网罩式离子源及利用网罩式离子源的镀膜设备、防指纹镀膜方法与流程

文档序号:13978582阅读:484来源:国知局
网罩式离子源及利用网罩式离子源的镀膜设备、防指纹镀膜方法与流程

本发明属于防指纹镀膜技术领域,尤其涉及一种网罩式离子源及利用网罩式离子源的镀膜设备、防指纹镀膜方法。



背景技术:

随着电子技术高速发展,各种数码产品例如手机、平板电脑、笔记本电脑、数码相机等大量普及。在享受这些数码产品时,消费者希望这些数码产品具有美感,因此对数码产品的外观提出了更多需求,例如耐腐蚀、耐磨损、抗污、抗指纹等要求。

防指纹(af,anti-fingerprint)涂层是指在工件表面镀低表面能物质,例如全氟聚醚,以实现疏油疏水,从而达到防指纹效果。防指纹涂层的与基材的良好结合是膜层体现其功能的基本前提。传统的af镀膜工艺在涂层前采用线性的阳极层离子源对工件表面进行等离子清洗和活化,以此来提高膜层的附着力和耐久性。

然而,生产过程中,阳极层离子源的阴阳极间隙会附着剥落的涂层和粉尘,需要频繁维护以保证良好的绝缘,否则会引起电弧放电从而破坏等离子体的稳定性。更严重地,还会导致电极击穿漏水,设备安全和产品品质存在巨大风险。而且,阳极层离子源是一种阳极包裹阴极的复杂结构,阳极层离子源的维护耗时耗工且不经济。



技术实现要素:

针对传统阳极层离子源维护困难的问题,本发明提供了一种网罩式离子源及利用网罩式离子源的镀膜设备、防指纹镀膜方法,所利用的网罩式离子源结构简单可靠且免维护。

本发明提供的网罩式离子源,其主体为弧形孔板。

进一步的,所述弧形孔板的边缘焊接有沿边沿方向的加强筋。

进一步的,所述弧形孔板材质为不锈钢。

进一步的,所述弧形孔板的厚度为0.8mm~1.5mm,其上孔的孔径为8mm~12mm。

本发明提供的利用网罩式离子源的防指纹镀膜设备,包括旋转磁控对靶、蒸镀装置、真空腔、旋转工件架和电源系统,真空腔为立式前开门真空腔,真空腔腔体接地,旋转磁控对靶、蒸镀装置、旋转工件架均设于真空腔内;其特点是:还包括网罩式离子源,其安装于真空腔腔门上,并与真空腔绝缘接触;所述网罩式离子源主体的内径介于旋转工件架所围的圈的半径和真空腔内径之间,其高度介于真空腔的高度和真空腔镀膜区的有效高度之间,其弧度与腔门弧度匹配;

所述电源系统包括磁控溅射电源、蒸镀电源和离子源电源,磁控溅射电源连接旋转磁控对靶,蒸镀电源连接蒸镀装置中的加热电阻,离子源电源的阴极连接网罩式离子源,其阳极连接真空腔腔体。

进一步的,所述离子源电源为不对称双极脉冲电源。

本发明提供的采用上述防指纹镀膜设备的防指纹镀膜方法,至少包括:

(1)开启离子源电源,向真空腔通入ar气,网罩式离子源放电,对旋转工件架上安装的样品进行辉光清洗;

(2)开启磁控溅射电源,向真空腔通入ar和o2的混合气体,在样品表面溅射缓冲层;

(3)开启蒸镀电源加热蒸镀装置中置有防指纹药剂的蒸发舟,从而在缓冲层上蒸镀防指纹涂层。

进一步的,步骤(1)中,真空腔内真空度维持为0.5pa~5pa,放电电压为500v~800v,正向脉冲为50v~100v,频率为40khz~240khz,占空比为50%~80%。

进一步的,所述防指纹药剂为含氟有机物。

和现有技术相比,本发明具有如下优点和有益效果:

(1)采用了一种新型的网罩式离子源,结构简单,且免维护。

(2)所采用的网罩式离子源具有网孔结构,可形成空心阴极效应增强的辉光放电,增强了清洗效果;所采用的网罩式离子源的大面积薄壁结构,可增加放电功率,同时还能维持较低的功率密度。

