具有再发光半导体构造和会聚光学元件的led装置的制作方法

文档序号:6887693阅读:125来源:国知局

专利名称::具有再发光半导体构造和会聚光学元件的led装置的制作方法
技术领域
:本发明涉及光源。更具体地讲,本发明涉及包括发光二极管(LED)、再发光半导体构造和会聚光学元件的光源,如本文所述。
背景技术
:发光二极管(LED)为当电流在阳极和阴极之间通过时发出光的固态半导体装置。常规的LED包括单个pn结。pn结可以包括一个中间无掺杂区域;此类pn结另外可以被称为pin结。与非发光半导体二极管类似,常规的LED更容易按一个方向通过电流,即按电子从负区移动到正区的方向。当电流以"向前"的方向通过LED时,来自负区的电子与来自正区的空穴重组,生成光子。由常规LED发射的光外观为单色;也就是说,它以单一的窄带波长生成。所发射光的波长对应于与电子空穴对重组相关的能量。在最简单的情况中,该能量约为半导体的能带隙能量,其中重组在该半导体中进行。常规的LED可以在pn结处另外包含一个或多个捕获高浓度电子和空穴的量子阱,从而增强产生光的重组。若干调查者已经试图生产一种发射白光或对于人眼3色觉来说呈现白色的光的LED装置。一些调查者报道了传说的pn结内拥有多个量子阱的LED的设计或制造,其中量子阱旨在发射不同波长的光。以下参考文献可能与这样的技术有关美国专利No.5,851,卯5;美国专利No.6,303,404;美国专利No.6,504,171;美国专利No.6,734,467;Damilano等人,MonolithicWhiteLightEmittingDiodesBasedonInGaN/GaNMultiple-QuantumWells(基于InGaN/GaN多量子阱单色白光发光二极管),Jpn.J.Appl,Phys.(《日本应用物理杂志》)巻40(2001)第L918-L920页;山田等人赁Re-emittingsemiconductorconstructionFreeHigh-Luminous-EfficiencvWhiteLight-EmittingDiodesComposedofInGaNQuantumWell(InGaN量子阱组成的高发光效率白色游离发光二极管的再发光半导体构造),Jpn.J.Appl.Phys.(《日本应用物理杂志》)巻41(2002)第L246-L248页;Dalmasso等人,IniectionDependenceoftheElectroluminescenceSpectraofRe-emittingsemiconductorconstructionFreeGaN-BasedWhiteLightEmittingDiodes(不含磷的GaN基白色发光二极管的电致发光光谱的注射依赖),stat.Sol.(《固态物理》)(a)192,编号l,139-143(2003)。一些调查者报道了传说的将两个常规LED结合起来的设计或制造,旨在独立地在单个装置内发射不同波长光的LED装置。以下参考文献可能与这样的技术有关美国专利No.5,851,905;美国专利No.6,734,467;美国专利出版No.2002/0041148Al;美国专利出版No.2002/0134989Al;以及Luo等人,Patternedthree-colorZnCdSe/ZnCdMgSequantum-wellstructuresforintegratedfull-colorandwhitelightemitters(集成有全彩色和白光发射器的图案化的三色ZnCdSe/ZnCdMgSe量子阱结构),App.Phys.Letters(《应用物理通讯》),巻77,编号26,第4259-4261页(2000)。一些调査者报道了传说的LED装置的设计或制造,所述LED装置将常规LED部件与诸如钇铝石榴石(YAG)的化学再发光半导体构造结合起来,旨在吸收部分由LED部件发射的光以及较长波长的再发射光。美国专利No.5,998,925和美国专利No.6,734,467可能与这样的技术相关。一些调査者报道了传说的LED的设计和制造,所述LED在正掺杂有I、Al、Cl、Br、Ga或In的ZnSe基板上发展,以便在所述基板上产生荧光中心,旨在吸收部分由LED部件发射的光以及较长波长的再发射光。美国专利申请6,337,536和日本专利申请出版编号2004-072047可能与这样的技术相关。美国专利出版No.2005/0023545以引用的方式并入本文。
发明内容简而言之,本发明提供一种光源,该光源包含具有发射表面的LED部件,该光源可以包括i)能够以第一波长发光的LED;以及ii)包括不位于pn结内的第二势阱并具有发射表面的再发光半导体构造;或可以交替包含位于pn结内的第一势阱和不位于pn结内的第二势阱的再发光半导体构造。在一个实施例中,光源另外包括具有基部、两个会聚侧面和两个发散侧面的光学元件,其中,基部光学耦合到发射表面。在另一个实施例中,光源另外具有高折射率光学元件,所述高折射率光学元件光学耦合到LED部件并且被成形用于引导由LED部件发射的光,以形成具有两个瓣的侧发光图形。在另一个实施例中,光源另外具有光学元件,该光学元件包括基部、小于基部的顶端以及在基部和顶端之间延伸的会聚侧面,其中,基部光学耦合到发射表面并且尺寸不大于发射表面;其中,光学元件引导由LED部件发射的光,以形成侧发光图形。在另一个实施例中,光源另外具有光学元件,该光学元件包括基部、顶端和连接基部与顶端的会聚侧面,其中基部光学耦合到发射表面;其中,光学元件具有第一部分,该第一部分包括基部并且由第一材料构成;并且其中,光学元件具有第二部分,该第二部分包括顶端由第二材料构成。在另一个实施例中,光源另外具有第一光学元件,该第一光学元件包括基部、顶端、和连接基部与顶端的会聚侧面,其中基部光学耦合到发射表面并且尺寸不大于发射表面,第一光学元件具有第一折射率;而第二光学元件包封LED部件和第一光学元件,第二光学元件具有的小于第一折射率的第二折射率。在另一个实施例中,光源另外具有第一光学元件,该第一光学元件包括基部、位于发射表面的顶端和连接基部与顶端的会聚侧面,其中基部光学耦合到发射表面,第一光学元件具有第一折射率;而第二光学元件包封LED部件和第一光学元件,第二光学元件具有小于第一射率的第二折射率。在另一个实施例中,光源另外具有第一光学元件,该第一光学元件包括基部、顶端、和连接基部与顶端的会聚侧面,其中基部光学耦合到发射表面;而第二光学元件包封LED部件和第一光学元件,与由第一光学元件单独提取的功率相比,第二光学元件提供的从LED部件提取的功率更大。