包括多层玻璃芯的集成电路器件衬底及其制造方法

文档序号:10614510阅读:574来源:国知局
包括多层玻璃芯的集成电路器件衬底及其制造方法
【专利摘要】公开的是用于集成电路(IC)器件的衬底实施例。衬底包括由结合在一起的两个或更多分立玻璃层构成的芯。可以在相邻的玻璃层之间设置独立的结合层以将这些层耦合在一起。衬底还可以包括多层玻璃芯相对侧上,或者可能在芯的一侧的构造结构。可以在衬底的两侧上形成导电端子,IC管芯可以与衬底一侧上的端子耦合。相对侧的端子可以与下一级部件,例如电路板耦合。一个或多个导体贯穿多层玻璃芯,一个或多个导体可以与设置于芯上的构造结构电耦合。描述并主张了其它实施例。
【专利说明】
包括多层玻璃芯的集成电路器件衬底及其制造方法[0001 ] 本申请是申请号为201080057189.8、申请日为2010年11月1日、发明名称为“包括 多层玻璃芯的集成电路器件衬底及其制造方法”的中国发明专利申请的分案申请。
技术领域
[0002]公开的实施例总体上涉及用于集成电路器件的衬底,更具体而言涉及具有多层玻璃芯的衬底。【背景技术】
[0003]集成电路(1C)管芯可以设置于封装中以支持管芯,还辅助在管芯和下一级的部件,例如母板、主板或其它电路板之间形成电连接。封装典型地包括衬底,管芯机械和电耦合到所述衬底上。例如,1C管芯可以通过倒装芯片布置中的互连阵列耦合到衬底,在互连周围以及管芯和衬底之间设置一层底部填充料。每个互连都可以包括管芯上的端子(例如,结合焊盘、铜柱或柱头凸块等),该端子电耦合(例如通过回流的焊料)到衬底上的配合端子 (例如,焊盘、柱、柱头凸块等)。或者,作为另一范例,可以通过一层管芯附着粘合剂将1C管芯附着到衬底,可以在管芯和衬底之间形成多个引线健合。
[0004]1C管芯设置于衬底的一侧,在衬底的相对侧上形成若干导电端子。衬底相对侧上的端子将用于形成与下一级的部件(例如电路板)的电连接,这些电连接可以用于向管芯输送功率并且向管芯传输输入/输出(I/O)信号以及传输来自管芯的输入/输出(I/O)信号。衬底相对侧上的导电端子可以包括阵列管脚、焊盘、焊点、柱、凸块等,这些端子可以电耦合至电路板或其它下一级的部件上的对应端子阵列。可以利用例如插座(和紧固机构)或通过回流焊工艺将封装衬底相对侧上的端子耦合到下一层的板。【附图说明】
[0005]图1A是示出了具有多层玻璃芯的衬底一个实施例的平面图的示意图。
[0006]图1B为示意图,示出了沿图1A的线B-B截取的图1A所示具有多层玻璃芯的衬底的截面立视图。
[0007]图1C为示意图,示出了图1B的一部分截面立视图,并且示出了具有多层玻璃芯的衬底的另一实施例。
[0008]图1D为示意图,示出了图1B的一部分截面立视图,并且示出了具有多层玻璃芯的衬底的另一实施例。
[0009]图1E为示意图,示出了图1B的一部分截面立视图,并且示出了具有多层玻璃芯的衬底的又一实施例。
[0010]图1F为示意图,示出了图1B的一部分截面立视图,并且示出了具有多层玻璃芯的衬底的再一实施例。
[0011]图1G为示意图,示出了图1B的一部分截面立视图,并且示出了具有多层玻璃芯的衬底的另一替代实施例。
[0012]图2为示意图,示出了包括具有多层玻璃芯的衬底实施例的集成电路组件的截面立视图。
[0013]图3为方框图,示出了形成具有多层玻璃芯的衬底的方法实施例。[〇〇14]图4A-4C为示意图,示出了图3方法的实施例。
[0015]图5为方框图,示出了形成多层玻璃芯的实施例。
[0016]图6A-6C为示意图,示出了图5方法的实施例。
[0017]图7为方框图,示出了形成多层玻璃芯的方法的另一实施例。[〇〇18]图8A-8J为示意图,示出了图7方法的实施例。
[0019]图9为方框图,示出了形成多层玻璃芯的方法的另一实施例。
[0020]图10A-10H为示意图,示出了图9方法的实施例。
[0021]图11为方框图,示出了形成多层玻璃芯的方法的又一实施例。[〇〇22]图12A-12E为示意图,示出了图11方法的实施例。
[0023]图13为方框图,示出了在多层玻璃芯的贯通孔中设置导电材料的方法实施例。 [〇〇24]图14A-14C为示意图,示出了图13方法的实施例。
[0025]图15为示意图,示出了制造多层玻璃板的方法实施例。
[0026]图16A-16E为示意图,示出了制造多层玻璃板的方法的另一实施例。【具体实施方式】
[0027]公开的是具有多层玻璃芯的衬底实施例。可以在多层玻璃芯的每一侧上设置一个或多个构造(build-up)层,电导体贯穿玻璃芯。多层玻璃芯可以包括若干结合在一起的分立玻璃层。可以通过粘合层将玻璃层结合在一起,粘合层可以包括有机材料。
[0028]下文描述了形成包括多层玻璃芯并具有贯穿芯厚度的导体的衬底的方法实施例以及形成多层玻璃芯的方法实施例。还公开了一种组件的实施例,该组件包括设置于有多层玻璃芯的衬底上并通过一组互连与衬底耦合的集成电路管芯。
[0029]如上所述,公开的实施例包括具有芯的衬底,芯由多层玻璃构成。根据一个实施例,术语“玻璃”是指非晶固体。可以用于所述实施例的玻璃材料的范例包括纯二氧化硅(例如,大约100 %的Si02)、苏打-石灰玻璃、硼-硅酸盐玻璃和铝-硅酸盐玻璃。不过,公开的实施例不限于基于二氧化硅的玻璃成分,公开的实施例也可以采用具有替代基础材料的玻璃 (例如,氟化物玻璃、磷酸盐玻璃、硫属玻璃等)。此外,可以将其它材料和添加剂的任意组合与二氧化硅(或其它基础材料)组合以形成具有期望物理性质的玻璃。这些添加剂的范例不仅包括上述碳酸钙(例如石灰)和碳酸钠(例如苏打),而且包括镁、钙、锰、铝、铅、硼、铁、铬、 钾、硫和锑,以及碳酸盐和/或这些和其它元素的氧化物。上述玻璃和添加剂仅仅是可应用于所公开实施例的很多种材料和材料组合的一些范例。此外,玻璃层或结构可以包括表面处理和/或涂层,以改善强度和/或耐用性,玻璃层或结构还可以被退火以降低内应力。
[0030]通常,如这里使用的,术语“玻璃”不指有机聚合物材料,它们可以是固态形式中的非晶体。不过,应当理解,根据一些实施例的玻璃可以包括碳作为材料成分之一。例如,苏打-石灰玻璃,以及这种玻璃类型的众多变化包括碳。[0031 ]玻璃一旦形成固体,就能够被软化并可能再熔化成液态。玻璃材料的“玻璃态转化温度”是这样的温度,低于该温度,玻璃的物理性质类似于固体性质,高于该温度,玻璃材料的行为像液体。如果玻璃充分低于玻璃转变温度,玻璃分子可能具有很小的相对迀移率。在玻璃接近玻璃转变温度时,玻璃可能开始软化并随着温度升高,玻璃最终将熔化成液态。于是,玻璃体可能被软化到足以能够操控主体形状的程度,允许在玻璃主体中形成孔或其它特征。
[0032]根据一个实施例,玻璃的“软化温度”是玻璃被软化到足以执行所公开实施例的程度的温度。例如,在一个实施例中,玻璃的软化温度是玻璃充分软,允许在玻璃中形成孔(或通孔)或其它特征的温度。玻璃转变和软化温度是玻璃的独特属性,但两种或更多种不同玻璃材料可能具有类似的玻璃转变和/或软化温度。此外,显然,特定玻璃的玻璃转变温度和软化温度可能未必是相同值。
[0033]现在参考图1A和1B,示出了衬底100的实施例,其具有由两个或更多层玻璃构成的芯150。图1A中示出了衬底100的平面图,而图1B中示出了沿图1A的线B-B截取的截面立视图。而且,在图1C到1G的每个中示出了具有多层玻璃芯的衬底100的各种替代实施例,图1C 到1G中的每个都在放大图中示出了图1B中由附图标记5总体标识的衬底100的部分。
