抗凝血剂的制备方法、中间体及其制备方法与流程

文档序号:13143872阅读:409来源:国知局
技术领域本发明涉及抗凝血剂的制备方法、中间体及其制备方法。

背景技术:
2014年5月8日默沙东抗凝血剂Zontivity(vorapaxar)获FDA批准,心血管新药vorapaxarsulfate(硫酸沃拉帕沙)正式上市。Vorapaxar是一种首创(first-in-class)的蛋白酶激活受体1(PAR-1)拮抗剂,是一种抗血小板制剂,旨在减少血小板聚集倾向,抑制血凝凝块的形成。研究者发现,Vorapaxar用于遭受心脏病发作的患者或腿部动脉有堵塞的患者,可显著降低患者进一步的心脏病发作、中风、心血管死亡和需要手术的风险。此前,默沙东的另一种心血管疾病新药Tredaptive就曾被FDA否定。至今默沙东已投入80亿美元研发vorapaxar,现vorapaxar也获得用于防止初次心脏病患者复发的许可。现有技术中,硫酸沃拉帕沙的制备主要有以下两个路线:(1)硫酸沃拉帕沙最早的专利是1998年由ScheringCorporation申请的专利(US6063847A:)其以乙二醇保护的化合物44为原料,经偶联,D-A关环反应、以及从酸还原成醛,最后再次偶联,得到目化合物50,具体合成路线如下所示:上述方法中,原发明人是将酸48到醛49转化的两步反应采用一锅法。该路线步骤长,关键步骤收率很低,其中此合成方法采用锡氢还原酰氯制备化合物49,此方法过程中使用大量氯化亚砜,接着采用四丁基锡氢在金属钯的作用下得到醛49,不适合大批量工业化生产;此外采用由于三丁基锡化氢是有毒试剂,对人体和环境具有较大的毒害作用,所以不适宜放大生产。(2)还有ScheringCorporation在2006年申请的专利路线:WO2006/076415(PCT/US2006/000954),该专利报道了以手性炔醇为原料,经D-A反应、异构化反应以及偶联反应,得到目化合物11,具体合成路线如下所示:上述方法中,原发明人是采用钯碳还原的方法将酸14转化到醛15,文献报道的收率为66%。但是,我们按照该文献的方法,尝试了从酸14到关键中间体15的方法,但是收率很低,只有10%左右,同时反应条件苛刻、需要特备设备,原料比较昂贵、后处理繁琐,所以这种方法也是不适合放大量生产的。综上所述,无论是Pd高压氢化,还是用Bu3SnH方式,均不能理想的得到关键中间体醛。因此,本领域亟需一种新的从酸到醛的制备方法,以解决上述技术难题。

技术实现要素:
本发明所要解决的技术问题是为了克服现有技术中抗凝血剂的制备方法中的关键步骤脂肪羧酸到脂肪醛的制备方法步骤繁琐、使用的试剂毒性大、操作危险、环境污染严重、收率低、不适合于工业化生产等缺陷,而提供了抗凝血剂的制备方法、中间体及其制备方法。本发明的制备方法,操作简单、反应条件温和、反应转化率高、收率高、制得的产品纯度高、生产成本低、后处理简单、适用于工业化生产。本发明提供了一种硫酸沃拉帕沙中间体IV的制备方法,其包括以下步骤:在有机溶剂中,将化合物III与氧化剂进行氧化反应,得到硫酸沃拉帕沙中间体IV即可;硫酸沃拉帕沙中间体IV的制备方法可以为本领域中该类氧化反应的常规方法,本发明中特别优选以下反应方法和条件:在硫酸沃拉帕沙中间体IV的制备方法中,所述的有机溶剂优选卤代烃类溶剂;所述的卤代烃类溶剂优选氯代烃类溶剂;所述的氯代烃类溶剂优选二氯甲烷。在硫酸沃拉帕沙中间体IV的制备方法中,所述的有机溶剂与所述的化合物III的体积质量比优选1mL/g~100mL/g,进一步优选5mL/g~50mL/g。在硫酸沃拉帕沙中间体IV的制备方法中,所述的氧化剂优选草酰氯与二甲基亚砜的组合或氯铬酸吡啶鎓盐(PCC)。在硫酸沃拉帕沙中间体IV的制备方法中,所述的氧化剂与所述的化合物III的摩尔比值优选1~6。