在另一个实施例中,光源另外具有光学元件,该光学元件包括基部、顶端以及连接基部与顶端的侧,其中基部光学耦合到发射表面并且与发射表面机械分离。在另一方面,本发明提供一种图形显示装置,所述图形显示装置包括根据本发明的LED装置。在另一方面,本发明提供一种照明装置,所述照明装置包括根据本发明的LED装置。在本申请中参照半导体装置中的层叠堆,"紧邻"是指没有居间层的序列中的下一个,"近邻"是指具有一个或几个居间层的序列中的下一个,而"围绕"是指序列中的之前和之后;"势阱"是指半导体装置中的半导体层,所述半导体层具有比围绕层低的导带能或比围绕层高的价带能,或二者均有;"量子阱"是指足够薄、量子化效应提升阱中电子空穴对跃迁能量的势阱,通常厚度为100nm或更小;"跃迁能量"是指电子空穴重组能源;"晶格匹配"是指,结合两种诸如基板上的外延膜的晶体材料,处于隔绝中的每种材料均具有晶格常数,并且这些晶格常数基本上等同,典型地相互间的差异不超过0.2%,更典型地相互间的差异不超0.1%,而最典型地相互间的差异不超0.01%;"假晶"是指,结合具有给定厚度的诸如外延膜和基板的第一晶体层和第二晶体层,处于隔绝中的每个层均具有晶格常数,并且这些晶格常数非常类似,以使得呈给定厚度的第一层可在该层的平面内采用第二层的晶格间距而基本上不产生失配缺陷。应该理解,对于本文所述的本发明的任何实施例,均包括有正掺杂和负掺杂半导体区;还应设想本文还公开的另一个实施例,其中正掺杂可用负掺杂交换,反之亦然。应该理解,可提供本文所述的每个"势阱"、"第一势阱"、"第二势阱"和"第三势阱"以及单个势阱,或可提供通常具有类似特性的多个势阱。同样,应该理解,可提供本文所述的"量子阱"、"第一量子阱"、"第二量子阱"和"第三量子阱"以及单个量子阱,或可提供通常具有类似特性的多个量子阱。图1是根据本发明一个实施例的构造中的半导体的导带和价带的平带图。层厚度未按比例绘制。图2示出了多种II-VI二元化合物以及它们的合金的晶格常数和能带隙的坐标图。图3示出了从根据本发明的一个实施例的装置发射出的光的光谱的坐标图。图4是根据本发明的一个实施例的构造中的半导体的导带和价带的平带图。层厚度未按比例绘制。图5示出了一个实施例中的光学元件和LED部件构造的示意性侧视图。图6a-c是根据另外实施例的光学元件透视图。图7是根据另外实施例的光学元件透视图。图8a-i是根据多个可供选择的实施例的光学元件的俯视图。图9a-c示出了可供选择的实施例中的光学元件的示意性前视图。图10a-e是根据多个可供选择的实施例的光学元件和LED部件的示意性侧视图。图lla-d是根据多个实施例的光学元件和LED部件的仰视图。图12是根据另一个实施例的光学元件和LED部件阵列的透视图。图13是根据另一个实施例的光学元件和LED部件的局部视图。具体实施例方式本发明提供一种装置,所述装置包括LED;再发光半导体构造和提取器。通常,LED能够以第一波长发射光,而再发光半导体构造能够以该第一波长吸收光并且以第二波长再发射光。再发光半导体构造包括不位于pn结内的势阱。再发光半导体构造的势阱通常(但不一定)是量子阱。在典型操作过程中,LED发射光子以对电流做出响应,而再发光半导体构造发射光子以对吸收从LED发射的部分光子做出响应。在一个实施例中,再发光半导体构造另外包括与势阱近邻或紧邻的吸收层。吸收层通常具有能带隙能量,该能带隙能量一般小于或等于由LED发射的光子的能量,而大于再发光半导体构造的势阱跃迁能。在典型操作过程中,吸收层有助于吸收由LED发射的光子。在一个实施例中,再发光半导体构造另外包括至少一个不位于pn结内的第二势阱,其中该pn结具有与第一势阱的跃迁能不相等的第二跃迁能。在一个实施例中,LED为紫外线LED。在一个这样的实施例中,再发光半导体构造包括至少一个不位于pn结内的第一势阱,该pn结具有对应于蓝色波长光的第一跃迁能;至少一个不位于pn结内的第二势阱,该pn结具有对应于绿色波长光的第二跃迁能;至少一个不位于pn结内的第三势阱,该pn结具有对应于红色波长光的第三跃迁能。在一个实施例中,LED是可见光LED,典型地为绿色、蓝色或紫色LED,更典型地为绿色或蓝色LED,而最典型地为蓝光LED。在一个这样的实施例中,再发光半导体构造包括至少一个不位于pn结内的第一势阱,该pn结具有对应于黄色或绿色波长光的、更典型地为绿色波长光的第一跃迁能;以及具有至少一个不位于pn结内的第二势阱,该pn结具有对应于橙色或红色波长光的、更典型地为红色波长光的第二跃迁能。再发光半导体构造可以包括另外的势阱和另外的吸收层。任何适用的LED均可用于本发明实践中。根据本发明的装置元件,包括LED和再发光半导体构造,可由任何适用的半导体组成,包括诸如Si或Ge的群组IV元件(除发光层之外)、诸如InAs、AlAs、GaAs、InP、A1P、GaP、InSb、AlSb、GaSb以及它们的合金的III-V化合物、诸如ZnSe、CdSe、BeSe、MgSe、ZnTe、CdTe、BeTe、MgTe、ZnS、CdS、BeS、MgS以及它们的合金的II-VI化合物或以上任何化合物的合金。在适当的情况下,半导体可以是以任何适合方式或包含任何适合的掺杂物的正掺杂或负掺杂。在一个典型的实施例中,LED是III-V半导体装置,而再发光半导体构造是n-vi半导体装置。在本发明的一个实施例中,所述装置部件多层组合物,如LED或再发光半导体构造,根据以下考虑选择。通常,每层对于该层或与基板匹配的晶格的给定厚度的基板来说,是假晶。或者,每层可以是假晶或与紧邻层匹配的晶格。通常,选择势阱层材料和厚度以便提供所需的跃迁能,所述跃迁能对应于从量子阱发射的光的波长。例如,图2中标有460nm、540nm和630nm的点示出Cd(Mg)ZnSe合金的晶格常数接近于InP基板(5.8687埃或0.58687nm)以及对应于460nm(蓝色)、540nm(绿色)和630nm(红色)波长的能带隙的晶格常数。如果势阱层足够薄,以致量子化过程将跃迁能提升到阱中的整体能带隙能量以上,则所述势阱可以被视为量子阱。每个量子阱层的厚度将确定量子阱中量子化能量的数量,量子化能量加上整体能带隙能量以确定量子阱中的跃迁能。因此,通过调整量子阱层厚度可调整与每个量子阱相关的波长。典型地,量子阱层厚度介于lnm和100nm之间,更典型地介于2nm和35nm之间。一般来说,与仅以能带隙能量为基础的能量相比,量子化能量转化为减少了20nm至50nm波长。发射层中的应变也可以改变势阱和量子阱的跃迁能,包括因假晶层之间晶格常数不完全的匹配而导致的应变。