一种甲醇催化用催化剂、其制备方法及化学修饰电极的制作方法

文档序号:6791700阅读:115来源:国知局
专利名称:一种甲醇催化用催化剂、其制备方法及化学修饰电极的制作方法
技术领域
本发明涉及聚合物技术领域,尤其涉及一种甲醇催化用催化剂、其制备方法及化学修饰电极。
背景技术
直接甲醇燃料电池由于能量密度高,操作简便以及环境友好等特点而被引起广泛研究。但由于高昂的催化剂成本以及严重的催化剂中毒效应,直接甲醇燃料电池还未实现大规模商业化。为了提高对催化剂Pt的利用率,增强其抗中毒能力,现有技术主要途径是制备Pt基合金催化剂。该方法所基于的机理包括两个,即双功能机理和电子效应。根据双功能机理,第二种金属可以在较低电位下促进活性水的解离,从而提供大量含氧活性集团,增强对CO的氧化能力。电子效应是指其它金属的复合,能够改变Pt的电子结构,从而降低CO对Pt的吸附能力。尽管通过金属合金策略能够改善催化剂的抗中毒能力,提高催化剂效率,但目前大都基于贵金属的复合,这使得催化剂的成本仍处于较高水平,因此,探究有效的催化剂改性策略以降低催化剂成本仍是当下摆在研究者面前的难题。为了降低催化剂成本,现有技术发展了碳基催化剂载体,其不仅能够促进催化剂的分散,还可以加速反应过程中·的电子转移从而改善反应动力学,可作为降低催化剂成本的有力方向。石墨烯,由于其极高的比表面积和导电性,以其作为甲醇燃料电池催化剂载体的研究已有大量报道。近来,有研究发现,碳基载体上的功能性基团可以增强甲醇与催化剂表面的相互作用,加速了甲醇向电活性表面的转移。这些功能基团,大多是含氧活性基团,它们不仅能够催化剂粒子的生长,更增强了对CO的氧化能力。但由于空间位阻以及反应的随机性,CO与含氧集团的直接相互作用受到阻碍,难以实现较快的传质和电子转移,因此甲醇氧化反应动力学依然处于较低水平。

发明内容
本发明的目的在于提供一种甲醇催化用催化剂,该甲醇催化用催化剂在用作修饰电极材料时,具有较高的催化活性,提高了对甲醇的催化能力,其具有优越的反应动力学。本发明提供了一种甲醇催化用催化剂,包括石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子;所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(20 50): (150 250): (I 15)。优选的,所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(25 40): (170 220): (3 10)。优选的,所述金属纳米粒子为钼纳米粒子、金纳米粒子和钯纳米粒子中的一种或几种。优选的,所述聚丙烯酸-二茂铁复合物中聚丙烯酸和二茂铁的质量比为(5 10): I。本发明提供了一种甲醇催化用催化剂的制备方法,包括以下步骤:提供氧化石墨烯的分散液;将聚丙烯酸和二茂铁混合,反应后得到聚丙烯酸-二茂铁复合物;将所述氧化石墨烯的分散液与聚丙烯酸-二茂铁复合物和金属纳米粒子前驱体混合,得到混合溶液;将所述混合溶液与还原剂混合,进行还原反应后得到甲醇催化用催化剂。优选的,所述石墨烯的分散液为石墨烯在甲醇水溶液中的分散液。优选的,所述甲醇水溶液中甲醇和水的体积比为1: (0.5 5)。优选的,所述混合溶液的pH值为8 12。优选的,所述还原剂为硼氢化钠、水合肼或抗坏血酸。