[0034] 参考图1A和1B,衬底100包括由若干玻璃层157a、157b和157c构成的芯150。在一个实施例中,芯150还包括设置于玻璃层157a、157b、157c之间的结合层158a和158b(例如,层 158a设置于玻璃层157a、157b之间,等等)。衬底100包括第一侧102和大致平行于第一侧102 的相反第二侧104。衬底100的周边108在第一和第二侧102、104之间延伸。根据一些实施例, 衬底100的周边108大致为矩形,在一个实施例中,周边108的所有四边都基本相等,使得周边形成正方形。不过,应当指出,具有非矩形周边的衬底在所公开实施例的范围之内。在一个实施例中,衬底100的厚度介于〇.2mm和1.1mm之间。[〇〇35]多层玻璃芯150具有第一表面152和相对的第二表面154。在一个实施例中,第一和第二表面152、154大致彼此平行。玻璃芯150的周边158在第一和第二表面152、154之间延伸,在一些实施例中,玻璃芯的周边158大致对应于衬底的周边108。根据一个实施例,多层玻璃芯150可以具有50微米和800微米之间的厚度。个体玻璃层157a、157b、157c可以包括任何适当类型的玻璃。在一个实施例中,玻璃层157a-c包括同样的玻璃材料;不过,在其它实施例中,玻璃层157a-c的任一个可以包括与任何其它玻璃层的玻璃材料不同的玻璃材料。
[0036] 若干导体160通过多层玻璃芯150延伸。每个导体160设置于孔或通孔165中,每个导体160可以从第一表面152延伸到第二表面154。在其它实施例中,不过,一个或多个导体仅延伸通过部分芯厚度。根据一个实施例,导体160包括通过芯150形成的孔或通孔165,它们已经被导电材料填充。
[0037]导体160可以包括任何适当的导电材料,包括金属、合成材料和导电聚合物。适当的金属包括铜、锡、银、金、镍、铝和钨,以及这些和/或其它金属的合金。可以用于形成孔或通孔165的工艺包括,例如蚀刻、激光钻孔、压印和喷砂。可以通过任何适当工艺在孔或通孔 165中沉积导电材料以形成导体160,适当工艺例如是镀层技术(电镀或无电镀)、化学气相沉积(CVD)、物理气相沉积(PVD)或丝网印刷技术以及这些和/或其它工艺的任何组合。下文更详细描述了形成孔165和形成导体160的各实施例。[〇〇38]衬底100第一侧102上设置的是第一组导电端子120(参见图1A)。根据一个实施例, 第一组端子120布置成图案,以配合集成电路(1C)管芯上设置的对应端子阵列。图1A-1B中未示出1C管芯;不过,图1A中示出了管芯区域110,端子120位于这个管芯区域(有时称为管芯阴影区)中。端子120均可以包括任何适当类型的结构,其能够与1C管芯的端子形成电连接。例如,端子120可以包括由任何适当金属或金属组合(例如铝、铜、镍等)焊盘、柱、或柱头凸块,焊料凸块可以设置于每个端子120上(和/或1C管芯的端子上)。在一个实施例中,可以通过倒装芯片方式在衬底100上设置1C管芯,并通过焊料回流工艺将管芯上的端子与衬底 100上的端子120耦合。根据另一个实施例,可以通过一层粘合剂将1C管芯耦合到衬底100, 通过引线健合工艺将管芯上的端子电耦合至衬底上的对应端子(在本实施例中,端子120位于管芯区域110外部)。[〇〇39]衬底100第二侧104上设置的是第二组导电端子125(为了例示清楚和容易,图1A中仅示出了一部分)。根据一个实施例,第二组端子125布置成图案,以与设置于下一级部件 (例如,主板、母板或其它电路板(图中未示出))上的对应端子阵列配合。端子125均可以包括任何适当类型的结构,其能够与下一级部件的端子形成电连接。例如,端子125可以包括焊盘、焊点、焊料凸块或其它金属凸块或管脚。下一级部件可以包括插座(和紧固机构)以接收衬底100和端子125,例如平面栅格阵列(LGA)插座或针栅阵列(PGA)插座。或者,可以通过焊料回流工艺将端子125与下一级部件上的端子耦合。
[0040]芯150的第一表面152上设置的是第一构造结构130,芯的第二表面154上设置的是第二构造结构140。第一构造结构包括一个或多个交替层的电介质材料和金属,端子120设置于第一构造结构130上(第一衬底侧102—般对应于第一构造结构130的外表面)。多层玻璃芯150中导体160中的至少一个与第一构造结构130的至少一个金属层电耦合,在一个实施例中,与芯150最接近的第一构造结构的金属层与至少一个导体160耦合。类似地,第二构造结构140包括一个或多个交替层的电介质材料和金属,端子125设置于第二构造结构140 上(第二衬底侧104—般对应于第二构造结构140的外表面)。芯150中导体160中的至少一个与第二构造结构140的至少一个金属层电耦合,在一个实施例中,与芯150最接近的第二构造结构的金属层与至少一个导体160耦合。第一和第二构造结构130、140在第一和第二组端子120、125之间传输功率以及输入/输出(I/O)信号(因此,有助于在衬底100和下一级部件上安装的1C管芯之间输送功率和信号)。下文更详细地描述了构造结构130、140。
[0041]参考图1C,更详细地示出了多层玻璃芯衬底100的实施例。如前所述,衬底包括由玻璃层157a、157b和157c构成的芯150,芯具有第一表面152和相对的第二表面154。如上所述,结合层158a、158b设置于玻璃层157a-c之间。尽管图1A到1G中示出了三个玻璃层,但根据衬底100的期望机械和电气特性,芯150可以包括任意数量的玻璃层(例如两层、四层或更多层等)。玻璃层157a-c可以具有任何适当厚度,在一个实施例中,每个玻璃层的厚度介于大约50和200微米之间。而且,在一个实施例中,玻璃层157a-c都可以具有相同厚度(如图中所示),或者,玻璃层157a-c的任一个可以具有与其它玻璃层中的一个或多个不同的厚度。 结合层158a_b也可以具有任何适当厚度,在一个实施例中,每个结合层的厚度介于大约20 和100微米之间。根据一个实施例,结合层158a_b都可以具有相同厚度(如图中所示);不过, 在其它实施例中,结合层158a_b的任一个可以具有与其它结合层中的一个或多个不同的厚度。
[0042] 可以通过任何适当的技术将分立的玻璃层157a、157b、157c结合在一起。在一个实施例中,结合层158a、158b设置于玻璃层之间,这些层中的每个都与两个相邻玻璃层耦合 (例如,结合层158a与玻璃层157a和157b耦合,等等)。根据一个实施例,每个结合层158a、158b包括粘合剂,在另一实施例中,结合层158a、158b包括有机材料。在一个实施例中,每个结合层158a、158b包括干膜粘合材料,例如由丙烯酸树脂或环氧树脂构成的膜。不过,应当理解,公开的实施例不限于粘合结合,此外,可以不用粘合剂形成多层玻璃芯150。在一些实施例中,可以通过扩散结合将玻璃层157a-c连接在一起。例如,在一个实施例中,结合层 158a_b包括能够与层157a_c的玻璃材料形成扩散结合的材料(例如,结合层158a与玻璃层 157a和157b的每个形成扩散结合,等等)。或者,玻璃层157a-157c可以直接彼此扩散结合 (例如,玻璃层157a与玻璃层157b扩散结合,等等),在这种情况下,可以省去结合层158a_b。 在其它实施例中,可以将玻璃层157a_c机械连接在一起。