计算应变或未应变势阱或量子阱的跃迁能技术在本领域中是以已矢口的,如在HerbertKroemer,QuantumMechanicsforEngineering,MaterialsScienceandAppliedPhysics(PrenticeHall,EnglewoodCliffs,NewJersey,1994)(赫伯特克勒默的《工程、材料科学与应用物理量子力学》,1994年新泽西州英格伍德克里夫普伦蒂斯*霍尔出版公司),第54—63页;和Zory,ed.,QuantumWellLasers(AcademicPress,SanDiego,California,1993)(Zory编辑《量子阱激光器》,1993年,加利福尼亚圣地亚哥学术出版社),第72-79页;二者均以引用的方式并入本文。可选择任何适合的发射波长,包括红外光、可见光和紫外光波段中的波长。在本发明的一个实施例中,选择发射波长以使得由装置发射的光的组合输出形成可由两种、三种或更多种单色光源的组合产生的任何颜色的表现,包括白色或近白色、粉彩色、洋红、青色等。在另一个实施例中,当显示所述装置处于工作状态时,根据本发明的装置以不可见的红外光或紫外光波长以及以可见的波长发射光。通常,LED发射最短波长的光子,以使得由LED发射的光子具有足够的能量驱动再发光半导体构造中的势阱。在一个典型实施例中,LED为III-V半导体装置,诸如发射蓝光的GaN基LED,而再发光半导体构造为II-VI半导体装置。图1示出根据本发明的一个实施例的再发光半导体构造中半导体的导带和价带的带图。层厚度未按比例绘制。表I示出本实施例中层1-9的组合物以及所述组合物的能带隙能量(Eg)。该构造可以在InP基板上形成。12表1<table>tableseeoriginaldocumentpage13</column></row><table>层3表示具有约lOnm厚度的红色发光量子阱单个势阱。层7表示具有约lOnm厚度的绿色发光量子阱单个势阱。层2、4、6和8表示吸收层,每个吸收层具有约1000nm的厚度。层l、5和9表示支承层。通常选择支承层,以便对从量子阱3和量子阱7以及从短波长LED20发射的光基本透明。或者,所述装置可以包括多个由吸收层和/或支承层分开的红色或绿色发光势阱或量子阱。不希望受理论所束缚,据信由图1示出的本发明的实施例根据以下原理工作由LED发射并且在再发光半导体构造反射的蓝色波长光子可以被吸收,并且从绿色发光量子阱7作为绿色波长光子或从红色发光量子阱3作为红色波长光子重新发射。吸收短波长光子生成电子空穴对,然后通过光子发射,电子空穴对可以在量子阱中重组。从装置发射的蓝色、绿色和红色波长的光的多色组合可以呈现出白色或近白色。可以以任何合适的方式平衡从装置发射的蓝色、绿色和红色波长的光的强度,所述方式包括每种类型量子阱数量的处理、滤波器或反射层的利用以及吸收层厚度和组合物的处理。图3示出从根据本发明装置的一个实施例发射的光的光谱。再次结合图l示出的实施例,通过选择从LED发射的光子能量与量子阱3和量子阱7的跃迁能之间的吸收层能带隙能量,吸收层2、4、5和8可适于吸收由LED发射的光子。在与光子的伴随发射重组前,量子阱3和7通常捕集在吸收层2、4、6和8中的光子吸收生成的电子空穴对。吸收层在组成全部或部分厚度时可选地具有一个梯度,以便向势阱集中或引导电子和/或空穴。在本发明的一些实施例中,在单个半导体单元中提供有LED和再发光半导体构造。该半导体单元通常包括位于pn结内的第一势阱和不位于pn结内的第二势阱。势阱通常为量子阱。所述单元能够以两个波长发射光,一个对应于第一势阱跃迁能,而第二个对应于第二势阱的跃迁能。在典型的操作中,第一势阱发射光子以响应通过pn结的电流,而第二势阱发射光子以响应从第一势阱发射的光子的部分吸收。所述半导体单元可以另外包括一个或多个围绕或近邻或紧邻第二势阱的吸收层。吸收层的能带隙能量通常小于或等于第一势阱的跃迁能而大于第二势阱的跃迁能。在典型的操作中,吸收层有助于从第一势阱发射的光子的吸收。所述半导体单元可以包括另外位于pn结内或不位于pn结内的势阱以及另外的吸收层。图4示出了根据本发明一个实施例在这样一个半导体单元中的导带和价带的带图。层厚度未按比例绘制。表11示出了该实施例中层1-14的组合物以及该组合物的能带隙能量(Eg)。表II组合物能带隙能量(E"lInP基板1.35eV2正掺杂Cdo.24Mgo.43Zno.33Se2.9eVCd0.35Mg0.27Zn0.38Se2.6eV4Cdo.7oZn。.3oSe1.9eVCd035Mg0.27Zn0.38Se2.6eV6正掺杂Cd。.24Mgo.43Zn。.33Se2.9eV7Cd0.35Mg0.27Zn0.38Se2.6eV8Cdo.33Zno.67Se2,3eV9Cd0.35Mg0.27Zn0.38Se2.6eV10正掺杂Cdo.24Mgo.43Zno.33Se2.9eV11无掺杂的Cd。.24MgQ.43Zno.33Se2.9eV12Cd031Mg0.32Zn0.37Se2.7eV13无掺杂的Cdo.24Mgo.43Zno.33Se2.9eV14负掺杂Cdo.24Mgo.43Zno.33Se2.9eV层10、11、12、13和14表示pn结,或更具体地讲,表示pin结,因为中间无掺杂("固有"掺杂)层11、12和13被插入到正掺杂层IO和负摻杂层14之间。层12表示pn结内的单个势阱,所述势阱为具有约10nm厚度的量子阱。作为选择,所述装置在pn结内可以包括多个势阱或量子阱。层4和层8表示不在pn结内的第二势阱和第三势阱,每个都是具有约lOnm厚度的量子阱。作为选择,所述装置可以包括另外的不在pn结内的势阱或量子阱。在进一步选择中,所述装置可以包括不在pn结内的单个势阱或量子阱。层3、5、7和9表示吸收层,每个具有约1000nm的厚度。电触点(未显示)提供向pn结提供电流的路径。电触点导电而并且通常由导电金属组成。正电触点通过中间结构直接或间接地电气连接到层14。负电触点通过中间结构直接或间接地电气连接到一个或多个层1、2、3、4、5、6、7、8、9或10。不希望受理论所束缚,据信本发明的这个实施例根据以下原理工作当电流从层14流向层10时,pn结中的量子阱(12)发射蓝色波长光子。在层14方向流动的光子可离开所述装置。在相反方向流动的光子可被吸收,并且作为绿色波长光子从第二量子阱(8)重新发射或作为红色波长光子从第三量子阱(4)重新发射。吸收蓝色波长光子生成电子空穴对,然后通过发射光子,电子空穴对可以在第二或第三量子阱中重组。在层14方向流动的绿色或红色波长光子可离开所述装置。从装置发射的蓝色、绿色和红色波长的光的多色组合可以呈现出白色或近白色。可以以任何合适的方式平衡从装置发射的蓝色、绿色或红色波长的光的强度,所述方式包括每种类型量子阱数量的处理、滤波器或反射层的利用。