本发明提供了一种化学修饰电极,包括基底电极和设置在所述基底电极表面的修饰层;所述修饰层为上述技术方案所述的甲醇催化用催化剂或上述技术方案所述的方法制备得到的甲醇催化用催化剂。本发明提供了一种甲醇催化用催化剂,包括石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子;所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(20 50): (150 250): (I 15)。本发明提供的甲醇催化用催化剂以石墨烯作为基底材料,聚丙烯酸-二茂铁复合物能够进入石墨烯的层状结构,抑制了石墨烯的团聚,而且聚丙烯酸具有丰富的含氧螯合位点,促进了金属纳米粒子的均相成核,使负载的金属纳米粒子具有较高的催化活性;另外,石墨烯较大的比表面积也增加了金属纳米粒子负载的数量,聚丙烯酸的网状结构也使得石墨烯-聚丙烯酸-二茂铁具有多孔道的立体结构,缓冲了粒子的运动,从而更进一步促进了金属纳米粒子的均相生长。因此,由于本发明提供的甲醇催化用催化剂具有丰富的含氧结合位点,独特的空间结构和优异的氧化还原媒介作用,使得其对甲醇具有较高的催化活性,且具有较高的抗中毒能力。实验结果表明,本发明提供的甲醇催化用催化剂具有较高的电活性表面积,甲醇在该催化剂这一体系中更易扩散,对甲醇具有较高的催化氧化速率,且具有较高的电子转移系数,其动力学过程更为优越。


图1为本发明实施例提供的甲醇催化用催化剂的制备流程示意图;图2为本发明实施例2和比较例I得到的甲醇催化用催化剂的TEM图;图3为本发明实施例2和比较例I得到的甲醇催化用催化剂的粒径分布图;图4为本发明实施例2和比较例I得到的甲醇催化用催化剂的EDX谱图;图5为本发明实施例4和比较例2得到的修饰电极在PBS溶液中的循环伏安曲线.-^4 ,图6为本发明实施例5和比较例3得到的修饰电极在硫酸溶液中的循环伏安图;图7为甲醇在本发明实施例6和比较例4得到的修饰电极上的循环伏安图;图8为甲醇在本发明实施例7和比较例5得到的修饰电极的计时电流曲线;图9为本发明实施例8和比较例6得到的甲醇的峰电流与扫速平方根之间的线性关系曲线;图10为本发明实施例8和比较例6得到的峰电位与log( U)之间的线性关系曲线.
图11为本发明实施例提供的催化剂对甲醇催化的机理示意图。
具体实施例方式本发明提供了一种甲醇催化用催化剂,包括石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子;所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(20 50): (150 250): (I 15)。本发明提供了一种甲醇催化用催化剂,包括石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子。在本发明中,由于聚丙烯酸-二茂铁复合物的存在,抑制了石墨烯的团聚,且聚丙烯酸-二茂铁复合物具有丰富的含氧结合位点,独特的空间结构以及优异的氧化还原媒介作用,使得到的甲醇催化用催化剂具有较高的催化性能。本发明提供的甲醇催化用催化剂包括石墨烯,本发明对所述石墨烯的来源没有特殊的限制,采用本领域技术人员熟知的还原氧化石墨烯的技术方案即可。本发明对所述氧化石墨烯的来源也没有特殊的 限制,采用本领域技术人员熟知的氧化石墨烯即可。在本发明中,所述氧化石墨烯优选按照以下方法制备:将石墨与氧化剂进行反应,得到氧化石墨烯。本发明以石墨为原料,将其与氧化剂反应,超声,即可得到氧化石墨烯。在本发明,所述氧化剂优选为高锰酸钾,优选将石墨与氧化剂在酸性条件下进行反应,得到氧化石墨烯。本发明优选先将石墨与酸性溶液混合,然后将得到的混合溶液与氧化剂进行反应,得到氧化石墨烯。在本发明中,所述酸性溶液优选为硝酸钠和浓硫酸的混合溶液,所述硝酸钠的质量与浓硫酸的体积比优选为(I 10) g: 120mL,更优选为(I 5): 120mL ;所述硝酸钠与石墨的质量比优选为1: (I 5),更优选为1: 2。本发明提供的甲醇催化用催化剂包括聚丙烯酸-二茂铁复合物。聚丙烯酸-二茂铁复合物能够进入石墨烯的层状结构,抑制石墨烯的团聚,得到具有较大片层结构的石墨烯片,使得其能够负载更多的金属纳米粒子,且具有较优异的电子传导性能。