当所述的氧化剂为氯铬酸吡啶鎓盐(PCC)时,所述的氧化剂与所述的化合物III的摩尔比值进一步优选5~6。当所述的氧化剂为草酰氯与二甲基亚砜的组合时,所述的草酰氯与所述的化合物III的摩尔比值进一步优选1~2;所述的二甲亚砜与所述的草酰氯的摩尔比值优选1~3,进一步优选1~2。在硫酸沃拉帕沙中间体IV的制备方法中,所述的氧化反应的温度优选-80℃~40℃;当所述的氧化剂为草酰氯与二甲基亚砜的组合时,所述的氧化反应的温度进一步优选-80℃~-60℃,当所述的氧化剂为氯铬酸吡啶鎓盐(PCC)时,所述的氧化反应的温度进一步优选0℃~40℃,再进一步优选15℃~30℃。在硫酸沃拉帕沙中间体IV的制备方法中,所述的氧化反应的进程可以采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以化合物III消失时为反应的终点,所述的氧化反应的时间优选30分钟~3小时。硫酸沃拉帕沙中间体IV的制备方法优选在保护气体存在的条件下进行,当所述的硫酸沃拉帕沙中间体IV的制备方法在保护气体存在的条件下进行时,所述的保护气体优选氮气、氦气、氩气、氖气、氪气和氙气中的一种或多种,进一步优选氮气和/或氩气。在硫酸沃拉帕沙中间体IV的制备方法中,当所述的氧化剂为氯铬酸吡啶鎓盐(PCC)时,所述的氧化反应优选采用以下步骤:将化合物III与有机溶剂形成的溶液滴加到氯铬酸吡啶鎓盐(PCC)与有机溶剂形成的混合液中。优选在反应体系中加入硅胶,所述的硅胶与所述的氯铬酸吡啶鎓盐(PCC)的质量比优选2:1~1:2,进一步优选1:1~1:1.5。所述的滴加的速度以反应体系温度不超过30℃为准。在硫酸沃拉帕沙中间体IV的制备方法中,当所述的氧化剂为氯铬酸吡啶鎓盐(PCC)时,所述的氧化反应优选采用以下后处理步骤:反应结束后,过滤,洗涤,干燥,浓缩,得到纯化后的硫酸沃拉帕沙中间体IV(HPLC纯度98%以上)。所述的过滤,洗涤,干燥,浓缩可以采用本领域中该类操作的常规方法和条件。所述的过滤优选垫硅藻土进行过滤。所述的洗涤优选采用1N的盐酸、水、饱和碳酸氢钠、饱和食盐水进行洗涤。所述的干燥优选采用无水硫酸钠进行干燥。在硫酸沃拉帕沙中间体IV的制备方法中,当所述的氧化剂为草酰氯与二甲基亚砜的组合时,所述的氧化反应优选包括以下步骤:-70℃~-80℃,将二甲亚砜与有机溶剂形成的溶液滴加到草酰氯与有机溶剂形成的溶液中,反应30分钟~1小时,再滴加化合物III与有机溶剂形成的溶液,进行氧化反应,得到硫酸沃拉帕沙中间体IV。所述的滴加的速度优选保持反应体系温度不超过-60℃。所述的氧化反应优选包括以下后处理步骤,反应结束后,加入碱淬灭反应,加水,萃取,洗涤,浓缩得到粗品,重结晶得到纯化后的化合物IV。所述的碱与所述的化合物III的摩尔比值优选3~8,进一步优选4~6。所述的萃取优选采用卤代烃类溶剂,所述的卤代烃类溶剂优选氯代烃类溶剂;所述的氯代烃类溶剂优选二氯甲烷。所述的洗涤优选先采用摩尔浓度为2N的盐酸洗至pH3-4,再用饱和食盐水洗。所述的重结晶优选采用酯类溶剂与烷烃类溶剂的混合溶剂,所述的酯类溶剂优选乙酸乙酯,所述的烷烃类溶剂优选正庚烷。所述的硫酸沃拉帕沙中间体IV的制备方法,进一步包括以下步骤:有机溶剂中,将化合物II与还原剂进行还原反应,得到所述的化合物III即可;在所述的化合物III的制备方法中,所述的有机溶剂可以为本领域中该类还原反应的常规有机溶剂,本发明中特别优选醚类溶剂和/或醇类溶剂;所述的醚类溶剂优选四氢呋喃,所述的醇类溶剂优选正丁醇。在所述的化合物III的制备方法中,所述的有机溶剂与所述的化合物II的体积质量比优选1mL/g~100mL/g,进一步优选20mL/g~50mL/g。