一种以纳米材料体外诱导间充质干细胞向成骨细胞分化的方法及金纳米粒子的用途及分化剂的制作方法

文档序号:527356阅读:246来源:国知局
专利名称:一种以纳米材料体外诱导间充质干细胞向成骨细胞分化的方法及金纳米粒子的用途及分化剂的制作方法
技术领域
本发明涉及的部分参考文献
1.Paciotti G F,Myer Lj Weinreich Dj et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 2004, 11: 169—183.
2.Yang N,Sun W H. Gene gun and other non-viral approaches for cancer gene therapy. Nat Medj 1995,1: 481—483.
3.De Jong W H,Hagens W I,Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterialsj 2008,29: 1912—1919.
4.Kaplan F S,Hayes W C,Keaveny T M,et al. In: Simon S R,ed. Orthopedic Basic Science. Rosemont: American Academy of Orthopaedic Surgeons, 1994. 127— 185
5.GrislainL, Couvreur P, Lenaerts V, et al. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharmj 1983,15:335—345.
6.Tsai CYj Shiau ALj Chen SYj Chen YHj Cheng PC, Chang MY, Chen DHj Chou CHj Wang CRj Wu CL Amelioration of collagen-induced arthritis in rats by nanogold Arthritis Rheum. 2007 Feb;56 (2):544-54.
7.Jaeger GTj Larsen S, S0Ii N,Moe L. Two years follow-up study of the pain-relieving effect of gold bead implantation in dogs with hip-joint arthritis. arthritis. Acta Vet Scand. 2007 Mar 23;49:9.
8.Pissuwan D, Valenzuela SMj Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 2006 Feb; 24(2) :62-7. Epub 2005 Dec 27.
9.Jacob D. Gibson, Bishnu P. Khanal, and Eugene R. Zubarev Paclitaxel-Functionalized Gold Nanoparticles J. Am. Chem. Soc. 2007, 129, 11653-11661 doi:10.1021/ja075181k
10.QianjXimei. "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. 〃 Nature Biotechnology. 2008. Vol 26 No 1.
11.Chow, M. K. ; Zukoskij C. F. Gold Sol Formation Mechanisms: Role of colloidal Stability. J. Colloid Interface Sci. 1994,165,97 - 109.
12.Pockwinsej S. ; Wilmingj L ; Conlonj D. ; Stein, G. S. ; Lianj J. B. Expression of Cell-Growth and Bone Specific Genes at Single Cell Resolution during Development of Bone Tissue-Like Organization in Primary Osteoblast Cultures. J. Cell. Biochem. 1992,49,310 - 323.
13.Abdallahj B. M. ; Jensen, C. H. ; Gutierrez, G. ; Leslie, R. G. Q. ; Jensen,T. G. ; Kassemj M. Regulation of Human Skeletal Stem Cells Differentiation by Dlkl/Pref-1. J. Bone. Miner. Res. 2004,19,841 — 852.
14.Stein, G. S. ; Lianj J. B. Molecular Mechanisms Mediating Proliferation / Differentiation Interrelationships during Progressive Development of the Osteoblast Phenotype. Endocr. Rev. 1993,14,424 - 442.
15.Prabhakaranj M. P. ; Venugopalj J. R. ; Ramakrishnaj S. Mesenchymal Stem Cell Differentiation to Neuronal Cells on Electrospun Nanofibrous Substrates for Nerve Tissue Engineering. Biomaterials 2009,30,4996 - 5003.
16.Kaurj G. ; Valarmathij Μ. Τ. ; Potts, J. D. ; Wang, Q. The Promotion of Osteoblastic Differentiation of Rat Bone Marrow Stromal Cells by a Polyvalent Plant Mosaic Virus. Biomaterials 2008, 29, 4074 - 4081.
17.Popatj K. C. ; Chatvanichkulj K. I. ; Barnes, G. L ; Latempaj Τ. J.; Grimes, C. Α. ; Desaij Τ. A. Osteogenic Differentiation of Marrow Stromal Cells Cultured on Nanoporous Alumina Surfaces. J. Biomed. Mater. Res. Part A 2006, 80A,955 - 964.
18.Wang D,Christensen K,Chawla K,et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. Bone Miner Res, 1999, 14: 893—903.
19.Stein G S,Lian J B. Molecular mechanisms mediating proliferation/ differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev, 1993,14: 424—442.
20.Collin P,Nefussi J R,Wetterwald A,et al. Expression of collagen, osteocalcin, and bone alkaline phosphatase in a mineralizing rat osteoblastic cell culture. Calcif Tissue Intj 1992,50: 175—183.
21.Obrant K J, Ivaska K K, Gerdhem P, et al. Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone, 2005, 36: 786一 792.
22. Veitch S W, Findlay S C,Hamer A J,et al. Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos Intj 2006, 17: 364——372。
权利要求
1.一种以纳米材料体外诱导间充质干细胞向成骨细胞分化的方法,其特征在于包括以下步骤(1)骨髓间充质干细胞的分离纯化;(2)扩充间充质干细胞,培养至80-90%融合时,更换含胎牛血清的DMEM培养液,加入 β -甘油磷酸钠,抗坏血酸和地塞米松,同时加入纳米材料进行诱导。
2.根据权利要求1所述的的方法,其特征在于所述的诱导采用的胎牛血清的浓度不低于10%。
3.根据权利要求1所述的的方法,其特征在于所述的诱导采用甘油磷酸钠,抗坏血酸和地塞米松的浓度分别为10 mmol/L,0. 15 mmol/L及1X10_8 mol/L。
4.根据权利要求1所述的的方法,其特征在于所述的诱导采用纳米材料为金纳米粒子。
5.根据权利要求4所述的的方法,其特征在于所述的诱导采用金纳米粒子粒经为 20nm 至 40nm。
6.根据权利要求4所述的的方法,其特征在于所述的诱导采用金纳米粒子浓度为 1. 5X10"4, 3. OXlO"5 或 1. 5X10"5Mmol/Lo
7.根据权利要求1所述的的方法,其特征在于所述的诱导时间为7至21天。
8.—种金纳米粒子的用途,其特征在于金纳米粒子用于纳米材料体外诱导间充质干细胞向成骨细胞分化中,具体包括以下步骤(1)骨髓间充质干细胞的分离纯化;(2)扩充间充质干细胞,培养至80-90%融合时,更换含胎牛血清的DMEM培养液,加入 β -甘油磷酸钠,抗坏血酸和地塞米松,同时加入金纳米粒子进行诱导。
9.一种促细胞分化剂,其特征在于包括β-甘油磷酸钠、抗坏血酸、地塞米松和纳米材料。
10.根据权利要求9所述的分化剂,其特征在于β-甘油磷酸钠,抗坏血酸和地塞米松的浓度分别为10 mmol/L, 0. 15 mmol/L及1 X 1(Γ8 mol/L ;纳米材料为金纳米粒子,浓度为 1. 5X10"4, 3. OXlO"5 或 1. 5X10"5Mmol/Lo
全文摘要
本发明涉及金纳米粒子在诱导间充质干细胞(MSC)体外定向分化方面的用途,利用纳米材料对间充质干细胞进行体外诱导分化,以不同粒径及浓度的金纳米粒子材料对间充质干细胞进行体外诱导定向分化为成骨细胞。
文档编号C12N5/0775GK102329772SQ20111021969
公开日2012年1月25日 申请日期2011年8月2日 优先权日2011年8月2日
发明者梁文瑛 申请人:港龙生物科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1