例如,在一个实施例中,沉积于通孔165中的导电材料160可以用于将玻璃层158a-158c固定在一起。在另一实施例中,可以使用直接氧化物到氧化物结合将玻璃层157a-c固定在一起。[〇〇43] 根据一个实施例,第一构造结构130包括若干电介质材料层133a、133b、133c、133d 和若干金属层136a、136b、136c。电介质层133a-d可以包括任何适当的电介质材料(例如,聚合物材料等)并且可以通过任何适当技术(例如通过沉积、层压等)形成。金属层136a_c可以包括任何适当的导电金属(例如,铜、铝、银等),可以通过任何适当技术(例如,镀层工艺,例如电镀和无电镀)沉积。此外,可以对金属层136a_c均进行构图以形成任意适当数量和配置的迹线、电源层、接地层和其它导体,以有助于输送功率和I/O信号。[0〇44]电介质层133a_d之一设置于任何两个相邻金属层136a_c之间(例如,金属层136a 和136b被电介质层133b分开,等等),电介质层133a与芯150相邻并且将金属层136a与芯分开。根据一个实施例,电介质层133a与芯的第一表面152直接相邻。通孔139a、139b、139c被镀以或填充以金属,分别贯穿电介质层133a、133b、133c,并且互连相邻的金属层(例如,通孔139b互连金属层136a和136b,等等)。此外,最接近多层玻璃芯150的金属层136a通过设置于电介质层133a中的通孔139a与一个或多个导体160親合。在一个实施例中,芯150的第一表面152可以包括表面处理或涂层以增强与构造结构130的电介质材料的附着力。而且,在一些实施例中,最远的电介质层133d可以包括抗蚀剂层和/或钝化层。而且,根据一个实施例,端子120由最远的金属层136c形成或形成于其上。[〇〇45] 在一个实施例中,第二构造结构140包括若干电介质材料层143a、143b、143c、143d 和若干金属层146a、146b、146c。电介质层143a-d可以包括任何适当的电介质材料(例如,聚合物材料等)并且可以通过任何适当技术(例如通过沉积、层压等)形成。金属层146a_c可以包括任何适当的导电金属(例如,铜、铝、银等),可以通过任何适当技术(例如,镀层工艺,例如电镀和无电镀)沉积。此外,可以对金属层146a_c均进行构图以形成任意适当数量和配置的迹线、电源层、接地层和其它导体,以便于输送功率和I/O信号。[0〇46]电介质层143a_d之一设置于任何两个相邻金属层146a_c之间(例如,金属层146a 和146b被电介质层143b分开,等等),电介质层143a与芯150相邻并且将金属层146a与芯分开。根据一个实施例,电介质层143a直接与芯的第二表面154相邻。被镀以或填充以金属的通孔149a、149b、149c分别贯穿电介质层143a、143b、143c,并且互连相邻的金属层(例如,通孔149b互连金属层146a和146b,等等)。此外,最接近多层玻璃芯150的金属层146a通过设置于电介质层143a中的通孔149a与一个或多个导体160親合。在一个实施例中,芯150的第二表面154可以包括表面处理或涂层以增强与构造结构140的电介质材料的附着力。而且,在一些实施例中,最远的电介质层143d可以包括抗蚀剂层和/或钝化层。此外,在一个实施例中,端子125由最远的金属层146c形成或形成于其上。
[0047]在图1C的实施例中(以及图1D和1G的每个中所示的实施例),第一和第二构造结构具有相同数量的电介质和金属层,此外,具有大致相等的厚度。不过,公开的实施例不受这种限制,在其它实施例中,第一和第二构造结构可以具有不同厚度和/或不同数量的电介质和金属层。根据另一实施例,构造结构仅设置于多层玻璃芯150的一侧上。而且,在一些实施例中,第一和第二构造结构是由同样的电介质材料和金属构造的。在其它实施例中,不过, 第一和第二构造结构可以具有不同的材料。[〇〇48]在图1C的实施例中,电介质层133a和143a与多层玻璃芯150相邻,最接近芯的金属层(即,金属层136a和146a)由这些电介质层与芯分开。在替代实施例中,如图1D所示,金属层可以与多层玻璃芯150相邻。结合与芯150—侧或两侧相邻的金属层有时被称为“芯层布设(routing)’’。
[0049]参考图1D,衬底100的实施例大致类似于图1C中所示的实施例(由相同的附图标记标识类似特征)。不过,在图1D的实施例中,第一构造结构130包括与多层玻璃芯150相邻的金属层136x,根据一个实施例,金属层136x直接与芯的第一表面152相邻。电介质层133a覆盖金属层136x(和芯的暴露部分),这个金属层136x现在是最接近芯的金属层,导体160中的至少一个与金属层136x耦合。此外,在另一实施例中,芯150的第一表面152可以包括表面处理或涂层以增强与金属层136x(可能还有电介质层133a的部分)的附着力。
[0050]类似于第一构造结构130,图1D的第二构造结构140包括与多层玻璃芯150相邻的金属层146x,在一个实施例中,金属层146x直接与芯的第二表面154相邻。电介质层143a覆盖金属层146x(和玻璃芯的暴露部分),这个金属层146x现在是最接近芯的金属层,导体160 中的至少一个与金属层146x耦合。此外,在另一实施例中,芯150的第二表面154可以包括表面处理或涂层以增强与金属层146x(可能还有电介质层143a的部分)的附着力。在一些实施例中,芯的相对表面152、154中仅有一个具有相邻金属层(例如,分别可以省去第一和第二构造结构130、140中的金属层1361、1461的任一个)。[〇〇511现在参考图1E,示出了多层玻璃芯衬底100的另一实施例。图1E中所示衬底100的实施例大致类似于图1C中所示的实施例(由相同的附图标记标识类似特征)。不过,在图1E 的实施例中,设置每个导体160的孔或通孔165具有壁,在芯150的厚度上该壁呈锥形。在一个实施例中,孔或通孔165的锥形壁相对于孔中心线具有0和45度之间的角度。孔165的锥形壁可以是用于通过多层玻璃芯150形成孔的工艺造成的。如上所述,可以用于形成孔或通孔 165的工艺包括,例如蚀刻、激光钻孔、压印和喷砂。根据处理条件,上述技术的任一种可以形成具有锥形壁的孔165。应当理解,根据形成技术和工艺条件,通孔可以具有除图1E所示平直锥形壁之外的形状。例如,在其它实施例中,通孔的壁可以是弯曲的(例如,通孔可以具有扇形截面轮廓)。[〇〇52]接下来参考图1F,示出了多层玻璃芯衬底100的另一实施例。图1F中所示衬底100 的实施例大致类似于图1C中所示的实施例(由相同的附图标记标识类似特征)。不过,在图 1F的实施例中,设置每个导体160的孔或通孔165包括形成于分立玻璃层157a、157b、157c和结合层158a、158b的每个中的若干分立对准孔。例如,贯通孔165可以包括玻璃层157a中的通孔159a、结合层158a中的通孔159b、玻璃层157b中的通孔159c、结合层158b中的通孔159d 以及玻璃层157c中的通孔159e。通常,沿着公共的中心线对准这些分立的孔159a_e;不过,在一些实施例中,这些分立孔之间可能未对准。
