一种导电聚酰亚胺薄膜的制备方法与流程

文档序号:12029540阅读:523来源:国知局
本发明涉及薄膜制备
技术领域
,特别涉及一种导电聚酰亚胺薄膜的制备方法。
背景技术
:聚酰亚胺薄膜由于其卓越的耐热性、高机械强度、高尺寸稳定性及耐辐射等性能,已被广泛应用于航空、航天、电子等各个领域。在微电子领域,聚酰亚胺薄膜被普遍用作柔性线路板的封装材料。随着电子工业的迅猛发展,电子线路板集成度越来越高,普通的聚酰亚胺薄膜绝缘系数较高,用于线路板封装时容易产生静电累积,最终导致线路板损伤。美国某机构对某大型通信系统装备中的集成电路进行测试时,发现有故障的集成电路有三分之一是被静电放电击穿的。目前,提高聚酰亚胺薄膜的抗静电性已成为微电子封装领域一个非常重要的课题。技术实现要素:本发明的目的在于提供一种导电聚酰亚胺薄膜的制备方法,以制备得到具有抗静电、高强度、高模量性能的聚酰亚胺薄膜。为实现上述目的,本发明采用了以下技术方案:一种导电聚酰亚胺薄膜的制备方法,包括以下步骤:(1)将芳香二胺溶于非质子极性溶剂中,再将芳香二酐逐批加入到芳香二胺溶液中反应后,得到聚酰胺酸溶液,所述芳香二胺与芳香二酐的摩尔比为1:0.992-0.998;(2)在聚酰胺酸溶液中加入碳基导电性粒子,并利用高剪切分散机分散均匀得到黑色的混合溶液,所述碳基导电粒子由超导炭黑和碳纳米管组成,碳基导电性粒子占所述加入芳香二胺和芳香二酐总量的1-10wt%;(3)将混合溶液在不锈钢板上涂布,经干燥、剥离后得到凝胶膜,将凝胶膜的周边固定在框架上,放入亚胺化炉内进行亚胺化后,得到导电聚酰亚胺薄膜。进一步,所述芳香二胺由4,4’-二氨基二苯醚和对苯二胺组成,所述4,4’-二氨基二苯醚占芳香二胺摩尔总量的90-100%;所述芳香二酐由均苯四甲酸二酐和3,3’,4,4’-联苯四甲酸二酐组成,所述均苯四甲酸二酐占芳香二酐摩尔总量的50-100%;所述非质子极性溶剂为n,n-二甲基甲酰胺或n,n-二甲基乙酰胺。进一步,所述步骤(1)的反应温度为15-25℃,分三个批次加入芳香二酐,且第一批次加入的芳香二酐的摩尔量小于等于芳香二酐的总摩尔量的96%,第三批次加入的芳香二酐的摩尔量小于等于芳香二酐的总摩尔量的1%;每批次加入芳香二酐后的反应时间为15-60min。进一步,所述步骤(1)得到的聚酰胺酸溶液的固含量为15-20wt%,粘度为1500-3500泊。进一步,所述超导炭黑占碳基导电粒子总量的80-95wt%。进一步,所述步骤(3)中的干燥温度为140-180℃,干燥时间为5-30min;亚胺化温度为400-450℃,亚胺化时间为3-5min。本发明具备以下有益效果:1、本发明在聚酰亚胺的前驱体(聚酰胺酸)中加入了碳基导电性粒子(超导炭黑和碳纳米管)。超导炭黑和碳纳米管是非常优秀的导电性功能材料,能够大幅度地降低基体材料的电阻率。传统的聚酰亚胺薄膜的绝缘性较高(体积电阻率通常在1015-1020ω·cm范围内),在使用过程中极易产生静电,而材料的高绝缘性会使得静电难以消除,导致静电不断积累。同时由于体积电阻率很高,即使少量的电荷也会形成很高的电势,当电势超过一定值后,就会产生静电放电导致材料的破坏。通过向聚酰胺酸中加入碳基导电性粒子,制备低电阻率的聚酰亚胺薄膜,使得薄膜内部形成导电通路,从而及时地移除产生的静电荷,防止静电放电现象的产生。2、超导炭黑拥有低电阻率和独特的支链状结构等特性,其体积电阻率在0.0008-0.0018ω·cm之间,并且能够与基体材料混合形成高效的导电网络,通常只需1/5-1/3的用量即可达到普通导电炭黑的效果,从而大大降低了导电炭黑对聚酰亚胺物性的影响。3、碳纳米管上碳原子的p电子能够形成大范围的离域π键,显著的共轭效应赋予了碳纳米管卓越的导电性能,电导率能够达到铜的一万倍以上。此外,碳纳米管还具有超高的强度和模量,抗拉强度高达200gpa,弹性模量可达1tpa,与此同时还具有良好的柔韧性。因此,在聚酰胺酸中加入碳纳米管不仅可以增强聚酰亚胺薄膜的导电性,还可以进一步增强薄膜的力学性能。具体实施方式以下结合实施例对本发明作进一步说明,其目的仅在于更好理解本发明目的,而非限制本发明的保护范围。