一种纳米钨酸锆粉末的制备方法与流程

文档序号:11644974阅读:336来源:国知局

本发明涉及一种钨酸锆粉末的制备方法。



背景技术:

近年,在汽车、能源等领域的应用,需要材料具备耐腐蚀,耐高温,热传导等性质,需要特种陶瓷满足其应用的发展。zrw2o8材料具有负膨胀性,该材料在0.3~1050k温度范围内,具有很强的各向同性的负热膨胀效应,其负热膨胀系数α=-9×10-6k-1,是目前负膨胀材料研究的热点之一。因此zrw2o8材料在高精密度的电子设备或光学显微镜中,精密光学镜面及牙床填充材料、衬底材料等方面的应用很有前景。

但是zrw2o8只在1105~1231℃很窄的温度范围内热力学稳定,高于此温度将形成zro2-wo3的无定形玻璃态,低于此温度,在780~1105℃之间将分解成zro2和wo3。因此,为了保持zrw2o8材料的热力学稳定性,必须将产物淬冷,快速跳过分解区。因此zrw2o8材料制备工艺非常复杂。

制取zrw2o8的方法有很多,到现在为止,用途最多的有以下几种:(1)固相法(2)共沉淀法(3)溶胶凝胶法(4)水热法(5)燃烧法(6)微波合成法(7)喷雾干燥法。从产物质量,产物成本和生产规模等几方面来分析上述合成工艺:固相法是传统制备zrw2o8粉末方法,但是zrw2o8只在1105~1231℃很窄的温度范围内热力学稳定,制取时将zro2与wo3粉末处于高温下持续烧结,然而wo3在高温下具有挥发特性,所以想要制取纯度高的zrw2o8粉末需要反复重复操作,并加以研磨;溶胶凝胶法与水热法虽然产物纯度高粒径小,但反应周期太长,反应原理复杂。共沉淀法相对溶胶凝胶法与水热法反应周期短,且产物纯度高。燃烧法制备的物质纯度不高,并且反应过程中会污染环境。微波合成法虽然得到的产物纯度高,但是其生产设备昂贵。喷雾干燥法制备的产物粒径大且有杂质。



技术实现要素:

本发明的目的是为了解决现有方法制备的纳米钨酸锆粉末的粒径大的技术问题,提供了一种纳米钨酸锆粉末的制备方法。

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆(zrocl2·8h2o)和钨酸铵((nh4)5h5[h2(wo4)6]·h2o)置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂1,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂2,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置12~24h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1140~1200℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

步骤二中所述的分散剂1和步骤三中所述的分散剂2的总质量占钨酸锆粉末质量的3%或4%,步骤二中所述的分散剂1与步骤三中所述的分散剂2的质量比为1:1。

按本发明采用共沉淀法制备的粉末工艺简单、产品纯度高、生产成本低,这使得其可以应用范围更广。向钨盐溶液中加入分散剂,通过分散剂增加溶液中溶质的空间位阻,减少盐溶液中颗粒的团聚。本发明制备的钨酸锆粉末粒度最细d50为770nm,d90为1.73μm。

具体实施方式

本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。

具体实施方式一:本实施方式一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂1,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂2,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置12~24h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1140~1200℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

步骤二中所述的分散剂1和步骤三中所述的分散剂2的总质量占钨酸锆粉末质量的3%或4%,步骤二中所述的分散剂1与步骤三中所述的分散剂2的质量比为1:1。

具体实施方式二:本实施方式与具体实施方式一不同的是步骤二中调节ph值采用盐酸或氨水。其它与具体实施方式一相同。

具体实施方式三:本实施方式与具体实施方式一或二之一不同的是步骤二中所述的分散剂1型号为peg1000或peg2000。其它与具体实施方式一或二之一相同。

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是骤三中所述的分散剂2型号为peg200或peg400。其它与具体实施方式一至三之一相同。

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤四中所述静置时间为13~20h。其它与具体实施方式一至四之一相同。

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤四中所述静置时间为15~19h。其它与具体实施方式一至五之一相同。