附图说明

图1为本发明镀膜设备所采用的网罩式离子源的具体结构示意图;

图2为本发明镀膜设备的平面示意图。

图中:10-网罩式离子源,11-弧形孔板,12-加强筋,13-绝缘柱,20-旋转磁控对靶,30-蒸镀装置,40-真空腔,50-旋转工件架,61-磁控溅射电源,62-蒸镀电源,63-离子源电源。

具体实施方式

为了更清楚地说明本发明实施例和/或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。

图1所示为本发明镀膜设备所采用的网罩式离子源的具体结构,所述网罩式离子源的主体为一弧形孔板11。为增强网罩式离子源的结构稳定性,所述弧形孔板11的边缘焊接有沿边沿方向的加强筋12。为便于将网罩式离子源安装于镀膜设备上,所述弧形孔板11的四顶角处均设有一绝缘柱13。本实施例中,所述弧形孔板11材质为304不锈钢。

图2所示为采用上述网罩式离子源的防指纹镀膜设备的平面示意图,af镀膜机包括网罩式离子源10、旋转磁控对靶20、蒸镀装置30、真空腔40、旋转工件架50、进气系统、抽真空系统、水汽捕集器和电源系统,真空腔40的腔体接地;网罩式离子源10、旋转磁控对靶20、蒸镀装置30、旋转工件架50均设于真空腔40内,若干旋转工件架50围成圆圈,各旋转工件架50可自转,同时也可绕所围成圆圈的中心旋转。所述蒸镀装置30用来给真空腔40加热以蒸镀防指纹涂层;所述旋转磁控对靶20为两相对设置的磁控靶,本实施例中,两磁控靶均为圆柱型;所述进气系统用来向真空腔40内通入气体;所述抽真空系统用来对真空腔40抽真空;所述水汽捕集器用来捕获整个防指纹镀膜过程中产生的水汽;所述电源系统包括磁控溅射电源61、蒸镀电源62和离子源电源63,所述磁控溅射电源61连接两磁控靶,所述蒸镀电源62连接蒸镀装置30中的加热电阻,所述离子源电源63连接网罩式离子源10。

所述网罩式离子源10通过绝缘柱13安装于立式前开门真空腔的腔门上,其通过真空电穿通密封件(即feedthrough)连接离子源电源63的负极(即阴极),真空腔40腔体连接离子源电源63的正极(即阳极)并接地。所述弧形孔板11位于旋转工件架50和真空腔40之间,其内径介于旋转工件架50所围的圈的半径和真空腔40内径之间,且与旋转工件架50所围的圈的距离40mm~80mm;所述弧形孔板11的高度介于真空腔1高度和镀膜区有效高度之间,弧度略小于真空腔1立式前开门的弧度;所述弧形孔板11的厚度为0.8mm~1.5mm,其上孔的孔径为8mm~12mm。

本发明利用网罩式离子源10的网孔结构来形成空心阴极效应增强的辉光放电,利用网罩式离子源10大面积的薄壁结构来增加功率,同时维持较低功率密度。本实施例中,离子源电源63采用不对称双极脉冲电源,可有效抑制阴极表面打火。放电时,向真空腔40充入氩气至真空腔40内真空度维持为0.5pa~5pa,优选地,使真空腔40内真空度维持为1pa~3pa。放电电压为500v~800v,正向脉冲电压为50v~100v,频率为40khz~240khz,频率优选为80khz~120khz,占空比为50%~80%,此时放电电流约2a~4a。

传统的防指纹镀膜工艺主要包括对离子清洗、溅射缓冲层和防指纹蒸镀三个步骤。本发明基于传统防指纹镀膜工艺实现,下面将结合实施例详细说明本发明方法的具体步骤:

1)镀膜准备:

手机壳样品安装于旋转工件架上,未安装样品的旋转工件架采用假负载填充。将防指纹药剂放置于蒸镀装置的钨制蒸发舟上,关闭真空腔门。启动粗抽泵,提速分子泵约8分钟,此时真空腔内真空度低于10pa,分子泵提速完成。开启高真空阀和水汽捕集器约10分钟,此时,真空腔内真空度低于6.0*10-3pa。