在所述的化合物III的制备方法中,所述的还原剂可以为硼氢化钠、硼氢化锌和三C1~C4烷氧基氢化铝锂中的一种或多种,优选三C1~C4烷氧基氢化铝锂,所述的三C1~C4烷氧基氢化铝锂例如三甲氧基氢化铝锂,三乙氧基氢化铝锂、三丙氧基氢化铝锂、三异丙氧基氢化铝锂、三丁氧基氢化铝锂、三异丁氧基氢化铝锂或三叔丁氧基氢化铝锂,优选三叔丁氧基氢化铝锂。本发明中,所述的三C1~C4烷氧基氢化铝锂可以为本领域中常规市售三C1~C4烷氧基氢化铝锂试剂,也可以通过氢化铝锂与2-3倍摩尔量的C1~C4烷基醇进行反应得到。在所述的化合物III的制备方法中,所述的还原剂与所述的化合物II的摩尔比值优选1~5,进一步优选1~2.5。在所述的化合物III的制备方法中,所述的还原反应的温度可以为本领域中该类还原反应的常规温度,本发明中特别优选优选0~10℃。在所述的化合物III的制备方法中,所述的还原反应的的进程可以采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以化合物II消失时为反应的终点,所述的还原反应的时间优选30分钟~3小时。所述的化合物III的制备方法优选在保护气体存在的条件下进行,当所述的化合物III的制备方法在保护气体存在的条件下进行时,所述的保护气体优选氮气、氦气、氩气、氖气、氪气和氙气中的一种或多种,进一步优选氮气和/或氩气。所述的化合物III的制备方法优选包括以下后处理步骤:反应结束后,加入冰水,盐酸调节pH2-3,萃取,洗涤,干燥,浓缩得到粗品化合物III,再经重结晶得到纯化后的化合物III。所述的萃取,洗涤,干燥,浓缩和重结晶可以采用本领域中该类操作的常规方法和条件。所述的萃取采用的溶剂优选酯类溶剂,所述的酯类溶剂优选乙酸乙酯。所述的洗涤优选依次采用饱和碳酸氢钠水溶液和饱和食盐水洗涤。所述的重结晶采用的溶剂优选为酯类溶剂和烷烃类溶剂的混合溶剂,所述的酯类溶剂优选乙酸乙酯,所述的烷烃类溶剂优选正庚烷。所述的硫酸沃拉帕沙中间体IV的制备方法,进一步包括以下步骤:有机溶剂中,催化剂存在的条件下,将化合物I与氯化试剂进行氯化反应,得到所述的化合物II即可;所述的化合物II的制备方法可以采用本领域中该类氯化反应的常规方法,本发明中特别优选以下反应方法和条件:在所述的化合物II的制备方法中,所述的有机溶剂优选卤代烃类溶剂;所述的卤代烃类溶剂优选氯代烃类溶剂;所述的氯代烃类溶剂优选二氯甲烷。在所述的化合物II的制备方法中,所述的有机溶剂与所述的化合物I的体积质量比优选1mL/g~100mL/g,进一步优选5mL/g~30mL/g。在所述的化合物II的制备方法中,所述的氯化试剂优选草酰氯。在所述的化合物II的制备方法中,所述的氯化试剂与所述的化合物I的摩尔比优选1~5,进一步优选2.5~3.5。在所述的化合物II的制备方法中,所述的催化剂优选N,N-二甲基甲酰胺。在所述的化合物II的制备方法中,所述的催化剂与所述的化合物I的摩尔比优选0.001~0.1,进一步优选0.005~0.01。在所述的化合物II的制备方法中,所述的氯化反应的温度优选20℃~30℃。在所述的化合物II的制备方法中,所述的氯化反应的进程可以采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以化合物I消失时为反应的终点,所述的氯化反应的时间优选30分钟~3小时。在所述的化合物II的制备方法中,所述的氯化反应优选反应结束后除去溶剂,不经进一步纯化直接进行下一步反应。