图3示出了从根据本发明装置的一个实施例发射的光的光谱。再次结合图4示出的实施例,吸收层3、5、7和9可以特别适用于吸收从第一量子阱(12)发射的光子,因为所述光子的能带隙能量在第一量子阱(12)的跃迁能与第二和第三量子阱(8和4)的跃迁能之间的中间。在伴随发射光子的同时进行重组前,通常通过第二或第三量子阱8和4捕集通过吸收吸收层3、5、7和9中的光子生成的电子空穴对。吸收层可以可选地为掺杂质的,通常象对于围绕层,此实施例中的吸收层为正掺杂。吸收层在组成全部或部分厚度时可选地具有一个梯度,以便向势阱集中或引导电子和/或空穴。在LED为可见波长LED的地方,再发光半导体构造层对于从LED发射的光可以部分透明。另外,诸如在LED为紫外波长LED的地方,再发光半导体构造的一个或多个层可以较大部分或基本上或完全阻止所有从LED发射的光,以使得较大部分或基本上或完全所有从装置发射的光为从再发光半导体构造发射的光。在LED为紫外波长LED的地方,再发光半导体构造10可以包括红色、绿色和蓝色发射量子阱。根据本发明的装置可以包括另外的导电、半导电或不导电材料层。可以增加电接触层以形成向LED提供电流的路径。可以增加光过滤层以改变或校正由经调整的LED发射的光的波长平衡。在一个实施例中,根据本发明的装置通过在蓝色、绿色、黄色和红色带中以四个主要波长发射光的方式生成白色或近于白色的光。在一个实施例中,根据本发明的装置通过在蓝色和黄色带中以两个主要波长发射光的方式生成白色或近于白色的光。根据本发明的装置可以包括另外的半导体元件,包括有源或无源部件诸如电阻器、二极管、齐纳二极管、电容器、晶体管、双极晶体管、场效应晶体管、MOSFET晶体管、绝缘栅双极晶体管、光电晶体管、光电探测器、SCR、半导体闸流管、三端双向可控硅开关元件、稳压器和其他电路元件。根据本发明的装置可以包括集成电路。根据本发明的装置可以包括显示面板或照明面板。构成根据本发明的装置的LED和再发光半导体构造可以任何适用的方法制造而成,所述方法可以包括分子束外延(MBE)、化学气相沉积、液相外延和蒸汽相外延。根据本发明所述装置的所述元件可以包括基板。在本发明的实践中可以使用任何适用的基板。典型基板材料包含Si、Ge、GaAs、InP、兰宝石、SiC和ZnSe。所述基板可以是正掺杂、负掺杂或半绝缘,可以通过任何合适的方式或通过包括任何适用掺杂物获得。另外,根据本发明的装置的元件可以没有基板。在一个实施例中,根据本发明的装置的元件可以在基板形成、然后从基板上分开。可以通过任何合适的方式将根据本发明的装置的元件接合在一起,所述方式包括使用粘合剂或焊接材料、压力、加热或它们的组合。通常,生成的键合是透明的。键合方法可以包含界面或边缘键合。可选地,可以包括匹配层的折射率或孔隙空间。LED通常以打包形式销售,包装中包括安装在金属接头上的LED晶粒或薄片。LED晶粒是LED的最基本形式,即由半导体晶片加工工序制成的单独元件或薄片的形式。元件或薄片可以包含适用于应用能量的电触点以给装置提供能量。单个层和元件或薄片的其他功能元件通常以晶片级形成,成品晶片最终被切割成单个元件以产生多个LED晶粒。金属接头具有反射杯和连接到LED晶粒的电引线,反射杯中安装有LED晶粒。包装还包括包封LED晶粒的模制透明树脂。包封树脂通常具有名义上的半球形前表面以局部准直由LED晶粒发射的光。LED部件可以是或具有LED晶粒或与再发光半导体构造或其他元件组合成的LED晶粒。在本公开的有益实践中,会聚光学元件用于从LED部件有效提取光并修改所发射光的角分布。这样包装的LED部件可以是LED/再发光半导体构造的组合,作为单独的元件或作为半导体单元,如上所示或如当前未决美国专利申请USSN11/009217或USSN11/009241中所述,以引用的方式并入本文。本专利申请公开具有这样光学元件的光源,该光学元件以用于有效提取来自LED部件的光并修改所发射光的角分布。每个光学元件光学耦合到LED部件(或LED部件阵列)上的发射表面,以有效提取光并修改所发射光的图形。包括光学元件的LED光源可用于多种应用,包括例如液晶显示器或背光标牌中的背光源。包含本文所述会聚光学元件的光源可用于边缘照明式和直接照明式两种构造的背光源。楔形光学元件尤其适用于边缘照明式背光源,其中,光源沿着背光源的外侧部分设置。棱锥形或锥形会聚光学元件可以尤其适用于直接照明式背光源。这样的光源可以作为单个光源元件来使用,或可以布置成阵列,视具体背光源设计而定。对于直接照明式背光源,光源一般设置在漫射反射器或镜面反射器与上薄膜叠堆之间,上薄膜叠堆可以包括棱柱薄膜、扩散片和反射式偏振器。这些元件可用于以最有用的视角范围和以均匀的亮度将光源发射的光导向观察者。示例的棱柱薄膜包括增亮薄膜诸如可得自美国明尼苏达州圣保罗市3M公司的BEFTm。示例的反射式偏振器包括可得自美国明尼苏达州圣保罗市3M公司的DBEF。对于边缘照明式背光源,可以将光源布置为将光射入中空或实心光导。光导一般具有位于其下的反射器和上薄膜叠堆,如上所述。图5是根据一个实施例示出光源的示意性侧视图。光源包括光学元件20和LED部件10。光学元件20具有一个由一个基部120和两个会聚侧面140形成的三角形横截面,两个会聚侧面140接合相对的基部120以形成顶端130。顶端可以是一个点,如图5中的130所示,或可以是稍钝一些,如例如截平的三角形(通过虚线135示出)。钝化的顶端可以是平的、圆形的或它们的组合。顶端小于基部并且优选的是位于基部的上方。在一些实施例中,顶端不超过基部尺寸的20%。优选的是,顶端不超过基部尺寸的10%。在图5中,顶端130位于基部120上方正中。然而,顶端不居中或偏离基部中心的实施例还可以想到。光学元件20光学耦合到LED部件10以提取由LED部件10发射的光。LED部件10的主要发射表面100基本上平行于并且接近于光学元件20的基部120。可以以多种方式光学耦合LED部件10和光学元件20,包括键合和非键合构造,将在下面详细描述。光学元件20的会聚侧面140a-b的作用是修改LED部件10所发射的光的发射图形,如图5中的箭头160a-b所示。典型的裸式LED部件以第一发射图形发射光。通常,第一发射图形一般向前发射或具有基本的向前发射元件。图5中示出的会聚光学元件诸如光学元件20将第一发射图形修改为第二、不同的发射图形。例如,楔形光学元件引导由LED部件发射的光生成具有两个瓣的侧发光图形。图5示出由LED部件发射、从基部进入光学元件20的示例性光线160a-b。当光线离开光学元件20的高折射率材料进入围绕介质(如空气)时,以用会聚侧面140a形成相对较低入射角的方向发射的光线会发射折射。