复)肾病(例如,肾小球性肾炎和/或肾纤维化)的方法。所述方法中的某一些,包括选择性地与TGF-β1抑制剂组合给药α1β1整合蛋白受体抑制剂。本发明还提供了肾病的小鼠模型,其中,所述小鼠不能在GBM中表达正常的4型胶原蛋白组合物(即它不能将胶原蛋白α3(Ⅳ)、α(Ⅳ)、和α5(Ⅳ)链结合到其肾小球基底膜上),而且,不能表达α1β1整合蛋白受体。
文档编号C07K16/28GK1310625SQ99809024
公开日2001年8月29日 申请日期1999年5月19日 优先权日1998年5月22日
发明者D·科斯格罗维 申请人:博伊斯镇国家研究医院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1