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤四中所述静置时间为18h。其它与具体实施方式一至六之一相同。

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤四中再于1150~1190℃反应2h。其它与具体实施方式一至七之一相同。

具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤四中再于1160℃反应2h。其它与具体实施方式一至八之一相同。

具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤四中所述快速搅拌的搅拌速度为2500r/min。其它与具体实施方式一至九之一相同。

具体实施方式十一:本实施方式与具体实施方式一至九之一不同的是

步骤二中所述的分散剂1型号为peg1000或peg2000。步骤三中所述的分散剂2型号为peg200或peg400。

当分散剂2为peg200,其质量为生成钨酸锆质量的1.5%,分散剂1为peg2000,其质量为生成钨酸锆质量的1.5%;

当分散剂2为peg200,其质量为生成钨酸锆质量的2%,分散剂1为peg2000,其质量为生成钨酸锆质量的2%;

当分散剂2为peg400,其质量为生成钨酸锆质量的1.5%,分散剂1为peg1000,其质量为生成钨酸锆质量的1.5%;

当分散剂2为peg400,其质量为生成钨酸锆质量的2%,分散剂1为peg1000,其质量为生成钨酸锆质量的2%;

当分散剂2为peg400,其质量为生成钨酸锆质量的1.5%,分散剂1为peg2000,其质量为生成钨酸锆质量的1.5%;

当分散剂2为peg400,其质量为生成钨酸锆质量的2%,分散剂1为peg2000,其质量为生成钨酸锆质量的2%。其它与具体实施方式一至九之一相同。

采用下述实验验证本发明效果:

实验一:

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂peg2000,其质量为生成钨酸锆粉末质量的1.5wt%;,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂peg200,其质量为生成钨酸锆粉末质量的1.5wt%;,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置12h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1160℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;钨酸锆粉末粒度d50为880nm,d90为1.73μm。

实验二:

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂peg2000,其质量为生成钨酸锆粉末质量的2wt%,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂eg200,其质量为生成钨酸锆粉末质量的2wt%;,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置15h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1160℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

钨酸锆粉末粒度d50为1.15μm,d90为2.27μm。

实验三:

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂peg1000,其质量为生成钨酸锆质量的1.5wt%,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂peg400,其质量为生成钨酸锆质量的1.5wt%,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置18h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1160℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

钨酸锆粉末粒度d50为770nm,d90为1.73μm。

实验四:

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂peg1000,其质量为生成钨酸锆粉末质量的2wt%,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂peg400,其质量为生成钨酸锆粉末质量的2wt%,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置12~24h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1160℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

钨酸锆粉末粒度d50为880nm,d90为1.73μm。

实验五:

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂peg2000,其质量为生成钨酸锆质量的1.5wt%,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂peg400,其质量为生成钨酸锆质量的1.5wt%,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置12~24h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1160℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

钨酸锆粉末粒度d50为770nm,d90为1.73μm。

实验六:

一种纳米钨酸锆粉末的制备方法,该制备方法如下:

一、称取原料氧氯化锆和钨酸铵置于氧化锆坩埚中,在800℃的箱式炉中于空气中烧结5h,根据残留的zro2和wo3来标定原料中的zr4+和w6+的含量,根据摩尔配比称量原料溶解在蒸馏水中,配置成zr4+浓度为0.02mol/l的溶液和w6+浓度为0.04mol/l的溶液;

二、在w6+浓度为0.04mol/l的溶液中加入分散剂peg2000,其质量为生成钨酸锆质量的2wt%,调节ph值至6,得到溶液a;

三、在zr4+浓度为0.02mol/l的溶液中加入分散剂peg400,其质量为生成钨酸锆质量的2wt%,得到溶液b;

四、然后将溶液b加入到溶液a中,快速搅拌,调节ph值至2,继续搅拌1h,静置12~24h,进行老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物放在100℃的干燥箱中干燥后磨细,置于箱式炉中于600℃反应2h,再于1160℃反应2h后,出炉,用水淬冷,干燥研磨,得到钨酸锆粉末;

钨酸锆粉末粒度d50为1.15μm,d90为2.27μm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1