示例性光线160a示出一个这样的光线,以相对于垂直来说的小角度入射。以大于或等于临界角的高入射角发射的不同光线在该光线照射到的第一会聚侧面处完全内部反射(140a)。然而,在会聚光学元件诸如图5所示的一个中,反射光线随后将以低入射角遇到第二个会聚侧面(140b),在此,反射光线发生折射并允许离开光学元件。示例性光线160b示出一个这样的光路径。具有至少一个会聚侧面的光学元件可以将第一光线发射图形修改为第二、不同的光线发射图形。例如,用这样的会聚光学元件可将一般向前发射光图形修改为第二、一般侧发光图形。换句话讲,可以将高折射率光学元件成形为以引导由LED部件发射的光,以生成侧发光图形。如果光学元件为旋转对称(如成形为圆锥体),所得的光发射图形呈现环形分布-所发射光的强度将集中于光学元件四周的圆形图案。例如,如果光学元件被成形为楔形(如,见图7),侧发光图形将具有两个瓣—光强度将集中于两个区域。如果楔对称,两个瓣将布置在光学元件(两个相对区域)的相对侧。对于具有多个会聚侧面的光学元件,侧发光图形将具有相应的多个瓣。例如,对于成形为四边形棱锥的光学元件,所得的侧发光图形将具有四个瓣。侧发光图形可以时对称或不对称的。当光学元件的顶端相对于基部或发射面不对称放置时,将形成不对称图形。本领域内的技术人员将会知道这样的布置方式和形状的多种排列可按希望生成多种不同的发射图形。在一些实施例中,侧发光图形的强度分布在至少30。的极角处最大,如强度线图中的测量。在其他实施例中,侧发光图形的强度分布集中在至少30°的极角处。当前本发明所公开的光学元件另外可能呈现其他强度分布,包括例如具有最大值和/或集中在45。和60°极角的强度分布。会聚光学元件可具有多种形式。每个光学元件具有基部、顶端和20至少一个会聚侧面。基部可以具有任何形状(如方形、圆形、对称或非对称、规则或不规则)。顶端可以是一个点、一条线或一个表面(如果为钝化的顶端)。不管什么样的特定会聚形状,顶端的表面积比基部小,以使得侧变从基部向顶端会聚。可以将会聚光学元件成形为棱锥、圆锥、楔形或以及它们的组合。每个这样的形状靠近顶端还可以是截平的,形成钝化的顶端。会聚光学元件可以是多面形状,具有多边形基部和至少两个会聚侧面。例如,棱锥形或楔形光学元件可以具有矩形的或方形基部和四个边,其中至少两个边为会聚侧面。其他边可以是平行边或作为另外一种选择可以是发散的或会聚的。基部的形状不需要对称,并且可以成形为例如梯形、平行四边形、四边形或其他多边形。在其他实施例中,会聚光学元件可以具有圆形、椭圆形或不规则形状但连续的基部。在这些实施例中,光学元件可以说具有单会聚侧面。例如,具有圆形基部的光学元件可以成形为圆锥形。一般来讲,会聚光学元件具有基部、位于(至少部分地)基部上的顶端以及连接顶端和基部以完成立体形状的一个或多个会聚侧面。图6a示出成形为四边形棱锥的会聚光学元件200的一个实施例,该四边形棱锥具有基部220、顶端230和四个边240。在该具体实施例中,基部220可以是矩形或方形,并且顶端230在基部(垂直于基部平面的顶端的投影线210在基部220上居中)上居中位置处。图6a另外示出具有发射表面100的LED部件10,发射表面100临近并且平行于光学元件200的基部220。LED部件10和光学元件200在发射表面-基部接口光学耦合。可以通过多种方式获得光学耦合,详情如下所示。例如,可以将LED部件和光学元件键合在一起。在图6a中,LED部件的基部和发射表面被示出为尺寸基本匹配。在其他实施例中,基部可以大于或小于LED部件发射表面。图6b示出会聚光学元件202的另一个实施例。此处,光学元件202具有六边形基部222、钝化的顶端232和六个边242。侧面在基部和顶端之间延伸并且每个侧面向顶端232会聚。顶端232为钝化的并且形成表面另外成形为六边形,但小于六边形基部。图6c示出光学元件204的另一个实施例,该光学元件204具有两个会聚侧面244、一个基部224和一个顶端234。在图6c中,光学元件被成形为楔形并且顶端234形成一条线。其他两条侧面被示出为平行侧面。从顶部看,光学元件204在图8d中示出。楔形光学元件可供选择的实施例也包括具有会聚和发散侧面组合的形状,诸如如图7所示的光学元件22。在图7所示的实施例中,楔形光学元件22类似于轴端。两个发散侧面142作用是使由LED部件发射的光平行。两个会聚侧面144会聚于形成顶端132的顶部,当从侧面(参见图5)观察时,顶端132成形为位于基部上的一条线;当如图7(或图8e)所示观察时,顶端132具有延伸出基部的部分。会聚侧面144允许由LED部件IO发射的光重新定向至侧面,如图5所示。其他实施例包括楔形,所有侧面在此会聚,例如如图8f所示。光学元件也可以被成形为具有圆形或椭圆形基部的圆锥形,顶端(至少部分地)位于基部之上,并且单个会聚侧面连接基部与顶端。如上所述的棱锥形和楔形,顶端可以是一个点、一条线(直的或弯曲的)或可以将其钝化成为一个表面。图8a-8i示出了光学元件多个可供选择的实施例的俯视图。图8a-8f示出实施例,其中顶端居中于基部之上。图8g-8i示出非对称光学元件的实施例,其中,顶端偏离或倾斜并且不居中于基部之上。图8a示出具有方形基部、四个侧面和居中于基部上的钝化的顶端230a的棱锥形光学元件。图8h示出具有方形基部、四个恻面和一个为偏心的钝化的顶端230h的棱锥形光学元件。图8b示出具有方形基部和成形为圆形的钝化的顶端230b的一个光学元件的实施例。在这种情况下,会聚侧面为弯曲的,使得方形基部与圆形顶端具有方形基部、四个三角形侧面的棱锥形光学元件。该四个三角形侧面会聚成一个点以形成居中于基部上的顶端230C。图8i示出具有方形基部、四个三角形侧面的棱锥形光学元件,该四个三角形侧面会聚成一个点以形成偏离(不居中)于基部之上的顶端230i。图8d-8g示出楔形光学元件。在图8d中,顶端230d形成位于基部之上并且居中的一条线。在图8e中,顶端230e形成在基部上居中并且部分位于基部之上的一条线。顶端230e另外具有部分延伸基部以外。图8e中示出的俯视图可以是如上所述的图7中示出的光学元件的透视俯视图。图8f和图8g示出具有形成一条线的顶端和四个会聚侧面的楔形光学元件的两个可供选择的实施例。在图8f中,顶端230f居中于基部之上,而在图8g中,顶端230g偏离。图9a-9c示出根据可供选择的实施例的光学元件的侧视图。图9a示出具有基部50以及侧面40和侧面41的光学元件的一个实施例,该侧面40和侧面41起始于基部50并且向位于基部50之上的顶端30会聚。可选地,侧面可以向钝化的顶端31会聚。图9b示出具有基部52、会聚侧面44和垂直于基部的侧面42的光学元件的另一个实施例。