而且由于聚丙烯酸具有丰富的含氧螯合位点,促进了金属粒子的均相成核;而且聚丙烯酸为网状结构,使得到的甲醇催化用催化剂具有多孔道的立体结构,缓冲了粒子运动,进一步促进了金属纳米粒子的均相生长。另外,由于二茂铁中心离子的配位作用,能够拉近CO和活性水的距离,增加了 CO的氧化几率,从而使得本发明提供的甲醇催化用催化剂在催化甲醇时具有较高的抗中间体毒性;而且二茂铁能够加速甲醇催化用催化剂的电子转移,更进一步的使得到的甲醇催化用催化剂在催化甲醇时具有优越的氧化反应动力学。本发明优选将聚丙烯酸和二茂铁在溶剂中反应,得到聚丙烯酸-二茂铁复合物。在本发明对所述聚丙烯酸和二茂铁的来源没有特殊的限制,采用本领域技术人员熟知的聚丙烯酸和二茂铁即可,如可以采用聚丙烯酸和二茂铁的市售商品。本发明优选将聚丙烯酸水溶液和二茂铁苯溶液混合,反应后得到聚丙烯酸-二茂铁复合物。本发明对所述聚丙烯酸和二茂铁反应的条件没有特殊的限制,在室温下将得到的聚丙烯酸和二茂铁的混合溶液搅拌即可。在本发明中,所述聚丙烯酸的平均分子量优选为500 1000,更优选为600 900,最优选为700 800,所述聚丙烯酸与二茂铁的质量比优选为(5 10): 1,更优选为(5 8): I ;所述聚丙烯酸-二茂铁混合溶液中聚丙烯酸的摩尔浓度优选为0.5mol/L 5mol/L,更优选为1.0mol/L 3mol/L,最优选为1.2mol/L ;所述聚丙烯酸-二茂铁混合溶液中二茂铁的摩尔浓度优选为0.05mol/L 2mol/L,更优选为0.lmol/L 1.5mol/L,最优选为 0.lmol/L。本发明提供的甲醇催化用催化剂包括金属纳米粒子。在本发明中,所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(20 50): (150 250): (I 15),优选为(25 40): (170 220): (3 10),更优选为(30 35): (190 210): (5 8)。在本发明中,所述金属纳米粒子优选为钼纳米粒子、金纳米粒子和钯纳米粒子中的一种或几种,更优选为钼纳米粒子、金纳米粒子和钯纳米粒子中的一种,最优选为钼纳米粒子。在本发明中,所述金属纳米粒子的粒径为2nm 10nm。相对于现有技术公开的甲醇催化用催化剂,本发明提供的甲醇催化用催化剂的粒子分布更为均匀,且平均粒径更小,在本发明中,所述甲醇催化用催化剂的粒径优选为3nm 15nm,更优选为3nm IOnm,最优选为5nm 8nm。本发明提供了一种甲醇催化用催化剂的制备方法,包括以下步骤:提供氧化石墨烯的分散液;将聚丙烯酸和二茂铁混合,反应后得到聚丙烯酸-二茂铁复合物;将所述氧化石墨烯的分散液与聚丙烯酸-二茂铁复合物和金属纳米粒子前驱体混合,得到混合溶液;将所述混合溶液与还原剂混合,进行还原反应后得到甲醇催化用催化剂。本发明提供氧化石墨烯的分散液。本发明对所述氧化石墨烯的来源没有特殊的限制,采用本领域技术人员熟知的氧化石墨烯即可。在本发明中,所述氧化石墨烯的制备方法与上述技术方案所述的氧化石墨烯的制备方法一致,在此不再赘述。得到氧化石墨烯后,本发明优选将所述氧化石墨烯分散于甲醇水溶液中,得到氧化石墨烯的分散液。在本发明中,所述氧化石墨烯分散液的质量浓度优选为0.3mg/mL 5mg/mL,更优选为0.6mg/mL 3mg/mL ;所述甲醇水溶液中甲醇与水的体积比优选为I: (0.5 5),更优选为1: (I 3)。本发明优选将氧化石墨烯分散于甲醇水溶液中后,将得到的分散液进行超声,得到氧化石墨烯分散液。本发明对所述超声的方法没有特殊的限制,采用本领域技术人员熟知的超声的技术方案即可。在本发明中,所述超声的时间优选为20min 50min,更优选为25min 40min,最优选为30min 35min。