所述的在硫酸沃拉帕沙中间体IV的制备方法优选采用以下合成路线:本发明还提供了如式V所示的硫酸沃拉帕沙的制备方法,其包括以下步骤:在有机溶剂中,碱存在的条件下,将硫酸沃拉帕沙中间体IV与磷脂VI进行维悌希反应,得到如式V所示的硫酸沃拉帕沙V即可;如式V所示的硫酸沃拉帕沙的制备方法可以为本领域中该类维悌希反应的常规方法,本发明中特别优选以下反应方法和条件:在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的有机溶剂优选醚类溶剂,所述的醚类溶剂优选四氢呋喃。在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的有机溶剂与所述的硫酸沃拉帕沙中间体IV的体积质量比优选1mL/g~100mL/g,进一步优选10mL/g~50mL/g。在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的碱优选有机碱,所述的有机碱优选二异丙基胺锂(LDA)。在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的碱与所述的硫酸沃拉帕沙中间体IV的摩尔比值优选1~5,进一步优选3~4。在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的磷脂VI与所述的硫酸沃拉帕沙中间体IV的摩尔比值优选1~5,进一步优选2~3。在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的硫酸沃拉帕沙中间体IV优选采用上述方法制备;在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的维悌希反应的温度优选-20℃~-10℃。在所述的如式V所示的硫酸沃拉帕沙的制备方法中,所述的维悌希反应的进程可以采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以硫酸沃拉帕沙中间体IV消失时为反应的终点,所述的维悌希反应的时间优选30分钟~4小时。所述的如式V所示的硫酸沃拉帕沙的制备方法优选在保护气体存在的条件下进行,当所述的如式V所示的硫酸沃拉帕沙的制备方法在保护气体存在的条件下进行时,所述的保护气体优选氮气、氦气、氩气、氖气、氪气和氙气中的一种或多种,进一步优选氮气和/或氩气。所述的如式V所示的硫酸沃拉帕沙的制备方法优选采用以下步骤:-20℃~-10℃下,将碱滴加到磷脂VI与有机溶剂形成的溶液中,反应1~2小时,再向上述反应体系中滴加硫酸沃拉帕沙中间体IV与有机溶剂形成的溶液,反应1~2小时,得到所述的如式V所示的硫酸沃拉帕沙即可。所述的如式V所示的硫酸沃拉帕沙的制备方法优选采用以下后处理步骤:反应结束后,加水淬灭反应,盐酸调节pH6-7,萃取,洗涤,干燥,浓缩,柱色谱分离得到如式V所示的硫酸沃拉帕沙。所述的萃取,洗涤,干燥,浓缩和柱色谱分离可以采用本领域中该类操作的常规方法和条件。所述的萃取采用的溶剂优选酯类溶剂,所述的酯类溶剂优选乙酸乙酯。所述的洗涤优选依次采用饱和食盐水洗涤。所述的如式V所示的硫酸沃拉帕沙优选采用下述路线制备:本发明还提供了化合物III,其结构如下所示:本发明还提供了所述的化合物III的制备方法,其包括以下步骤:有机溶剂中,将化合物II与还原剂进行还原反应,得到化合物III即可;其中,各反应条件均同上所述。在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。本发明所用试剂和原料均市售可得。本发明中,所述的室温指环境温度,为10℃~35℃。本发明的积极进步效果在于:本发明的制备方法,操作简单、反应条件温和、反应转化率高、收率高、制得的产品纯度高、生产成本低、后处理简单、适用于工业化生产。具体实施方式下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。