[0053] 根据一个实施例,玻璃层中形成的通孔(例如,通孔159a、159c、159e,以及可能结合层158a、158b)可能具有在该玻璃层(或结合层)整个厚度上呈锥形的壁。在一个实施例中,通孔169的锥形壁相对于孔中心线具有0和45度之间的角度。通孔(例如,通孔159a-e)的锥形壁可以是形成工艺的结果。如上所述,可以用于通过玻璃层(并通过结合层)形成通孔的工艺包括,例如蚀刻、激光钻孔、压印和喷砂。根据处理条件,上述技术的任一种可以形成具有锥形壁的通孔。应当理解,根据形成技术和工艺条件,通孔可以具有除图1F所示平直锥形壁之外的形状。在其它实施例中,通孔的壁可以是弯曲的。例如,通孔可以具有扇形截面轮廓(例如,参见图8J)。[〇〇54]现在参考图1G,示出了多层玻璃芯衬底100的另一实施例。图1G中所示衬底100的实施例大致类似于图1C中所示的实施例(由相同的附图标记标识类似特征)。不过,在图1G 的实施例中,结合层158a、158b的任一个或多个可以包括导体。例如,结合层158a可以包括导体198a,结合层158b可以包括导体198b。导体198a、198b可以包括用于输送I/O信号和/或输送功率的迹线。此外,结合层158a、158b中的任一个或多个上的导体198a、198b可以包括电源层或接地层。导体198a、198b可以包括任何适当的导电材料,例如金属(例如,铜、镍、 铝、银、金,以及这些和/或其它金属的合金)、导电聚合物或复合材料。而且,尽管图1G中的结合层158a、158b包括导体,但在其它实施例中,并非所有结合层都包括导体。[〇〇55]图2中示出了包括多层玻璃芯衬底100的组件200的实施例。参考图2,组件200包括具有多层玻璃芯150以及第一侧102和相对第二侧104的衬底100。衬底第一侧102上设置的是集成电路(1C)管芯2HLIC管芯210通过若干互连220与衬底100电(和机械)耦合。衬底第二侧1〇4(参见图1A)上的端子125(例如,焊点、管脚、焊料凸块等)可以用于形成与下一级部件,例如母板、主板或其它电路板的电连接。热扩散器或盖230具有第一表面232以及面对管芯背表面215的相对第二表面234,其设置于管芯210上并且通过一层热界面材料240与管芯的背表面215热耦合(可能机械耦合)。可以使用粘合剂或密封剂290将热扩散器230固定到玻璃芯的第一表面102。尽管图2中未不出,但在另一实施例中,热沉(或其它冷却装置)可以与热扩散器230热耦合,另一层热界面材料可以设置于热扩散器的第一表面232和热沉(或其它装置)之间。
[0056] 1C管芯210可以包括任何类型的半导体器件。在一个实施例中,1C管芯210包括处理系统或器件。例如,1C管芯210可以包括微处理器或图形处理器。1C管芯210能够执行来自具有任意数量指令格式的任意数量处理器架构的指令。在一个实施例中,指令是“x86”指令,如Intel Corporat1n所用的。不过,在其它实施例中,处理器可以执行来自其它架构或其它处理器设计者的指令。在另一实施例中,1C管芯210包括存储装置。根据另一实施例,1C 管芯210包括片上系统(SoC)。在又一实施例中,1C管芯210可以包括数字电路、模拟电路或模拟和数字电路的组合。[〇〇57] 通过例如用焊料回流工艺将衬底第一表面102上的端子120(参见图1A)与1C管芯 210上的端子耦合来形成互连220。如前所述,衬底端子120均可以包括由任何适当金属或金属组合(例如铝、铜、镍等)形成的焊盘、柱、或柱头凸块,管芯端子也可以包括由任何适当金属或金属组合形成的焊盘、柱、或柱头凸块。焊料(例如,形式为球或凸块)可以设置于衬底和/或管芯端子上,然后可以利用焊料回流工艺将这些端子连接起来。应当理解,上述互连仅仅是可以在衬底100和1C管芯210之间形成的互连类型的一个范例,此外,可以使用任何其它适当类型的互连。此外,可以在互连220周围和1C管芯210与衬底第一侧102之间设置一层底部填充材料(图2中未示出)。[〇〇58]热扩散器230可以由任何适当的导热材料构成并且可以具有任何适当形状或结构。根据一个实施例,热扩散器230包括具有侧壁(或壁)237的盖,侧壁(或壁)向衬底第一侧 102延伸,这个壁(或壁)由粘合剂290固定到衬底表面102。有时将上述盖称为集成热扩散器或IHS。可用于构造热扩散器230的材料包括金属(例如铜及其合金)、导热合成物和导热聚合物。[〇〇59] 在图2所示的实施例中,组件200包括单个1C管芯210。不过,在其它实施例中,组件 200可以包括多芯片封装。例如,可以在衬底100上设置一个或多个其它集成电路管芯(例如存储装置、调压器等)。此外,诸如电容器和电感器的无源器件可以设置于玻璃芯衬底100 上,或者,集成到衬底的构造结构130、140中。例如,可以将阵列电容器或薄膜电容器集成到衬底100的构造结构130、140中。在另一实施例中,诸如天线或RF屏蔽的无线部件可以设置于玻璃芯衬底1〇〇上,或者,集成到这个衬底的构造结构130、140中。这些额外的装置,无论是1C管芯还是无源器件或其它部件,都可以设置于玻璃芯衬底100的任一侧102、104上。
[0060]组件200可以形成任何类型的计算装置。根据一个实施例,组件200可以形成服务器或台式计算机的一部分。在另一实施例中,组件200形成膝上计算机或类似移动计算装置 (例如,上网计算机)的一部分。在又一实施例中,组件200包括手持计算装置,例如手机、智能电话或移动因特网装置(MID)的一部分。在另一实施例中,组件200形成嵌入式计算装置的一部分。
[0061]图3中示出了制造多层玻璃芯衬底的方法的实施例。在图4A-4C中进一步示出了图 3的方法,在下文中提到时应当参考这些图。
[0062]参考图3中的方框310,在一个实施例中,提供了具有一个或多个贯通孔的多层玻璃芯。在图4A中示出了这种情况,其中示出了芯450。多层玻璃芯450可以包括前面描述且在图1A到1G中示出的芯150的任何实施例。多层玻璃芯450包括通过结合层458a、458b固定在一起的分立玻璃层457&、45713、457〇,所述芯包括第一表面452以及大致与第一表面452平行的相对第二表面454。孔或通孔465从第一表面452延伸到第二表面454。根据应用和/或期望的特性,芯450的玻璃层457a-c可以包括任何适当类型的玻璃,具有任何适当厚度(参见上文所述)。根据一个实施例,芯450的尺寸和构造能够形成单个衬底。在另一实施例中,芯450 的尺寸和构造能够形成两个或更多衬底(例如,芯450包括面板,将从其切割出两个或更多衬底)。在图5、7、9和11的每个中示出了形成具有一个或多个贯通孔的多层玻璃芯,例如芯 450的方法的各实施例,下文将更详细地描述这些实施例。[〇〇63]参考方框320,在贯通孔中设置导电材料以形成导体。图4B中示出了这种情况,其中已经在孔465中设置了导电材料以形成导体460。[〇〇64] 可以通过任何适当工艺在通孔465中沉积导电材料460,适当工艺例如是镀层技术 (电镀或无电镀)、CVD、PVD或丝网印刷技术以及这些和/或其它工艺的任何组合。形成芯450 中导体460的材料可以包括任何适当的导电材料,包括金属、合成材料和导电聚合物。适当的金属包括铜、锡、银、金、镍、铝和钨,以及这些和/或其它金属的合金。