两个侧面42和44形成位于基部边缘之上的顶端32。可选地,顶端可以是钝化的顶端33。图9c示出具有一般三角形横截面的替代形式光学元件的侧视图。此处,基部125以及侧面145和侧面147—般形成一个三角形,但侧面145和侧面147为非平面表面。在图9c中,光学元件具有弯曲的左侧面145和有小平面(即三个较小平坦部分147a-c的组合)的右侧面。侧面可以是弯曲的、片段的、有小平面的、凸状的、凹面的或它们的组合。这样形状的侧面仍发挥作用以将所提取光的发射角度修改为类似于上述平面或扁平侧面,只提供最后光发射模式的定制增加程度。图10a-10e分别示出具有在每个基部622a-e和顶端630a-e之间延伸的非平面侧面640a-e的光学元件620a-e的可供选择的实施例。在图10a中,光学元件620a具有包含两个有小平面的部分641a和642a的侧面640a。靠近基部622a的部分642a垂直于基部622a,而部分641a向顶端630a会聚。类似地,在图10b-c中,光学元件620b-c具有通过连接两个部分641b-c和642b-c分别形成的侧面640b-c。在图10b中,会聚的部分641b为凹面。在图10c中,会聚的部分641c为凸面。图10d示出具有通过连接部分641d和642d形成的两个侧面640d的光学元件620d。此处,靠近基部622d的部分642d向钝化的顶端630d会聚,并且最顶端的部分641d垂直于钝化的顶端630d的表面。图10e示出具有弯曲侧面640e的光学元件620e的可供选择的实施例。此处,侧面640e为S形,但是一般地向钝化的顶端630e会聚。当侧面由两个或更多个部分形成时,如图10a-e所示,优选地布置部分以使得侧面仍然大致会聚,即使侧面可以具有非会聚的部分。优选的是,基部尺寸与发射表面的LED部件尺寸想匹配。图lla-lld示出这样的布置方式的示例性实施例。在图lla中,具有圆形基部50a的光学元件光学耦合到具有方形发射表面70a的LED部件。此处,通过使圆形基部50a的直径"d"等于方形发射表面70a的对角尺寸(也是"d")来匹配基部和发射表面。在图lib中,具有六边形基部50b的光学元件光学耦合到具有方形发射表面70b的LED部件。此处,六边形基部50b的高度"h"与方形发射表面70b的高度"h"相匹配。在图11c中,具有矩形基部50c的光学元件光学耦合到具有方形发射表面70c的LED部件。此处,基部和发射表面这二者的宽度"w"相匹配。在图lid中,具有方形基部50d的光学元件光学耦合到具有六边形发射表面70d的LED部件。此处,基部和发射表面这二者的高度"h"相匹配。当然,其中基部和发射表面这二者相同成形并且具有相同表面积的简单的布置也符合此项标准。此处,基部的表面积与LED部件发射表面的表面积相匹配。类似的,当光学元件连接到LED部件阵列时,发射表面侧面处的阵列尺寸优选地可以与光学元件基部的尺寸相匹配。此而,阵列的形状无需与基部的形状匹配,只要二者之间至少一项尺寸(如直径、宽度、高度或表面积)相匹配。作为另外一种选择,发射表面的LED部件尺寸或LED部件阵列的组合尺寸可以小于或大于基部的尺寸。图10a和10c示出实施例,其中,LED部件(分别为610a和610c)的发射表面(分别为612a和612c)与基部(分别为622a和622c)的尺寸相匹配。图10b示出具有大于基部622b的发射表面612b的LED部件610b。图10d示出LED部件的阵列612d,该阵列在发射表面612d具有大于基部622d尺寸的组合尺寸。图10e示出具有发射表面612e小于基部622e的LED部件610e。例如,如果LED部件发射表面为具有lmm侧面的方形,可以将光学元件基部制成具有lmm侧面的匹配方形。作为另外一种选择,可以将方形发射表面光学耦合到矩形基部,矩形其中一个侧面的尺寸与发射表面侧面的尺寸相匹配。矩形的非匹配侧面可以大于或小于方形的侧面。可选地,可以将光学元件制成圆形基部的直径等于发射表面的对角尺寸。例如,对于1mmX1mm的方形发射表面,直径为1.41mm的圆形基部被认为尺寸与该申请的目的相匹配。也可以将基部尺寸制成为略小于发射表面的尺寸。如果其中一个目的是最小化光源的外观尺寸,这可以具有优点,如题目为"HighBrightnessLEDPackage"(高亮度LED包装)的共同拥有的美国专利申请(代理人案巻号60217US002)中所述。图12示出包括光学耦合到按阵列12布置的多个LED部件14a-c的会聚光学元件24的光源的另一个实施例。当红色、绿色和蓝色LED组合成阵列以生成混合成的白色光时,这种布置方式可以尤其有用。在图12中,光学元件24具有会聚侧面146以将光重定向到侧面。光学元件24具有成形为方形的基部124,方形基部光学耦合到LED部件12的阵列。LED部件12的阵列另外形成方形(具有侧面16)。本文所公开的光学元件可以通过常规方式或通过利用在题目为"PROCESSFORMANUFACTURINGOPTICALANDSEMICONDUCTORELEMENTS"(光学和半导体元件制造方法)的美国专利申请No.10/977239(代理人案巻号60203US002)、题目为"PROCESSFORMANUFACTURINGALIGHTEMITTINGARRAY"(光发射阵列制造方法)的美国专利申请10/977240(代理人案巻号60204US002)以及题目为"ARRAYSOFOPTICALELEMENTSANDMETHODOFMANUFACTURINGSAME"(光学元件阵列与制造相同元件的方法)的美国专利申请No.11/288071(代理人案巻号60914US002)中所公开共同转让的精密研磨技术而制成。光学元件为透明的并且优选地具有相对的高折射率。光学元件的适用材料包括但不限于无机材料诸如高折射率玻璃(如可得自美国纽约艾姆斯佛德市肖特北美公司(SchottNorthAmerica,Inc.)商品名为LASF35的LASF35型肖特玻璃)和陶瓷粉(如蓝宝石、氧化锌、氧化锆、金刚石和碳化硅)。蓝宝石、氧化锌、金刚石和碳化硅尤其是有用,因为这些材料另外具有相当高的热导率(0.2-5.0W/cmK)。高折射率聚合物或纳米颗粒填充聚合物还可以想到。适用的聚合物可以是热塑性和热固性两种聚合物。热塑性聚合物可以包括聚碳酸酯和环状烯烃共聚物。热固性聚合物可以是例如丙烯酸树脂、环氧树脂、硅树脂以及在本领域中所孰知的其他树脂。适用的陶瓷纳米级微粒包括氧化锆、二氧化钛、氧化锌和硫化锌。光学元件的折射率(n。)优选的是类似于LED部件发射表面的指数(ne).优选的是,二者之间的差值不大于0.2(ln。