本发明将聚丙烯酸与二茂铁混合,反应后得到聚丙烯酸-二茂铁复合物。本发明优选采用上述制备聚丙烯酸-二茂铁复合物的技术方案进行聚丙烯酸-二茂铁复合物的制备,在此不再赘述。得到氧化石墨烯分散液和聚丙烯酸-二茂铁复合物后,本发明将所述氧化石墨烯分散液与所述聚丙烯酸-二茂铁复合物和金属纳米粒子前驱体混合,得到混合溶液。本发明优选向所述氧化石墨烯分散液中加入聚丙烯酸-二茂铁水溶液,进行超声后,再在搅拌的条件下向其中加入金属纳米粒子前驱体溶液,优选将溶液的PH值调至8 12,得到混合溶液。在本发明中,所述氧化石墨烯与聚丙烯酸-二茂铁复合物和金属纳米粒子前驱体中金属的质量比优选为(20 50): (150 250): (I 15),更优选为(25 40): (170 220): (3 10),最优选为(30 35): (190 210): (5 8);所述氧化石墨烯分散液与聚丙烯酸-二茂铁水溶液混合后超声的时间优选为40min 90min,更优选为40min 80min,最优选为50min 70min,最最优选为60min。本发明对所述搅拌的方法没有特殊的限制,采用本领域技术人员熟知的搅拌的技术方案即可;在本发明中,所述金属纳米粒子前驱体优选为含有金属离子的溶液,本发明对所述含有金属离子溶液的种类没有特殊的限制,采用能够被还原得到金属纳米粒子的金属盐即可。如当所述金属纳米粒子为钼纳米粒子时,所述金属纳米粒子前驱体可选择H2PtCl6或氯钼酸盐;当所述金属纳米粒子为金纳米粒子时,所述金属纳米粒子前驱体可选择氯金酸或氯金酸盐;当所述金属纳米粒子为钯纳米粒子时,所述金属纳米粒子前驱体可选择氯钯酸或氯钯酸盐。在本发明中,所述金属纳米粒子前驱体溶液的摩尔浓度优选为0.0lmol/L 0.lmol/L,更优选为 0.03mol/L 0.05mol/L,最优选为 0.038mol/L ;在本发明中,所述混合溶液的pH值优选为8 12,更优选为11。本发明优选向氧化石墨烯、聚丙烯酸-二茂铁和金属纳米粒子前驱体溶液中加入碱性化合物溶液,将得到的混合溶液的PH值调至8 12。本发明优选采用滴加的方式加入碱性化合物;在本发明中,所述碱性化合物优选为氢氧化物,更优选为氢氧化钠或氢氧化钾;所述碱性化合物溶液的摩尔浓度优选为0.lmol/L lmol/L,更优选为0.3mol/L 0.8mol/L,最优选为0.5mol/L0得到混合溶液后,本发明将所述混合溶液与还原剂混合,进行还原反应后得到甲醇催化用催化剂。本发明优选在搅拌的条件下,向所述混合溶液中加入还原剂。本发明对所述搅拌的方法没有特殊的限制,采用本领域技术人员熟知的搅拌的技术方案即可。本发明优选缓慢向所述混合溶液中加入还原剂,以保证氧化石墨烯和金属纳米颗粒前驱体被充分还原,本领域技术人员可根据反应进程控制还原剂加入的速率,本发明对此不作特殊的限定。在本发明中,所述还原剂优选 为硼氢化钠、水合肼或抗坏血酸,更优选为硼氢化钠;所述还原剂与所述氧化石墨烯的质量比优选为(5 10): 1,更优选为¢.5 8): I。在本发明中,所述还原反应的温度优选为室温;所述还原反应的时间优选为20小时 35小时,更优选为24小时 30小时。本发明在完成所述还原反应后,优选将得到的反应产物进行过滤、洗涤和干燥,得到甲醇催化用催化剂。本发明对所述过滤、洗涤和干燥的方法没有特殊的限制,采用本领域技术人员熟知的干燥的技术方案即可。在本发明中,所述过滤优选为抽滤;本发明优选采用甲醇和水得到的反应产物进行洗涤;所述干燥优选为真空干燥,所述干燥的温度优选为40°C 60°C,更优选为45°C 55°C,最优选为50°C,所述干燥的时间优选为20小时 35小时,更优选为24小时 30小时。参见图1所示,图1为本发明实施例提供的甲醇催化用催化剂的制备流程示意图,由图1可以看出,本发明采用Hummer法将石墨氧化,得到氧化石墨烯;然后将氧化石墨烯与氯钼酸和聚丙烯酸-二茂铁复合物混合,得到混合溶液;再将得到的混合溶液进行还原反应,得到甲醇催化用催化剂。