[0065]在图13中示出了在多层玻璃芯的贯通孔中形成导体的方法的一个实施例,现在将加以论述。在图14A到14C的示意图中进一步示出了图13的方法实施例,在下文中提到时应当参考图13和14A-14C。[〇〇66]现在参考图13中的方框1305,在多层玻璃芯中贯通孔的壁上方设置种子层或粘附层。在图14A中进一步示出了这种情况,图14A示出了芯1450。芯1450包括通过结合层1458a、 1458b、1458c耦合在一起的玻璃层1458a、1458b、1458c、1458d(例如,结合层1458a耦合到玻璃层1457a和1457b两者,等等)。贯通孔1465从芯的第一表面1452贯穿芯1450到达第二相对表面1454。可以通过任何适当的方法或方法组合,例如蚀刻、激光钻孔、压印和喷砂来形成孔1465。贯通孔1465的壁上设置的是种子层1466。应当指出,在其它实施例中,可以在种子层1466之前沉积一个或多个其它材料层。例如,在沉积种子层1466之前,可以在贯通孔1465 的壁上沉积电介质层(例如,为了实现期望的电容,实现期望的电隔离等)。[0〇67] 将在种子层1466上沉积下一层金属,种子层1466可以包括能够粘附到层1457a_d 的玻璃材料(和结合层1457a-c的材料)并且粘附到要沉积的下一层金属的任何材料。适当的种子层材料包括铜、钛、铬、镍或钒,以及这些和/或其它金属的合金。此外,可以利用任何适当技术沉积种子层1466,包括无电镀、电镀、CVD或PVD。在一个实施例中,采用毯式沉积技术,种子层1466可以在芯1450的第一和第二表面1452、1454上延伸,如图14A所不。种子层 1466可以具有任何适当厚度,在一个实施例中,这一层的厚度介于0.1微米和0.5微米之间。 [〇〇68]如方框1315中所述,在种子层上方设置金属。在图14B中示出了这种情况,其中已经在种子层1466上方设置了金属层1467。金属层1467可以包括任何适当的导电金属,例如铜、铝、镍、银或金,以及这些和/或其它金属的合金。可以利用任何适当技术沉积金属层 1467,包括无电镀、电镀、CVD或PVD。在一个实施例中,采用毯式沉积技术,金属层1467可以在芯1450的第一和第二表面1452、1454上延伸,如图14B所示。金属层1467可以具有任何适当厚度,在一个实施例中,这一层的厚度介于5微米和30微米之间。在另一实施例中,种子层 1466上沉积的金属1467依次填充贯通孔1465。[〇〇69]接下来参考方框1325,在金属层上沉积电介质材料以填充贯通孔。在图14C中示出了这种情况,其中在金属层1467上设置电介质材料1468以填充每个孔1465的内部空隙。电介质材料1468可以包括任何适当材料,在一个实施例中,电介质材料1468包括有机材料。此夕卜,可以利用任何适当技术沉积电介质材料1468,例如丝网印刷、CVD或PVD。不过,同样,金属层1467可以基本填充贯通孔1465,在这种情况下,可以省去电介质材料。在另一实施例中,如图14C所示,可以从芯1450的第一和第二表面1452、1454去除过多的种子层1466和过多的金属层1467。例如,可以通过研磨工艺、化学机械抛光技术或蚀刻工艺从表面1452、 1454去除过多的种子层和金属层。
[0070]现在返回图3,具体而言是方框330,在多层玻璃芯的每一侧(可能仅一侧)上设置一个或多个构造层,以生成构造结构,如前所述。在图4C中示出了这种情况,其中已经在芯 450的第一表面452上形成了第一构造结构430,在芯的第二表面454上形成了第二构造结构 440。每个构造结构430、440可以包括任意适当数量的交替电介质材料和金属层(例如一个或多个),它们可以通过任何适当技术形成。参考图1B到1G和伴随的以上文字更详细地描述这种构造结构的结构和形成。在一个实施例中,导体460中的至少一个与最接近芯450的第一构造结构430的金属层电耦合,在另一实施例中,导体460中的至少一个与最接近芯的第二构造结构440的金属层电耦合。多层玻璃芯450和构造结构430、440的组合可以包括用于集成电路器件的衬底400。
[0071] 现在参考图3中的方框340,可以在衬底上形成导电端子(在图4A-4C中未示出端子)。可以在第一构造结构430上形成第一组端子,可以在第二构造结构440上形成第二组端子。参考图1A到1G和伴随的以上文字更详细地描述这种端子的结构和形成。[〇〇72] 如上所述,在一个实施例中,多层玻璃芯450以及第一和第二构造结构430、440包括与两个或更多衬底对应的结构和特征。在本实施例中,将会把芯450(具有构造结构430、 440)分散到这些分立衬底中(在形成端子之前或之后)。
[0073]现在参考图5,示出了形成具有一个或多个贯通孔的多层玻璃芯的方法实施例。在图6A到6C的示意图中进一步示出了图5中所示的方法实施例,在下文中提到时应当这些图。
[0074]参考图5中的方框510,提供多层玻璃板。在图6A中示出了这种情况,其中示出了多层玻璃板605。玻璃板605包括通过结合层658a、658b、658c附着在一起的若干玻璃层657a、 657b、657c、657d(例如,结合层658a与玻璃层657a和657b耦合,等等)。多层玻璃板605还包括在第一表面652和第二表面654之间延伸的周边651。根据一个实施例,多层玻璃板605可以具有50微米和800微米之间的厚度。在一个实施例中,多层玻璃板的尺寸和构造能够形成单个衬底芯。在另一实施例中,板605的尺寸和构造能够形成两个或更多衬底芯(例如,板 605包括面板,将从其切割出两个或更多衬底芯或两个或更多衬底)。[〇〇75] 个体玻璃层657a_d可以包括任何适当类型的玻璃。在一个实施例中,玻璃层657a-d包括同样的玻璃材料;不过,在其它实施例中,玻璃层657a_d的任一个可以包括与任何其它玻璃层的玻璃材料不同的玻璃材料。尽管图6A到6C中示出了四个玻璃层,但根据要由板 605形成的芯(或多个芯)的期望机械和电气特性,板605可以包括任意适当数量的玻璃层 (例如两层、三层、五层或更多层等)。玻璃层657a_d可以具有任何适当厚度,在一个实施例中,每个玻璃层的厚度介于大约50到200微米之间。而且,在一个实施例中,玻璃层657a-d都可以具有相同厚度(如图中所示),或者,玻璃层657a-d的任一个可以具有与其它玻璃层中的一个或多个不同的厚度。[0〇76]结合层658a_c也可以具有任何适当厚度,在一个实施例中,每个结合层的厚度介于大约20到100微米。根据一个实施例,结合层658a-c都可以具有相同厚度(如图中所示); 不过,在其它实施例中,结合层658a_c的任一个可以具有与其它结合层中的一个或多个不同的厚度。[〇〇77] 可以通过任何适当的技术将分立的玻璃层657&、65713、657〇、657(1结合在一起。在一个实施例中,如图中所示,结合层658a、658b、658c设置于玻璃层之间,这些层中的每个都与两个相邻玻璃层耦合(例如,结合层658a与玻璃层657a和657b耦合,等等)。根据一个实施例,每个结合层658a-c包括粘合剂,在另一实施例中,结合层包括有机材料。在一个实施例中,每个结合层658a-c包括干膜粘合材料,例如由丙烯酸树脂或环氧树脂构成的膜。
[0078]现在将参考图15和图16A到16E描述利用粘合结合层耦合多个玻璃层的各种方法。 不过,首先应当理解,公开的实施例不限于粘合结合,此外,可以不用粘合剂形成多层玻璃板605(因此,形成由这个板形成的芯)。例如,如前所述,在其它实施例中,可以利用直接氧化物到氧化物结合、扩散结合(相邻玻璃层之间有或没有中间层)耦合多个玻璃层,或者可以通过机械方式(例如,通过沉积于延伸通过板605的贯通孔中的材料)以及通过这些和/或其它技术的任意组合来固定这些玻璃层。