-nel《0.2)。可选地,差值可以大于0.2,视所使用的材料而定。例如,发射表面可以具有1.75的折射率。适用的光学元件可以具有等于或大于1.75(n。》1.75)的折射率,包括例如n。》1.9、n。》2.1和n。》2.3。可选地,n。可以小于ne(如n。》1.7)。优选的是,光学元件的折射率与主要发射表面的折射率相匹配。在一些实施例中,光学元件和发射表面这二者的折射率可以是相同值(n。=ne)。例如,具有&=1.76的蓝宝石发射表面可以与蓝宝石光学元件或SF4(可得自美国纽约艾姆斯佛德市肖特北美公司(SchottNorthAmerica,Inc.)商品名为SF4)n。=1.76的玻璃光学元件相匹配。在其他实施例中,光学元件的折射率可以高于或低于发射表面的折射率。当由高折射率材料制成时,由于其高折射率光学元件增加从LED部件的光提取并修改由于其形状的光发射分布,因此提供定制的光发射图案。在整个本公开中,一般将LED部件IO简化描述,但LED部件IO可以包括除了上述再发光结构外为本领域所孰知的常规的设计结构。例如,LED部件可以包括截然不同的正掺杂和负掺杂半导体层、缓冲层、基底层和复盖层。所示的为简单的矩形LED部件布置,但还可以想到其他的己知构造,如形成截平的倒立棱锥LED部件形状的倾斜侧面。为简化起见,也未显示LED部件的电触点,但众所周知,可在模具的任何表面上提供该电触点。在示例性实施例中,LED部件具有均以"倒装晶片"设计设置在底部表面的两个触点。本公开并非意图限制光学元件的形状或LED部件的形状,只是提供示例性的实例。当光学元件和LED部件发射表面之间的最小间隙不大于消散波时,光学元件被认为光学耦合到LED部件。通过将LED部件和光学元件物理上靠近放置,可获得光学耦合。图5示出LED部件10的发射表面100和光学元件20的基部120之间的间隙150。通常,间隙150为空气间隙并且通常很小以促进受抑全内反射。例如在图5中,如果间隙150接近空气中的光波长,光学元件20的基部120为光学靠近LED部件10的发射表面100。优选地,间隙150的厚度小于气中的光波长。在使用多个光波长的LED中,间隙150优选地至多是最长波长值。适用的间隙尺寸包括25nm、50nm和100nm。优选的是间隙最小化,诸如将LED部件和光学元件的输入孔隙或基部抛光为键合在一起的平晶和晶片时。另外,优选的是发射表面100和基部120之间接触面上的间隙150基本上均匀,并且发射表面100和基部120具有小于20nm的粗糙度,优选的是小于5nm。在这样的构造中,在逃逸锥面外侧或成一角度从LED部件10发射的光线在LED部件-空气界面通常完全内部反射,而不是被传输到光学元件20。为促进光学耦合,可将基部120的表面成形用于匹配发射表面100。例如,如果LED部件IO的发射表面IOO为平的,如图5所示,光学元件20的基部120也可以为平的。作为另外一种选择,如果LED部件的发射表面为弯曲(如略微凹陷),可将光学元件的基部成形为与发射表面(如略微凸起)相配合。基部120的尺寸可以小于、等于或大于LED部件发射表面100。基部120的横截面形状可以与LED部件10相同或不同。例如,LED部件可以具有方形发射表面,而光学元件具有圆形基部。其他变型将对本领域内的技术人员显而易见。适用的间隙尺寸包括100nm、50nm和25nm。优选的是间隙最小化,诸如将LED部件和光学元件的输入孔隙或基部抛光为键合在一起的平晶和晶片时。可通过施加高温和高压以提供光耦合布置将光学元件和LED部件键合在一起。可使用任何已知的晶片键合技术D示例的晶片键合技术在题目为"ProcessforManufacturingOpticalandSemiconductorElements"(光学半导体元件制造方法)的美国专利申请No.10/977239(代理人案巻号.60203US002)中有所描述。如果为限制性间隙,通过在LED部件的发射表面和光学元件的基部之间增加薄的光学传导层可获得或增强光学耦合。图13示出光学元件和LED部件的局部示意性侧视图,诸如图5中所示出的,但在间隙150内设置有薄的光学传导层60。类似于间隙150,光学传导层60的厚度可以是100nm、50nm、25nm或更小。优选的是,光学传导层的折射率接近匹配于发射表面或光学元件的折射率。光学传导层可用于键合和非键合(机械分离)两种构造。在键合实施例中,光学传导层可以是传输光的任何适用的键合剂,包括例如透明粘结剂层、无机薄膜、可熔玻璃粉或其他类似键合剂。键合构造的其他实例在例如2002年3月14日公布的题目为"LightEmittingDiodeswithImprovedLightExtractionEfficiency"(具有经过改善光提取效率的发光二极管)(Camras等人)的美国专利公布No.U.S.2002/0030194中有所描述。在非键合实施例中,LED部件可被光学耦合到光学元件而在LED部件和光学元件之间不使用任何粘接剂或其他键合剂。非键合实施例允许将LED部件和光学元件二者机械分离,并且允许相互间独立地移动。例如,光学元件可相对于LED部件横向移动。又如当每个元件在工作期间发热时,光学元件和LED部件均可自由伸展。在这样的机械分离的系统中,由伸展产生的多数应力不管是否垂直,都不会从一个元件传递到另一个元件。换句话讲,一个元件的移动不会机械影响另一个元件。这种构造在发光材料为易碎的情况下、LED部件和光学元件之间存在伸展失配系数的情况下以及LED反复打开和关闭的情况下特别理想。经过机械分离的构造可通过将光学元件置于光学靠近LED部件(二者之间只有很小的空气间隙)制成。空气间隙应足够小以促进受抑全内反射,如上所述。作为另外一种选择,如图13所示,可在光学元件20和LED部件IO之间的间隙150添加薄的光学传导层60(如折射率匹配液),前提条件是光学传导层允许光学元件和LED部件独立地移动。适用于光学传导层60的材料实例包括折射率匹配油和其他具有类似光学特性的液体或凝胶。可选地,光学传导层60也可以热传导。可利用任何已知的密封剂材料将光学元件和LED部件封装在一起,制成最终的LED包装或光源。封装光学元件和LED部件提供一种在非键合实施例中将二者保持在一起的方式。29另外的非键合构造如题目为"LEDPackagewkhNon-bondedOpticalElement"(具有非键合光学元件的LED包装)代理人案巻号为60216US002的共同拥有的美国专利申请No.10/977249中所述。光学元件可以由单一结构制成,例如从单个材料嵌段切削,或可以通过以化合物构造将两个或更多个片段连接在一起而制成。