实施例1化合物II的制备取一个250ml的三颈瓶,加入3.5g的固体原料化合物I,然后加入70mL的二氯甲烷,使之完全溶解,接着加入0.017mL的N,N-二甲基甲酰胺(DMF),氮气(N2保护下),搅拌。然后向反应体系中滴加4g的草酰氯,加毕,升温到30℃,并且在该温度下继续搅拌30分钟,TLC检测,原料完全消失。则停止反应,反应体系直接减压蒸干,得到浅黄色固体化合物II3.2g。没有纯化,直接进行下一步反应,收率100%。实施例2化合物II的制备取一个2500mL的三颈瓶,加入200g的固体原料化合物I,然后加入1500mL的二氯甲烷,使之完全溶解,接着加入1mL的N,N-二甲基甲酰胺(DMF),氮气(N2)保护下,搅拌。然后向反应体系中滴加200g的草酰氯,加毕,升温到30℃,并且在该温度下继续搅拌30分钟,TLC检测,原料完全消失。则停止反应,反应体系直接减压蒸干,得到浅黄色固体化合物II210g。没有纯化,直接进行下一步反应,收率100%。实施例3化合物III的制备取一个250mL的三颈瓶,加入3.2g的浅黄色固体化合物II,然后加入80mL的四氢呋喃(THF),使之完全溶解,氮气(N2)保护下,冷却到0℃。然后向反应体系中分批加入10mL2M的Zn(BH4)2的THF溶液,并且保持反应体系的温度不超过10度,加毕,在10℃左右继续搅拌反应30分钟,TLC检测,反应完毕。加入10mL冰水,滴加2N的盐酸,调节反应体系PH=2-3,分层,水相用乙酸乙酯(EA)萃取二次,直到水相没有产物为止。合并有机相,依次用碳酸氢钠饱和溶液,饱和食盐水洗涤,无水硫酸钠干燥,浓缩,用乙酸乙酯(EA)/正庚烷重结晶,得到0.9g白色固体化合物III,收率31%,HPLC纯度93%。实施例4化合物III的制备取一个250ml的三颈瓶,加入3.25g的浅黄色固体化合物II,然后加入80mL的THF,使之完全溶解,氮气(N2)保护下,冷却到0℃。然后向反应体系中分批加入NaBH40.5g,并且保持反应体系的温度不超过10℃,加毕,在10℃左右继续搅拌反应30分钟,TLC检测,反应完毕。加入10mL冰水,滴加2N的盐酸,调节反应体系PH=2-3,分层,水相用乙酸乙酯(EA)萃取二次,直到水相没有产物为止。合并有机相,依次用碳酸氢钠饱和溶液,饱和食盐水洗涤,无水硫酸钠干燥,浓缩,用乙酸乙酯(EA)/正庚烷重结晶,得到0.615g白色固体化合物III,收率23%,HPLC纯度90%。实施例5化合物III的制备取一个250mL的三颈瓶,加入3.25g的浅黄色固体化合物II,然后加入80mL的THF和1.5g的正丁醇,使之完全溶解,氮气(N2)保护下,冷却到0℃。然后向反应体系中分批加入380mg的氢化铝锂,并且保持反应体系的温度不超过10℃,加毕,在10℃左右继续搅拌反应30分钟,TLC检测,反应完毕。加入10mL冰水,滴加2N的盐酸,调节反应体系PH=2-3,分层,水相用乙酸乙酯(EA)萃取二次,直到水相没有产物为止。合并有机相,依次用碳酸氢钠饱和溶液,饱和食盐水洗涤,无水硫酸钠干燥,浓缩,用乙酸乙酯(EA)/正庚烷重结晶,得到1.38g白色固体化合物III,收率46%,HPLC纯度90%。实施例6化合物III的制备取一个250mL的三颈瓶,加入3.2g的浅黄色固体化合物II,然后加入80mL的THF,使之完全溶解,氮气(N2)保护下,冷却到0℃。然后向反应体系中分批加入三叔丁氧基氢化铝锂4.5g,并且保持反应体系的温度不超过10℃,加毕,在10℃左右继续搅拌反应30分钟,TLC检测,反应完毕。加入10mL冰水,滴加2N的盐酸,调节反应体系PH=2-3,分层,水相用乙酸乙酯(EA)萃取二次,直到水相没有产物为止。合并有机相,依次用碳酸氢钠饱和溶液,饱和食盐水洗涤,无水硫酸钠干燥,浓缩,用乙酸乙酯(EA)/正庚烷重结晶,得到2.7g白色固体化合物III,收率93%,HPLC纯度95%。