生物学产品的制作方法

文档序号:410604阅读:289来源:国知局
专利名称:生物学产品的制作方法
技术领域
本发明涉及一种抗体分子,它对包含人类激酶插入结构域的受体(KDR)的抗原决定簇具有特异性。该抗体分子结合KDR的亲和力比人类血管内皮生长因子(VEGF)对KDR的亲和力高,可防止VEGF和KDR之间的相互作用。本发明还涉及该抗体分子的治疗用途以及该抗体分子的生产方法。
本发明涉及抗体分子。一种抗体分子中有两条重链和两条轻链。每条重链和每条轻链在其N末端都具有一个可变结构域。每个可变结构域包含四个骨架区(FRs),它们以三个决定簇互补区(complementarity determining region,CDR)相间隔。决定簇互补区决定了抗体的抗原结合特异性,它们是相对较短的多肽序列,由可变结构域的骨架区携带。可变结构域中的氨基酸残基通常按照Kabat等人发明的系统来编号。该系统由Kabat等人于1987年提出,参见美国国立卫生研究院、美国卫生及公共服务部“免疫重要性蛋白质的序列”(下文均以“Kabat等(见前)”表示)。除非特别指出,本说明书均采用该编号系统。
Kabat残基表示法并不总是直接对应于氨基酸残基的线性编号。实际的线性氨基酸序列可能包含比严格的Kabat编号或者少一些或者额外多一些的氨基酸,对应于在基本可变结构域减少或者插入一个结构成分,该结构成分可以是骨架区或是CDR。对于一个给定的抗体,其残基的正确的Kabat编号可以通过对照具有“标准”的Kabat编号序列的另一抗体序列中同源残基来决定。
按Kabat编号法,重链可变结构域的决定簇互补区位于31-35位残基(CDRH1),50-65位残基(CDRH2)以及95-102位残基(CDRH3)。
按照Kabat编号法,轻链可变结构域的决定簇互补区位于24-34位残基(CDRL1),50-56位残基(CDRL2)以及89-97位残基(CDRL3)。
CDR移植的(CDR-grafted)抗体的构建如欧洲专利申请EP-A-0239400中所述,其中公开了一种方法,包括通过定点诱变,采用长链寡核苷酸将小鼠单克隆抗体(Mab)的CDR移植到人类免疫球蛋白可变结构域的骨架区。
通过CDR移植来人源化单克隆抗体的最早的工作是在识别合成抗原(如NP)的单克隆抗体上进行的。然而,Verhoeyen等人(科学,239,1534-1536,1988)和Riechmann等人(自然,332,323-324,1988)已经分别描述了通过CDR移植来人源化可以识别溶菌酶的小鼠单克隆抗体和可以识别人类T细胞上一种抗原的大鼠单克隆抗体的例子。
Riechmann等人发现,单独转移CDR(如Kabat定义(Kabat等(见前)和Wu等,J.Exp.Med.,132,211-250,1970)不足以使CDR移植产物具备令人满意的抗原结合活性。人们发现许多骨架区的残基必须被改变后,才可以与供体骨架区的残基相对应。选择哪个骨架区的残基需要改变的推荐标准见国际专利申请WO90/07861中的论述。
许多讨论CDR移植的抗体的综述已经发表,包括Vaughan等人(Nature Biotechnology,16,535-539,1998)。
VEGF是一种同二聚体的糖蛋白,由两个结构类似于PDGF的分子量为23KD的亚基组成。它在血管发生(vasculogenesis),即新的血管系统的建立过程中起着重要的发育学上的作用,它还参与血管生成(angiogenesis),即在预先存在的血管的基础上形成新的血管的过程。血管生成包括毛细管内皮细胞由预先存在的血管中的增殖、迁移以及组织渗透的过程。除了在正常的生理学过程,诸如胚胎发育、滤泡生长(包括黄体形成)和创伤愈合中具有重要作用以外,血管生成还在许多病理条件下发生,包括炎症反应、牛皮癣、类风湿性关节炎以及肿瘤生长和转移(Folkman,J和Klagsbrun,M.,科学,235442-447,1987)。举例来说,普遍认为肿瘤的生长不会超过某一大小,除非它们通过血管生成而获得了充分的血液供应。
VEGF与其它作为体内血管生成可能调控子的因子显著不同,它是内皮细胞特异性的血管生成的诱导因子。
VEGF有5个不同的单体形式的同种异型体(isoform)存在,它们来自mRNA不同的剪接作用。这些同种异型体包含两个膜结合的形式(VEGF206和VEGF189)以及三个可溶的形式(VEGF165,VEGF121和VEGF145)。除了人类的胎盘以外,在所有的组织中VEGF165是丰度最高的同种异型体。
VEGF的作用通过其与两个高亲和力的酪氨酸激酶受体的相互作用来介导,类fms(fms-like)的酪氨酸激酶受体(FLT-1或VEGFR-1,Shibuya M.等,Oncogene,5,519-524,1990)和KDR(或VEGFR-2,Terman等,Oncogene,6,1677-1683,1991)。KDR和FLT-1都是跨膜的受体,每个跨膜受体在细胞外配基结合区包含7个类免疫球蛋白的结构域,一个细胞内的酪氨酸激酶结构域和一个跨膜结构域。跨膜结构域起到的作用是,将受体锚定在表达该受体的细胞的细胞膜上。