实施例1:(1)在15℃的反应釜内,将20.023g(0.1mol)的4,4’-二氨基二苯醚溶解于236g的n,n-二甲基甲酰胺(dmf)中,之后分三次分别将20.721g(0.095mol)、0.872g(0.004mol)、0.044g(0.0002mol)的均苯四甲酸二酐加入其中搅拌反应,其中相邻两次添加的间隔反应时间为15min,待第三次的均苯四甲酸二酐添加完后继续搅拌反应60min,得到固含量为15%的聚酰胺酸溶液,粘度为1500泊。(2)向聚酰胺酸溶液中加入0.406g超导炭黑和0.021g碳纳米管,利用高剪切分散机将其分散均匀得到黑色的混合溶液。(3)对混合溶液进行真空脱泡处理后,将其涂布到不锈钢板上,于140℃的鼓风干燥箱内干燥30min。将得到的凝胶膜剥离下来并固定在金属框架上,放入400℃的亚胺化炉中亚胺化5min,得到厚度为25μm的导电聚酰亚胺薄膜。实施例2:(1)在20℃的反应釜内,将19.022g(0.095mol)的4,4’-二氨基二苯醚和0.541g(0.005mol)的对苯二胺溶解于195g的n,n-二甲基乙酰胺(dmac)中,之后分三次分别将17.231g(0.079mol)的均苯四甲酸二酐、5.855g(0.0199mol)的3,3’,4,4’-联苯四甲酸二酐、0.131g(0.0006mol)的均苯四甲酸二酐加入其中搅拌反应,其中相邻两次添加的间隔反应时间为20min,待第三次的均苯四甲酸二酐二酐添加完后继续搅拌反应60min,得到固含量为18%的聚酰胺酸溶液,粘度为2600泊。(2)向聚酰胺酸溶液中加入1.925g超导炭黑和0.214g碳纳米管,利用高剪切分散机将其分散均匀得到黑色的混合溶液。(3)对混合溶液进行真空脱泡处理后,将其涂布到不锈钢板上,于160℃的鼓风干燥箱内干燥15min。将得到的凝胶膜剥离下来并固定在金属框架上,放入430℃的亚胺化炉中亚胺化4min,得到厚度为25μm的导电聚酰亚胺薄膜。实施例3:(1)在25℃的反应釜内,将18.021g(0.09mol)的4,4’-二氨基二苯醚和1.081g(0.01mol)的对苯二胺溶解于179g的n,n-二甲基乙酰胺(dmac)中,之后分三次分别将10.791g(0.0495mol)的均苯四甲酸二酐、14.682g(0.0499mol)的3,3’,4,4’-联苯四甲酸二酐、0.073g(0.0004mol)的均苯四甲酸二酐加入其中搅拌反应,其中相邻两次添加的间隔反应时间为30min,待第三次的均苯四甲酸二酐添加完后继续搅拌反应60min,得到固含量为20%的聚酰胺酸溶液,粘度为3500泊。(2)向聚酰胺酸溶液中加入3.572g超导炭黑和0.893g碳纳米管,利用高剪切分散机将其分散均匀得到黑色的混合溶液。(3)对混合溶液进行真空脱泡处理后,将其涂布到不锈钢板上,于180℃的鼓风干燥箱内干燥5min。将得到的凝胶膜剥离下来并固定在金属框架上,放入450℃的亚胺化炉中亚胺化3min,得到厚度为25μm的导电聚酰亚胺薄膜。将上述实施例1-3所制得的导电聚酰亚胺薄膜与市场上常规的聚酰亚胺薄膜进行性能检测比较,结果如表1所示。表1:性能拉伸强度模量断裂伸长率体积电阻率表面电阻率单位mpagpa%ω·cmω·cm2测试方法astm-d882astm-d882astm-d882astm-d257astm-d257实施例12432.9553.7×1072.0×108实施例22663.3656.8×1058.1×106实施例32723.2585.1×1033.4×104常规聚酰亚胺薄膜2603.56010151016由表1可以看出,通过本发明制得的导电聚酰亚胺薄膜的体积电阻率和表面电阻率比市场上常规的聚酰亚胺薄膜要低8个数量级以上,与此同时还保留了聚酰亚胺薄膜高强度、高模量等优点,充分满足了微电子抗静电封装材料的要求。上述的对实施例的描述是为便于该
技术领域
的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1