实施例7硫酸沃拉帕沙中间体IV的制备取一个250mL的三颈瓶,加入9g的氯铬酸吡啶鎓盐(PCC)和9g的硅胶,搅拌均匀,然后加入80mL的二氯甲烷,氮气(N2)气氛下,于25℃搅拌。然后向反应体系中滴加2.4g的化合物III溶于20mL的二氯甲烷(DCM)溶液。滴加的速度以反应体系温度不超过30℃为准,加毕,在该温度下继续搅拌反应30分钟,TLC检测,反应完毕。垫硅藻土过滤,滤液用100mL的二氯甲烷(DCM)洗涤,合并有机相,依次用1N的盐酸,水,饱和碳酸氢钠,饱和食盐水各洗涤一次,无水硫酸钠干燥,浓缩,得到硫酸沃拉帕沙中间体IV浅黄色固体2.3g,收率96%,HPLC纯度98%。实施例8硫酸沃拉帕沙中间体IV的制备取一个5升的三颈瓶,备有机械搅拌器和干冰冷却装置,向反应瓶中加入132g的草酰氯和1200mL的二氯甲烷,氮气(N2)保护下,开启搅拌,冷却到-70℃以下,向其中滴加162g二甲基亚砜(DMSO)溶于100mL的二氯甲烷混合液。滴加的速度以保持体系的温度不超过-60℃为准,加毕,在该温度下继续搅拌反应30分钟,再向其中滴加170g的化合物III溶于200mL的二氯甲烷溶液,滴加的速度以保持体系温度不超过-60℃为准。加毕,在该温度下继续搅拌反应1小时。然后向其中滴加262.6g的三乙胺,淬灭反应,加毕,取走冷却装置,慢慢升温到0℃,加入2升的水,静置分层,水相用200mL的二氯甲烷萃取一次,合并有机相,依次用2N的盐酸洗涤至PH=3-4,然后用水,饱和食盐水各洗涤一次,无水硫酸钠干燥,浓缩,得到粗品,用乙酸乙酯溶解,滴加正庚烷重结晶,得到湿品,干燥,得到165g浅灰色固体硫酸沃拉帕沙中间体IV,收率97%,HPLC纯度98%。实施例9如式V所示的硫酸沃拉帕沙的制备取一个250mL的三颈瓶,加入4g的磷脂VI和40mL的四氢呋喃(THF),氮气(N2)氛下,冷却到-20℃。然后向反应体系中滴加2M的二异丙基胺锂(LDA)9.3mL。加毕,让此在该温度下继续搅拌反应1.5小时。然后向反应体系中滴加2.0g的硫酸沃拉帕沙中间体IV溶于20mL的THF混合物,加毕,让此在该温度下继续搅拌反应1小时。TLC检测,原料消失。移走冷却装置,升温到0℃,加入40mL水淬灭反应。用2N的盐酸调节PH=6-7分层,水相用乙酸乙酯(EA)萃取二次,合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,过柱,得到浅黄色固体如式V所示的硫酸沃拉帕沙2.5g,收率80%,HPLC纯度为99.3%,手性HPLC纯度为99.8%。对比实施例1重复专利US6063847A中化合物48制备化合物49的步骤具体操作如下(US6063847A):中间产品48(1g,3.2mmol)溶于20mL甲苯中,加入1.25mLSOCl2,混合溶液搅拌加热至80℃,持续加热搅拌16h。混合溶液真空浓缩,剩余的胶状物溶解于16mL甲苯中,搅拌并冷却至0℃。先加入186mgPd(Ph3P)4,接着滴加Bu3SnH(1.3ml,4.8mmol)。混合溶液搅拌3h,之后柱层析得到450mg中间产品49(产率48%)。对比实施例2重复专利(WO2006/076564A1或PCT/US2006/001208)中由酸制备醛的反应步骤具体操作如下:(摘自专利WO2006/076564A1或PCT/US2006/001208)准备配备搅拌器、温度计和氮气球的三口瓶,加入粗产品14的溶液(包含3.1g产品14,体积约为30mL),加入无水0.005mLDMF。搅拌5分钟后,缓慢滴加1.22mL草酰氯,并控制温度在15-25℃。滴完继续搅拌1h,NMR监测反应进程。