[0079]参考图15,在一个实施例中,利用乳辊层压工艺形成多层玻璃板。在图15的实施例中,以连续的方式在乳辊1501和1502之间将玻璃片的第一源1511a、粘附膜的第一源1512a、 玻璃片的第二源1511b、粘附膜的第二源1512b和玻璃片的第三源1511c压在一起,以形成多层玻璃层压体1503。如图所示,多层玻璃层压体包括通过粘合层1558a和1558b耦合在一起的分立玻璃层1557a、1557b和1557c。可以通过粘合层将任意适当数量的玻璃片连接在一起以形成玻璃层压体1503。然后可以将玻璃层压体1503切割成任何适当长度,以形成一个或多个多层玻璃板(例如,具有由三个粘合层耦合在一起的四个玻璃层的板605,等等)。
[0080]现在参考图16A到16E,在另一实施例中,通过在可移除载体上进行层压来形成多层玻璃板。如图16A所示,通过可释放的粘合剂1604将第一玻璃层1657a粘附到可移除载体 1602。在一个实施例中,可释放粘合剂1604包括在暴露于紫外(UV)光时降解的粘合材料。在另一个实施例中,可释放粘合剂1604包括在暴露于溶剂时降解的粘合材料。如图16B所示, 第一粘合层1658a设置于玻璃层1657a上方。在一个实施例中,粘合层1658a包括干膜粘合剂,在另一实施例中,粘合层1658a包括液体粘合剂,在玻璃层1657a上喷洒或印刷液体粘合剂,然后进行固化。参考图16C,然后在第一粘合层1658a上设置第二玻璃层1657b,重复上述过程。例如,如图16D中所示,第二粘合层1658b(作为干膜或液体施加)设置于玻璃层1657b 上方,第三玻璃层1657c设置于这一第二粘合层上方。如图16E所示,通过降解可释放粘合剂 1604(例如,通过施加紫外光,通过施加溶剂等)释放载体1602,留下独立的多层玻璃板 1605〇[0081 ]现在返回图5,如方框520中所述,在多层玻璃板上设置并且构图掩模层。在图6A中也示出了这种情况,其中已经在板605的第一表面652上方设置了掩模层680。此外,对掩模层680进行构图以形成开口 685。掩模层680可以包括能够粘附到层657a的玻璃材料且也能够进行构图的任何材料。例如,掩模层680可以包括光致抗蚀剂材料,可以通过光刻和蚀刻技术对其进行构图。此外,掩模层680包括能够经得起接下来去除玻璃层和结合层的一部分 (例如湿法蚀刻工艺)的材料。
[0082]如方框530中所述,通过所有玻璃层以及结合层形成孔。在图6B中示出了这种情况,其中已经在对应于掩模层680中的开口 685的位置形成了贯通孔665。孔665贯穿所有玻璃层657a-d和所有结合层658a-c。不过,在其它实施例中,一个或多个孔665可以仅贯穿板厚度的一部分。根据一个实施例,利用将去除玻璃和结合层的蚀刻化学试剂(或化学物质) 通过湿法蚀刻工艺(或多种工艺)形成通孔665。例如,能够去除玻璃的蚀刻剂可以包括包含氢氟酸(HF)的溶液,或者,可以采用氧化物蚀刻或缓冲氧化物蚀刻。能够去除结合层658a-c 的材料的蚀刻剂可以包括包含适当溶剂的溶液。在另一实施例中,可以通过干法蚀刻工艺 (例如,包括氟碳气以去除玻璃的蚀刻剂和包括氧和/或氢以去除结合层的蚀刻剂)形成通孔665。在形成贯通孔665之后,如方框540中所述和图6C中所不,从多层玻璃板去除掩模层 680 〇
[0083] 在图5的实施例(以及图7、9和11的实施例)中,利用蚀刻工艺(或多种工艺)在各玻璃和结合层材料中形成通孔。不过,应当指出,公开的实施例不限于通过蚀刻形成孔,此外, 可以使用其它工艺来在多层芯中形成贯通孔和/或在任何个体玻璃或结合层中形成通孔。 例如,可以通过在玻璃已经升高到软化温度的同时通过压印工艺在玻璃层中形成通孔。作为另一范例,可以通过喷砂在玻璃或结合层中形成通孔。
[0084]接下来参考图7,示出了制造具有一个或多个贯通孔的多层玻璃芯的方法另一实施例。在图8A到8J的示意图中进一步示出了图7中所示的方法实施例,在下文中提到时应当参考这些图。
[0085]参考图7中的方框710,提供多层玻璃板。在图8A中示出了这种情况,其示出了具有第一表面852和相对第二表面854的多层玻璃板805。板805包括由结合层858a、858b和858c 耦合在一起的独立玻璃层857a、857b、857c和857d。多层玻璃板805可以类似于多层玻璃板 605(参见图6A、15和16,以及上面伴随的文字)。[〇〇86]如方框720中所述,在多层玻璃板上设置并且构图掩模层。在图8A中也示出了这种情况,其中已经在板805的第一表面852上方设置了掩模层880。此外,对掩模层880进行构图以形成开口 885。掩模层880可以包括能够粘附到层857a的玻璃材料且也能够进行构图的任何材料。例如,掩模层880可以包括光致抗蚀剂材料,可以通过光刻和蚀刻技术对其进行构图。此外,掩模层880包括能够经得起接下来去除玻璃层和粘合层的一部分(例如湿法蚀刻工艺)的材料。[〇〇87]如方框730中所述,在玻璃层之一中形成孔或通孔。在图8B中示出了这种情况,其中已经在玻璃层857中对应于掩模层880中的开口 885的位置形成了通孔891。根据一个实施例,利用将去除玻璃层857a的蚀刻化学试剂通过湿法蚀刻工艺形成通孔891。在另一实施例中,可以利用干法蚀刻工艺在玻璃中形成通孔。用于玻璃的适当蚀刻剂的范例如上所述。 [〇〇88]如方框740中所述,在先前已经形成孔的玻璃层上设置保护层。在图8C中示出了这种情况,其中已经在玻璃层857a中形成的通孔891的壁上设置了保护层871。将在结合层和其它玻璃层中形成额外的通孔,以在板605中形成贯通孔,保护层871的功能是防止或基本禁止在形成这些其它通孔期间(例如,在结合层和其它玻璃层上的后续蚀刻过程期间)去除玻璃层857a的材料。保护层871可以包括能够经得起上述后续通孔形成工艺的任何材料,例如,有机材料(例如,苯并环丁烯、特氟隆、聚酰亚胺等)、金属(例如铂或金)、金属氧化物或氮化硅。此外,可以利用任何适当的技术,例如原子层沉积(ALD)或CVD在孔891的壁上沉积保护层871。在一个实施例中,通过对玻璃有选择性的工艺沉积保护层871。在另一实施例中,使用非选择性毯式沉积工艺沉积保护材料,接下来利用各向异性工艺从通孔底部去除保护材料。[〇〇89]如方框750中所述,在结合层之一中形成孔或通孔。在图8D中示出了这种情况,其中已经在结合层858a中对应于掩模层880中的开口 885的位置形成了通孔892。每个孔892大致相对于玻璃层857a中的上方孔891对准(例如,孔891和892的中心线大致重合)。根据一个实施例,通过湿法蚀刻工艺形成通孔892,在另一实施例中,可以利用干法蚀刻工艺形成通孔892。用于结合层材料的适当蚀刻剂的范例如上文所述。