本发明将得到的催化剂用于甲醇的催化,提供了一种化学修饰电极,包括基底电极和设置在所述基底电极上的修饰层;所述修饰层为上述技术方案所述的甲醇催化用催化剂或上述技术方案所述方法制备得到的甲醇催化用催化剂。本发明提供的化学修饰电极优选以玻碳电极作为基底电极,本发明对所述玻碳电极没有特殊的限制,采用本领域技术人员熟知的玻碳电极即可;在所述玻碳电极上设置修饰层,所述修饰层为上述技术方案所述的甲醇催化用催化剂或上述技术方案所述制备方法得到的甲醇催化用催化剂,所述修饰层的厚度优选为200nm 100 μ m,更优选为300nm SOym0本发明以所述甲醇催化用催化剂为修饰材料,对玻碳电极进行修饰,得到化学修饰电极。由于本发明提供的甲醇催化用催化剂具有较高的电催化性能和较高的稳定性,使得本发明提供的化学修饰电极也具有较高的电化学性能。本发明对所述化学修饰电极的制备方法没有特殊的限制,采用本领域技术人员熟知的化学修饰电极制备的技术方案即可。本发明优选按照以下方法制备得到化学修饰电极:清洁玻碳电极;配制甲醇催化用催化剂分散液;将所述甲醇催化用催化剂分散液滴涂于清洁后的玻碳电极表面,得到化学修饰电极。本发明对玻碳电极进行清洁,采用本领域技术人员熟知的清洁玻碳电极的技术方案即可,本发明对此不作特殊的限制。本发明配制甲醇·催化用催化剂的分散液,本发明优选将上述技术方案所述的甲醇催化用催化剂或上述技术方案所述制备方法得到的甲醇催化用催化剂分散于Nafion和乙醇的混合溶液中,得到甲醇催化用催化剂的分散液。在本发明中,所述Nafion和乙醇的混合溶液中Nafion的质量分数优选为0.1 % I %,更优选为0.3 % 0.8 %,最优选为0.5%;所述甲醇催化用催化剂的分散液的质量浓度优选为0.5mg/mL 3mg/mL,更优选为Img/mL L 5mg/mL。得到甲醇催化用催化剂分散液后,本发明将所述分散液滴涂于清洁后的玻碳电极上,得到化学修饰电极。本发明对所述滴涂的方式没有特殊的限制,采用本领域技术人员熟知的制备化学修饰电极的滴涂方式即可。本发明优选采用移液枪进行滴涂;所述滴涂甲醇催化用催化剂分散液的体积优选为2 μ L 10 μ L,更优选为3 μ L 8 μ L。完成所述分散液的滴涂后,本发明将得到的涂覆有分散液的玻碳电极进行干燥,得到化学修饰电极。本发明对所述干燥的方法没有特殊的限制,采用本领域技术人员熟知的干燥的技术方案即可,如可以在室温下自然晾干,也可以在红外灯下烤干。本发明检测得到的修饰电极中修饰层的电化学活性表面积,本发明采用循环伏安法,以上述技术方案所述的化学修饰电极为工作电极、以饱和甘汞电极为参比电极、以钼电极为对电极,以硫酸溶液为底液,得到修饰电极在硫酸溶液中的循环伏安曲线。在本发明中,所述硫酸溶液的摩尔浓度优选为0.5mol/L 3mol/L,更优选为lmol/L。本发明根据得到的循环伏安曲线计算得到本发明提供的修饰电极的电化学活性表面积高达95.4m2/g。本发明将得到的修饰电极用于甲醇的催化,采用循环伏安法和计时电流法,以上述技术方案所述的化学修饰电极为工作电极、以饱和甘汞电极为参比电极、以钼电极为对电极,对甲醇溶液进行检测。在本发明中,所述甲醇溶液优选为甲醇的硫酸溶液,所述甲醇的摩尔浓度优选为0.5mol/L 3mol/L,更优选为lmol/L 2mol/L ;所述硫酸的摩尔浓度优选为0.5mol/L 3mol/L,更优选为lmol/L 2mol/L。结果表明,本发明提供的修饰电极催化甲醇得到的循环伏安曲线中,甲醇的峰电流可高达884.2mA/mgPt,正反扫电流比(If/Ib)为3.02,相对于现有技术公开的甲醇催化用催化剂有了较大的提高,因此,本发明提供的甲醇催化用催化剂对甲醇具有较高的催化活性和较高的抗中毒能力;本发明根据得到的计时电流曲线可以看出,本发明提供的修饰电极对甲醇催化氧化的电流衰减速率较低,且在500s以后仍表现出较高的催化氧化电流,甲醇催化用催化剂抗毒性明显提高。