反应结束后,反应液真空低温(<30℃)浓缩至13.5mL,剩余的草酰氯再用甲苯(31.5ml×2)带旋(<50℃)两次,最终得到6.8ml溶液。将反应液冷却至15-25℃,之后加入16mLTHF,2.2ml2,6-二甲基吡啶。加入质量百分比为5%Pd/C(0.90g)(所述的质量百分比是指钯的质量占钯碳试剂总质量的百分比),之后100psiH2,控温20~25℃搅拌16h。反应结束后,反应液用硅藻土过滤,大量THF溶剂洗涤,氢化器和催化剂,滤液同样的方法再次过滤一遍。合并滤液25℃下真空浓缩至31.5mL。加入15.8mLMTBE(甲基叔丁基醚)和15.8mL质量百分比为10%的磷酸水溶液(所述的质量百分比是指磷酸的质量占磷酸水溶液总质量的百分比),除去2,6-二甲基吡啶,温度控制在10℃。有机相中残留的磷酸用质量百分比为2%的碳酸氢钠溶液洗涤除去(所述的质量百分比是指碳酸氢钠的质量占碳酸氢钠溶液总质量的百分比),食盐水洗。溶剂浓缩至9ml后加入31.5ml异丙醇,浓缩至6.8ml,剩余的加热至50℃准备结晶。缓缓加入6.8ml的正庚烷并保持50℃的温度。之后缓慢降温(冷却时间至少2.5h)至25℃。再缓慢加入3.4mL的正庚烷控温25℃,之后在进一步冷却到20℃,静置至少20h。过滤,洗涤(体积百分比为25%的异丙醇和正庚烷的混合溶剂,所述的体积百分比是指异丙醇的体积占异丙醇和正庚烷的混合溶剂体积的比例),干燥之后得到1.95g化合物15。(产率66%)对比实施例3采用专利US6063847A的方法制备本发明的化合物IV中间体化合物I(3.2mmol)溶于20mL甲苯中,加入1.25mLSOCl2,混合溶液搅拌加热至80℃,持续加热搅拌16h。混合溶液真空浓缩,剩余的胶状物溶解于16mL甲苯中,搅拌并冷却至0℃。先加入186mgPd(Ph3P)4,接着滴加Bu3SnH(1.3ml,4.8mmol)。混合溶液搅拌3h,之后柱层析得到450mg中间体醛IV(收率:48%)。对比实施例4采用专利(WO2006/076564A1或PCT/US2006/001208)的方法制备本发明的化合物IV准备配备搅拌器、温度计和氮气球的三口瓶,加入粗产品中间体化合物I的溶液(包含31g中间体化合物I,体积约为300ml),加入无水0.05mLDMF。搅拌5分钟后,缓慢滴加12.2mL草酰氯,并控制温度在15-25℃。滴完继续搅拌1h,NMR监测反应进程。反应结束后,反应液真空低温(<30℃)浓缩至135ml,剩余的草酰氯再用甲苯(315ml×2)带旋(<50℃)两次,最终得到68ml溶液。将反应液冷却至15-25℃,之后加入160mLTHF,22mL2,6-二甲基吡啶。加入5%Pd/C(9.0g),之后100psiH2,控温20-25℃搅拌16h。反应结束后,反应液用硅藻土过滤,大量THF溶剂洗涤和固体催化剂,滤液同样的方法再次过滤一遍。合并滤液25℃下真空浓缩至315mL。加入158mLMTBE和158mL10%磷酸水溶液,除去2,6-二甲基吡啶,温度控制在10℃。有机相中残留的磷酸用2%的碳酸氢钠溶液洗涤除去,食盐水洗。溶剂浓缩至90mL后加入315mL异丙醇,浓缩至68ml,剩余的加热至50℃准备结晶。缓缓加入68mL的正庚烷并保持50℃的温度。之后缓慢降温(冷却时间至少2.5h)至25℃。再缓慢加入34ml的正庚烷控温25℃,之后在进一步冷却到20℃,静置至少20h。过滤,洗涤(体积百分比为25%的异丙醇和正庚烷的混合溶剂,所述的体积百分比是指异丙醇的体积占异丙醇和正庚烷的混合溶剂体积的比例),干燥之后得到3.5g中间体醛化合物IV。(产率11%)。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1