[0090]如图7中所示,根据需要,重复前述步骤,以通过多层玻璃板形成孔。于是,再次参考方框730,在下一玻璃层中形成孔。在图8E中示出了这种情况,其中已经在玻璃层857b中形成了孔893。可以如上所述形成孔893,这些孔大致与先前形成的通孔891和892对准(例如,孔891、892、893的中心线大致重合)。如方框740中所述,在形成孔的玻璃层上设置保护层。在图8F中示出了这种情况,其中已经在玻璃层857b中先前形成的孔893的壁上设置了保护层873。如上所述,保护层873类似于保护层871。参考方框750,然后在下一结合层中形成孔或通孔。在图8G中示出了这种情况,其中已经在结合层858b中形成了孔894,其中孔894大致与先前形成的通孔891到893对准。[〇〇91] 如果需要,可以重复上文结合方框730、740和750描述的孔形成过程以形成通过多层玻璃板805延伸的孔。在图8H中示出了这种情况,其中在玻璃层857c中已经形成了孔895, 在结合层858c中已经形成了孔896,在玻璃层858d中已经形成了孔897。应注意,在玻璃层 857c中的孔895的壁上沉积保护层875,保护层875类似于上述保护层871。在与掩模层880中的开口 885对应的位置处已经形成了所有孔891到897,这些孔彼此之间大致对准(例如,孔 891到897的中心线大致重合)。
[0092]在完成孔的形成时,如方框760中所述,移除掩模层和保护层。在图81中示出了这种情况,其中已经移除了掩模层880和保护层871、873和875。现在,若干孔865从板的第一表面852贯穿多层玻璃板805延伸到第二相对表面854。每个贯通孔865包括形成于玻璃层 857a-d和结合层858a-c中的一系列孔891、892、893、894、895、896和897。可以将孔或通孔的纵横比定义为通孔的长度(或深度)除以通孔的最大直径。图7和8A-8I中描述的过程一个优点是能够获得纵横比大的板805中的贯通孔。例如,在一个实施例中,多层玻璃板805中的贯通孔865可以具有大约2到6范围中的纵横比。[〇〇93] 在图8A-8I的实施例中,通孔891、893、895和897的每个都具有在其相应玻璃层 857a、857b、857c和857d的厚度上大致呈平直锥形的截面轮廓。不过,如上所述,形成于玻璃层(或结合层)中的通孔形状可以根据制造技术(例如湿法蚀亥U、干法蚀亥U、激光钻孔等)以及工艺特性而变化。在其它实施例中,例如,形成于玻璃层857a-d之一(或结合层858a-c之一)中的通孔可以具有弯曲形状。例如,如图8J所示,通孔891、893、895和897可以具有扇形的截面轮廓。可以在这样的扇形通孔中结合任何公开的实施例。此外,公开的实施例不限于这样的扇形形状,但应当理解通孔可以具有任何适当的形状或轮廓。[〇〇94]接下来参考图9,示出了制造具有一个或多个贯通孔的多层玻璃芯的方法另一实施例。在图10A到10H的示意图中进一步示出了图9中所示的方法实施例,在下文中提到时应当参考这些图。[〇〇95]参考图9中的方框910,在第一玻璃层上设置掩模层并且进行构图。在图10A中示出了这种情况,其中已经在玻璃层1057a上设置了掩模层1080a。已经对掩模层1080a构图以形成开口 1085a。如方框920中所述,在第一玻璃层中形成孔。在图10B中示出了这种情况,其中已经在玻璃层1057a中对应于掩模层1080a中的开口 1085的位置形成了通孔1091。如在图9 的方框930中所述,将第二玻璃层结合到第一玻璃层以形成两层结构。在图10C中示出了这种情况,其中已经通过结合层1058将第二玻璃层1057b与玻璃层1057a耦合。参考方框940, 在第二玻璃层上设置掩模层并且进行构图。在图10D中示出了这种情况,其中已经在玻璃层 1057b上设置了掩模层1080b并且进行构图以形成开口 1085b。如方框950中所述,然后在第二玻璃层和结合层中形成孔。在图10E中示出了这种情况,其中已经在玻璃层1057b中形成了孔1093,已经在结合层1058中形成了孔1092。孔1091、1092、1093大致对准(例如,这些孔的中心线大致重合)。如方框960中所述,去除掩模层。在图10F中示出了这种情况,其中已经去除了掩模层1080a、1080b,留下具有贯通孔1065的两层结构1008,每个贯通孔1065包括一系列对准的孔1091、1092、1093。可以通过任何前述技术形成孔1091、1092、1093,此外,可以通过任何上述方法将玻璃层1057a、1057b连接在一起。[〇〇96]可以将图10F的两层结构1008用作衬底中的多层玻璃芯(例如,作为芯150,或作为芯450)。或者,两层结构1008可以包括面板,所述面板可以形成多个衬底。不过,在另一实施例中(参见方框970),可以将这些两层结构中的两个或更多个结合在一起以形成多层玻璃芯(或面板,从其可以形成多个衬底)。例如,在图10G中示出了这种情况,其中将第一两层结构1008a与第二两层结构1008b耦合。如上所述,每个两层结构包括由结合层1058与第二玻璃层1057b耦合的第一玻璃层1057a。额外的结合层1058x耦合第一和第二两层结构1008a、 1008b以形成具有贯通孔1065的多层玻璃芯1005。每个贯通孔1065都包括形成于结合层 1058x中的孔1094x。在一个实施例中,在结合两层结构1008a、1008b之前事先形成结合层 1058x中的孔1094x,在另一实施例中,在结合这些两层结构(例如,通过蚀刻或其它适当的工艺)之后形成孔l〇94x。
[0097]在替代实施例中,如在方框980中所述,在第一玻璃层上设置保护层(可以省去第二掩模层1080b)。在图10H中示出了这种情况,其中已经在第一玻璃层1057a中形成的通孔 1091的壁上沉积了保护层1071。然后可以利用掩模层1080a和这层的开口 1085a形成分别在结合层和玻璃层l〇58、1057b中的孔1092和1093。保护层1071可以类似于上述保护层871。在形成孔892、893之后,像掩模层1080a那样,去除保护层1071(参见方框960)。可以将图10H的两层结构1008用作多层玻璃芯(例如,作为芯150,或作为芯450),或者可以将这个两层结构与两个或更多额外的两层结构耦合(例如,参见图10G)。
[0098]现在参考图11,示出了形成具有一个或多个贯通孔的多层玻璃芯的方法的又一实施例。在图12A到12E的示意图中进一步示出了图11中所示的方法实施例,在下文中提到时应当参考这些图。
[0099]参考图11中的方框1110,在第一玻璃层上设置掩模层并且进行构图。在图12A中示出了这种情况,其中已经在玻璃层1257a上设置了掩模层1280并且对掩模层1280进行构图以形成开口 1285。如方框1120中所述,在第一玻璃层中形成孔。在图12A中还示出了这种情况,其中已经在玻璃层1257a中对应于掩模层1280中的开口 1285的位置形成了通孔1291。如图11的方框1130中所述,将另一玻璃层结合到第一(或在先的)玻璃层。在图12B中示出了这种情况,其中已经通过第一结合层1058a将第二玻璃层1257b与玻璃层1257a耦合。参考方框 1240,在第一(或在先)玻璃层上设置保护层。还在图12B中示出了这种情况,其中已经在第一玻璃层1257a中形成的孔1291的壁上设置了保护层1271。保护层1271可以类似于上述保护层871。如方框1150中所述,然后在结合层和下一玻璃层中形成孔。在图12C中示出了这种情况,其中已经在结合层1258a中形成了孔1292,并且已经在第二玻璃层1257b中形成了孔 1293〇[〇1〇〇] 如果需要,然后可以重复上文结合方框1130、1140和1150描述的过程,以形成具有任何期望数量玻璃层的多层玻璃芯。例如,如图12D所示,已经通过第二结合层1258b将额外的玻璃层1257c结合到第二玻璃层1257b,已经在结合层1258b中形成孔1294,已经在玻璃层 1257c中形成孔1295。