2)对样品进行离子清洗,以去除样品表面所附着的杂质:

使旋转工件架旋转,通入800sccmar气,至真空腔内真空度维持为2.3pa,开启离子源电源,电压设定为800v,占空比为50%。对样品进行等离子清洗,清洗时间20分钟。清洗完成后停止通入ar气,并关闭离子源电源。

3)在样品表面溅射缓冲层:

按ar气和o2的体积比为3:2,通入ar和o2的混合气体,其中,o2为反应气体,并维持真空腔内真空度为0.3pa。本实施例中,磁控溅射电源采用频率为40khz的中频方波电源。开启磁控溅射电源,电流设定为10a,溅射7分钟,溅射完成,停止通入混合气体,并关闭磁控溅射电源,即在样品表面获得缓冲层。本实施例中,在靶中毒模式(即化合物模式)下进行磁控溅射。靶中毒模式下,磁控靶电压约350v;金属模式下磁控靶电压约500v。本实施例中,磁控靶为硅靶,所获得的缓冲层为sio2缓冲层。

4)防指纹蒸镀,以在缓冲层表面蒸镀抗指纹涂层:

防指纹药剂置于钨制蒸发舟内,开启蒸镀电源加热蒸镀装置中的钨制蒸发舟,加热电流约300a,蒸镀时间约7分钟,蒸镀完成,关闭蒸镀电源。所述抗指纹涂层材料为含氟有机物,具体可为全氟聚醚。

加热电流影响蒸发速度,进而影响防指纹膜的均匀性及防指纹效果,可进行微调,调节依据:观察真空腔内气压波动与钨制蒸发舟的颜色变化,气压变化平稳,且钨制蒸发舟的颜色在桔红色与亮黄色间为宜。

5)关闭高阀、真空泵组,充气破真空,取出样品。

下面将通过具体实施例验证本发明技术效果。

一、清洗效果验证

以4组黑色的阳极氧化手机壳为试验样本,将四组样品安装于旋转工件架上,采用上述步骤2)对样品进行离子清洗,清洗时间分别为5、10、15、20分钟。清洗后的样本于空气中静置10分钟,测试样品的水滴角,水滴角数据见表1。

表1水滴角数据

从表1可以看出,原始样品的水滴角为58度,清洗5分钟的样品的水滴角为42度,清洗10分钟的样品的水滴角为25度,当清洗时间超过15分钟时,样品的水滴角小于10度。随着清洗时间延长,样品水滴角逐渐减小,表明样品的表面能随清洗时间的延长而降低,说明了网罩式离子源的清洗效果。

二、质量控制:

测试蒸镀完成后样品的初期水滴角,具体为:样品静置于空气中2小时~4小时,在温度20℃~25℃、湿度60%~80%下进行水滴角试验。所测水滴角大于110度。

对蒸镀完成后样品进行老化测试,具体为:样品置于沸水的恒温水浴中,持续30分钟,样本不接触容器壁;水浴结束后将样本常温下放置冷却,再测试其水滴角,大于100度。所述沸水,其温度为95℃~100℃。

对蒸镀完成后样品进行橡皮擦磨损测试,具体为:取样品固定于测试台,采用韩国三星红色专用橡皮装在摩擦试验机上,负重1000g砝码,在样品表面来回摩擦2000个循环,每分钟60次、行程约40mm;摩擦结束后,用沸水冲洗1s~2s,静置10分钟后,再在摩擦区域内测试样品的水滴角,大于85度。

对蒸镀完成后样品进行钢丝绒磨损测试,具体为:取样品固定于测试台上,采用犀牛牌0000号钢丝绒装在摩擦试验机上,负重500g砝码,在样品表面来回摩擦1000个循环,每分钟60次、行程约40mm;摩擦结束后,用沸水冲洗1s~2s,静置10分钟后,再在摩擦区域内测试样品的水滴角,大于85度。

上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出任何的修改和改变,都落入本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1