本发明研究了得到的催化剂对甲醇催化氧化的动力学,改变循环伏安扫描法测定时的扫速,得到不同扫速下催化剂对甲醇催化氧化的峰电流和峰电位,结果表明,峰电流的密度与扫描速率的平方根之间存在良好的线性关系,这说明,甲醇在催化剂上的催化氧化过程是受扩散控制的;且得到的峰电流的密度与扫描速率的平方根之间的线性曲线具有较高的斜率,这说明,甲醇在本发明提供的催化剂这一催化体系中更易于扩散,从而加速了甲醇的催化氧化;本发明还考察了甲醇的峰电位与扫速的log值(log(u))之间的关系,结果表明,甲醇氧化的峰电位随1g(U)的增加而线性增大,根据式(I)所示的公式计算得到电子转移系数α:
权利要求
1.一种甲醇催化用催化剂,包括石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子; 所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(20 50): (150 250): (I 15)。
2.根据权利要求1所述的甲醇催化用催化剂,其特征在于,所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(25 40): (170 220): (3 10)。
3.根据权利要求1 2任意一项所述的甲醇催化用催化剂,其特征在于,所述金属纳米粒子为钼纳米粒子、金纳米粒子和钯纳米粒子中的一种或几种。
4.根据权利要求1 2任意一项所述的甲醇催化用催化剂,其特征在于,所述聚丙烯酸-二茂铁复合物中聚丙烯酸和二茂铁的质量比为(5 10): I。
5.一种甲醇催化用催化剂的制备方法,包括以下步骤: 提供氧化石墨烯的分散液; 将聚丙烯酸和二茂铁混合,反应后得到聚丙烯酸-二茂铁复合物; 将所述氧化石墨烯的分散液与聚丙烯酸-二茂铁复合物和金属纳米粒子前驱体混合,得到混合溶液; 将所述混合溶液与还原剂混合,进行还原反应后得到甲醇催化用催化剂。
6.根据权利要求5所述的制备方法,其特征在于,所述石墨烯的分散液为石墨烯在甲醇水溶液中的分散液。
7.根据权利要求6所述的制备方法,其特征在于,所述甲醇水溶液中甲醇和水的体积比为1: (0.5 5)。
8.根据权利要求5所述的制备方法,其特征在于,所述混合溶液的pH值为8 12。
9.根据权利要求5所述的制备方法,其特征在于,所述还原剂为硼氢化钠、水合肼或抗坏血酸。
10.一种化学修饰电极,包括基底电极和设置在所述基底电极表面的修饰层; 所述修饰层为权利要求1 4任意一项所述的甲醇催化用催化剂或权利要求5 9任意一项所述的方法制备得到的甲醇催化用催化剂。
全文摘要
本发明提供了一种甲醇催化用催化剂,包括石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子;所述石墨烯、聚丙烯酸-二茂铁复合物和金属纳米粒子的质量比为(20~50)∶(150~250)∶(1~15)。本发明提供的甲醇催化用催化剂以石墨烯作为基底材料,聚丙烯酸-二茂铁复合物能够进入石墨烯的层状结构,抑制了石墨烯的团聚,而且聚丙烯酸促进了金属纳米粒子的均相成核,使负载的金属纳米粒子具有较高的催化活性;聚丙烯酸的网状结构也使得石墨烯-聚丙烯酸-二茂铁具有多孔道的立体结构,缓冲了粒子的运动,从而更进一步促进了金属纳米粒子的均相生长。因此,本发明提供的甲醇催化用催化剂对甲醇具有较高的催化活性,且具有较高的抗中间体毒化的能力。
文档编号H01M4/92GK103212442SQ201310143899
公开日2013年7月24日 申请日期2013年4月14日 优先权日2013年4月14日
发明者王宗花, 史国玉, 夏建飞, 张菲菲, 李延辉, 夏延致 申请人:青岛大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1