应注意,在玻璃层1257c中形成孔1295之前在第二玻璃层1257b(参见方框1140)中的孔1293的壁上设置保护层1273。[〇1〇1]如方框1160中所述,一旦已经实现了期望数量的玻璃层,就能够移除掩模层和保护层。在图12E中示出了这种情况,其中已经移除了掩模层1280和保护层1271和1273。剩下了具有贯通孔1265的多层玻璃芯1205。每个贯通孔包括大致对准的一系列孔1291、1292、 1293、1294和1295(例如,这些孔的中心线大致重合)。可以通过任何前述技术形成孔1291、1292、1293、1294、1295,此外,可以通过任何上述方法将玻璃层1257a-c连接在一起。在替代实施例中,多层玻璃结构1205包括面板,从其可以形成多个衬底。根据另一实施例,可以省去玻璃上的保护层(参见图11的左侧的虚线)。[〇1〇2]此时,应当指出,这些图是示意图,提供其作为理解公开实施例的辅助,不应从附图推想出任何不必要的限制。在一些情况下,为了例示清楚和容易,示出了较小数量的特征。例如,图中所示延伸通过多层玻璃芯(或多层玻璃板)的导体160、460(或孔665、865、 1065、1265、1465)的数量可以显著少于实践中可以设置于这种衬底芯中的导体(或贯通孔) 数量。而且,附图可能未按比例绘制,在一些情况下,省去了线条(例如隐藏线)以容易理解。
[0103]玻璃材料可以具有大约3.2ppm的CTE,尽管CTE值取决于温度,也将取决于任何特定玻璃材料的组成。娃可以有大约2.6ppm的CTE,同样取决于温度。通常用于构造封装衬底和电路板中的基于有机聚合物的材料可以具有大约12或更大的CTE(同样,值取决于温度和组成)。尽管如上所述,物质的CTE取决于温度和组成,但与基于聚合物的衬底材料相比,使用多层玻璃芯衬底显著减小了硅管芯和下方衬底之间的CTE失配。此外,玻璃可以具有大约 75GPA的模量E,而常用的基于有机聚合物的材料可以具有大约25GPA的模量(E的值也取决于物质的组成)。于是,多层玻璃芯衬底可以实现模量的三倍增大,在一些实施例中可以实现衬底弯曲对应三倍减小的可能。玻璃的另一个优点是可以比普通聚合物材料制造得平面性更一致。[〇1〇4] CTE失配和弯曲的上述减小可以实现使用管芯到封装互连的更小间距,以及更大数量的这些互连,实现增强的I/O容量。例如,在一个实施例中,在使用多层玻璃芯衬底时, 可以针对管芯到封装互连实现50微米或更小的间距。大的衬底弯曲可能导致芯片附着工艺期间管芯到封装互连的非接触开放故障,并且导致管芯自身之内(例如,管芯的层间电介质层或ILD层之内)的高应力,两者都可能导致可靠性更低。于是,公开的多层玻璃芯衬底能够实现更高的I/O封装,同时,维持或改善可靠性。
[0105]以上详细描述和附图仅仅是例示性的,而非限制性的。提供它们主要是为了清晰而全面地理解公开的实施例,从其中不应理解为任何不必要的限制。本领域的技术人员可以想到对这里所述的实施例进行各种添加、删除和修改以及替代布置而不脱离所公开实施例的精神和所附权利要求的范围。
【主权项】
1.一种衬底,包括:包括若干分立玻璃层的芯,所述芯具有第一表面和相对的第二表面;从所述第一表面到所述第二表面穿过所述芯延伸的若干导体;设置于所述芯的所述第一表面的至少一个电介质层和至少一个金属层,其中所述第一 表面的所述至少一个金属层与所述导体中的至少一个电耦合;设置于所述芯的所述第二表面的至少一个电介质层和至少一个金属层,其中所述第二 表面的所述至少一个金属层与所述导体中的至少一个电耦合。2.根据权利要求1所述的衬底,其中通过结合层将所述若干分立玻璃层耦合在一起,其 中所述结合层之一设置于相邻玻璃层之间。3.根据权利要求2所述的衬底,其中每个所述结合层包括粘合剂。4.根据权利要求2所述的衬底,其中所述结合层中的至少一个包括电导体。5.根据权利要求1所述的衬底,其中所述导体中的每一个包括形成于所述芯中的孔和 设置于所述孔中的导电材料。6.根据权利要求5所述的衬底,其中所述导电材料包括金属。7.根据权利要求1所述的衬底,其中设置于所述芯的所述第一表面的所述至少一个金 属层直接与所述第一表面相邻设置,并且其中设置于所述芯的所述第二表面的所述至少一 个金属层直接与所述第二表面相邻设置。8.根据权利要求1所述的衬底,还包括:设置于所述芯的第一侧上的第一组端子,所述第一组端子与集成电路(1C)管芯上的对 应端子阵列配合;设置于所述芯的第二侧上的第二组端子,所述第二组端子与下一级部件上的对应端子 阵列配合。9.一种方法,包括:提供包括结合在一起的若干玻璃层的板,所述板具有第一表面和相对的第二表面;在所述若干玻璃层的第一玻璃层中形成第一通孔;在所述第一通孔的壁上设置保护层;在与所述第一玻璃层相邻的第二玻璃层中形成第二通孔,所述第一通孔大致与所述第 二通孔对准,所述第一通孔和所述第二通孔形成从所述第一表面延伸到所述第二表面的孔 的至少一部分。10.根据权利要求9所述的方法,还包括去除所述保护层。11.根据权利要求9所述的方法,还包括:在所述孔的壁上沉积种子层;以及在所述种子层上镀敷金属以在所述孔之内提供导体。12.根据权利要求11所述的方法,还包括在所述板的所述第一表面设置至少一个电介质层和至少一个金属层,将所述第一表面 的所述至少一个金属层与所述导体电耦合;以及在所述玻璃芯的所述第二表面设置至少一个电介质层和至少一个金属层,将所述第二 表面的所述至少一个金属层与所述导体电耦合。13.根据权利要求12所述的方法,其中设置于所述板的所述第一表面的所述至少一个金属层直接与所述第一表面相邻设置,并且其中设置于所述板的所述第二表面的所述至少 一个金属层直接与所述第二表面相邻设置。14.根据权利要求9所述的方法,其中通过结合层将所述第一玻璃层与所述第二玻璃层 耦合,所述方法还包括在所述结合层中形成通孔,所述结合层的所述通孔形成所述孔的一 部分。15.—种方法,包括:在第一玻璃层中形成若干通孔;将第二玻璃层结合到所述第一玻璃层以提供第一两层结构;以及在所述第二玻璃层中形成若干通孔,所述第一层的所述通孔大致与所述第二层的所述 通孔对准,以提供通过所述两层结构的若干孔;以及,任选地,将所述第一两层结构与第二两层结构结合,所述第一两层结构的所述若 干孔与所述第二两层结构的若干孔对准。16.根据权利要求15所述的方法,其中所述第一两层结构提供衬底芯,或其中与所述第 二两层结构结合的所述第一两层结构提供衬底芯。17.根据权利要求15所述的方法,还包括在所述第一和第二玻璃层之间设置结合层,所 述结合层与所述第一和第二玻璃层中的每一个耦合。18.根据权利要求17所述的方法,还包括在所述结合层中形成若干通孔,所述结合层通 孔大致与所述第一玻璃层中的所述通孔和所述第二玻璃层中的所述通孔对准。19.根据权利要求15所述的方法,还包括在所述第一两层结构和所述第二两层结构之 间设置结合层,所述结合层与所述第一和第二两层结构中的每一个耦合。20.根据权利要求19所述的方法,还包括在所述结合层中形成若干通孔,所述结合层通 孔大致与所述第一两层结构中的所述孔和所述第二两层结构中的所述孔对准。
【文档编号】H05K3/46GK105977234SQ201610344776
【公开日】2016年9月28日
【申请日】2010年11月1日
【发明人】马晴, C·胡, P·莫罗
【申请人】英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1