第一部分有利地与LED部件进行光学接触,并且由具有高折射率(优选的是约等于LED部件发射表面处的折射率)、可选地高热导率和/或高热稳定性的第一光学材料制成。就这一点而言,高热稳定性指的是具有约600'C或更高分解温度的材料。第一片段的厚度优选的是光学厚度(如有效地至少5微米,或10倍的光波长)。碳化硅也是导电的,因此,可以另外提供电接触或电路功能。如果散射仅限于靠近输入端或光学元件的基部的位置,在光学元件内的散射是可以接受的。然而,使具有足够长度的光学元件有效耦合来自LED部件的光昂贵并且耗时。制备一体式光学元件的另外的挑战是材料产量可以相对较低,并且形状因子可以迫使LED部件单独与光学元件组装。由于这些原因,将光学元件分成两个(或更多个)部分可以是有利的,由不同光学材料制成的部分可降低制造成本。第二部分与第一部分接合并且由第二光学材料制成,第二光学材料与第一光学材料相比可以具有较低的材料成本并且更容易加工。与第一光学材料相比,第二光学材料可以具有较低的折射率、较低的热导率或二者均具有。例如,第二光学材料可以包括玻璃、聚合物、陶瓷粉、填充陶瓷纳米颗粒的聚合物以及其他视觉上澄清的材料。适用的玻璃包括包含铅、锆、钛和钡氧化物的玻璃。玻璃可以由包含钛酸盐、铅酸盐和锡酸盐的化合物制成。适用的陶瓷纳米级微粒包含氧化锆、二氧化钛、氧化锌和硫化锌。可选地,可以将由第三光学材料构成的第三部分接合到第二部分,以进一步帮助将LED光与外部环境耦合。在一个实施例中,布置三个部分的折射率使得n,>n2>n3,以最小化与光学元件相关的整体菲涅耳表面反射。根据本发明光源可以是图形显示装置的元件或关键元件,诸如大型或小型屏幕视频监视器、计算机监视器或显示器、电视、电话装置或电话装置显示器、个人数字助理或个人数字助理显示器、寻呼机或寻呼机显示器、计算器或计算器显示器、游戏机或游戏机显示器、玩具或玩具显示器、小型或大型家电或小型或大型家电显示器、汽车仪表板或汽车仪表板显示器、汽车内饰或汽车内饰显示器、船舶仪表板或船舶仪表板显示器、船舶内饰或船舶内饰显示器、航空器仪表板或航空器仪表板显示器、航空器内饰或航空器内饰显示器、交通控制设备或交通控制设备显示器、广告显示器、广告牌等。根据本发明所述的光源可以是液晶显示器(LCD)的部件或关键部件、或类似显示器,作为那个显示器的背光源。在一个实施例中,根据本发明的所述半导体装置通过将由根据本发明的所述半导体装置发射的彩色与LCD显示器的彩色滤波器匹配,特别适于用作液晶显示器的背光源。根据本发明的所述光源可以是照明装置的部件或关键部件,诸如诸如自立式或内置照明器材或照明灯具、景观或建筑照明器材、手持或车载灯、汽车前大灯或尾灯、汽车内饰照明灯具、汽车或非汽车信号装置、道路照明装置、交通控制信号装置、船舶用灯或信号装置或内饰照明灯具、航空用灯或信号装置或内饰照明灯具、小型或大型家电或小型或大型家电用灯等;或用作红外光源、可见光源或紫外线辐射光源的任何装置或任何部件。在不背离本发明的范围和原则的前提下,本发明的各种修改和更31改对本领域内的技术人员来说将是显而易见的,并且应该理解,本发明不应不当地限于上文所述示例性实施例。权利要求1.一种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)光学元件,其具有基部、两个会聚侧面和两个发散侧面,其中所述基部被光学耦合到所述发射表面。2.—种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)高折射率光学元件,其光学耦合到所述LED部件,并且被成形用于引导由所述LED部件发射的光,以生成具有两个瓣的侧发光图案。3.—种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)光学元件,其包括基部、小于所述基部的顶端、和在所述基部与所述顶端之间延伸的会聚侧面,其中所述基部光学耦合到所述发射表面并且尺寸不大于所述发射表面;其中所述光学元件引导由所述LED部件发射的光以生成侧发光图案。4.一种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)光学元件,其包括基部、顶端、和连接所述基部与所述顶端的会聚侧面,其中所述基部光学耦合到所述发射表面;其中所述光学元件具有包括所述基部并且由第一材料构成的第一部分;并且其中所述光学元件具有包括所述顶端并且由第二材料构成的第二部分。5.—种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)第一光学元件,其包括基部、顶端、和连接所述基部与所述顶端的会聚侧面,其中所述基部光学耦合到所述发射表面并且尺寸不大于所述发射表面,所述第一光学元件具有第一折射率;以及c)第二光学元件,其包封所述LED部件和所述第一光学元件,所述第二光学元件具有低于所述第一折射率的第二折射率。6.—种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)第一光学元件,其包括基部、位于所述发射表面上方的顶端、和连接所述基部与所述顶端的会聚侧面,其中所述基部光学耦合到所述发射表面,所述第一光学元件具有第一折射率;以及c)第二光学元件,其包封所述LED部件和所述第一光学元件,所述第二光学元件具有低于所述第一折射率的第二折射率。7.—种光源,包括a)LED部件,包括i)LED,其能够以第一波长发射光;和ii)再发光半导体构造,其具有不位于pn结内的势阱,并具有发射表面;以及b)第一光学元件,其包括基部、顶端、和连接所述基部与所述顶端的会聚侧面,其中所述基部光学耦合到所述发射表面;以及c)第二光学元件,其包封所述LED部件和所述第一光学元件,与由第一光学元件单独提取的功率相比,所述第二光学元件提供增加的由LED部件提取的功率。8.—种图形显示装置,包括根据权利要求l所述的光源。9.一种照明装置,包括根据权利要求l所述的光源。全文摘要本发明提供一种包括具有发射表面的LED部件的光源,所述光源可以包括i)能够以第一波长发射光的LED;和ii)再发光半导体构造,所述再发光半导体构造具有不位于pn结内的第二势阱,并具有发射表面;或所述再发光半导体构造可以交替具有位于pn结内的第一势阱和不位于pn结内的第二势阱;以及所述再发光半导体构造另外具有会聚光学元件。文档编号H01L33/58GK101467275SQ200780022122公开日2009年6月24日申请日期2007年6月11日优先权日2006年6月12日发明者迈克尔·A·哈斯申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1