有几篇关于在肿瘤中VEGF及其受体在RNA和蛋白质两个水平上同时过表达的报道(Dvorak等,Curr.Top.Microbiol.Imunol.,237,97,1999)。当组织缺氧时(这在肿瘤中会经常发生),VEGF表达水平上调,而且升高配基的浓度会诱导其受体的表达。这类研究的一些例子显示在人类肿瘤中升高的KDR表达,所述肿瘤包括乳腺癌(Brown等,Hum.Pathol.,26,86,1995);结肠癌(Takahashi等,Cancer Res.,55,3964,1995);肾癌(Takahashi等,BBRC257,855,1999)以及胃肠道腺癌(Brown等,Cancer Res.,53,4727,1993)。在最近的研究中,采用特异性识别结合于KDR的VEGF的抗体,在非小细胞肺癌中观察到VEGF/KDR血管生成途径的上调(Koukourakis等,Cancer Res.,60,3088,2000)。
许多实验证据显示体内VEGF的活性和肿瘤血管生成的因果联系。Kim等人将抗VEGF中和的单克隆抗体注射到带有肿瘤的裸鼠中,显示肿瘤生长受到抑制(自然362,841,1993)。显性负效应的小鼠KDR的反转录病毒表达(FLK-1)也可抑制小鼠的肿瘤生长(Millauer等,Nature,367,576,1993)。相似地,反义VEGF(Cheng等,PNAS,93,8502,1996),抗FLK-1的抗体(Witte等,CancerMetast.Rev.,17,155,1998)和可溶的FLT-1的表达(Goldman等,PNAS,95,8795,1998)均可以抑制模型小鼠中肿瘤的生长。
几个实验证据提示VEGF涉及血管生成的生物学效果主要是通过KDR受体来介导的(综述见Larrivee和Karsan,Int.J.Mol.Med.,5,447,2000)。
由VEGF介导的单独KDR的激活(仅在表达一种VEGFR类型的细胞株中)显示足以导致细胞的增殖和迁移(Waltenburger等,J.Biol.Chem.,269,26988,1994)。相反地,当FLT-1单独激活时,未见细胞增殖,而且细胞迁移也只是不稳定地观察到。
采用受体选择性VEGF的突变体的实验显示,KDR连接可以激活促分裂原(mitogen)激活的蛋白激酶(MAPK),引起增殖、迁移和血管渗透性(Keyt等,J.Biol.Chem.,271,5638,1996)。在这些分析中,FLT-1选择性的突变体是灭活的。
抗VEGF的单克隆抗体可以阻断VEGF与KDR的相互作用,但不阻断VEGF与FLT-1的相互作用,它可以抑制VEGF诱导的血管渗透性,但是非阻断性的抗VEGF抗体没有此效果(Brekken等,CancerRes.,60,5117,2000)。
通过杂交瘤细胞技术产生抗鼠VEGF受体(FLK-1)的单克隆抗体已被描述(WO94/11499)。这显示可以通过阻断VEGF与受体的相互作用来抑制FLK-1受体的激活。在某些模型中,这种受体激活的抑制可以有效地抑制VEGF诱导的血管生成。而且,已经证明这种抗FLK-1抗体在几种小鼠异种移植物肿瘤的治疗中是有效的。然而,并非所有结合FLK-1的抗体都可以足够的亲和力结合KDR从而达到有效的治疗。
VEGF与KDR的结合还可以抑制新形成的血管的凋亡,这是通过KDR介导的PI3激酶-Akt激酶信号途径的激活来达到的(Akt激酶是众所周知的PI3激酶途径中的下游激酶,该途径参与细胞存活,Gerber等,J.Biol.Chem.,273,30336,1998)。动物模型也显示通过阻断VEGF与KDR的相互作用,可以有效地阻断这个抗凋亡的反应。
目前认为,KDR是介导VEGF作用的最重要的受体,它在促进血管生成和新血管的存活方面的作用也得到了普遍的公认。
因此,一种可以结合KDR并且阻断KDR被VEGF激活的抗体分子,可能在治疗VEGF和/或KDR涉及在其中的病理学上具有用处。例如在炎症反应、牛皮癣、类风湿性关节炎以及肿瘤生长的病例中。最佳效果可能是通过阻断KDR与其受体的相互作用而达到的,对于这一点还存在着强烈的争议。人们需要可以被重复使用并且可以容易又有效地生产出来的抗体分子。人们也需要一种对KDR具有高亲和力而且在人体中具有低免疫原性的抗体分子。
在第一方面,本发明提供一种对KDR具有特异性的抗体分子,它包含一条重链,重链的可变结构域包括一个CDR(如Kabat等定义(见前)),其序列为如

图1中H1给出(SEQ ID NO1)的CDRH1序列,如图1中H2给出(SEQ ID NO2)的CDRH2序列或如图1中H3给出(SEQ ID NO3)的CDRH3序列。
本发明第一方面中的抗体分子的重链可变结构域包含至少一个选自H1、H2和H3(SEQ ID NO1至SEQ ID NO3)的CDR。优选地,抗体分子在重链可变结构域包含至少两个,以及更优选地包含所有三个CDR。
本发明的第二方面,提供一种对人类KDR具有特异性的抗体分子,它包含一条轻链,轻链的可变结构域包含一个CDR(如Kabat等定义(见前)),其序列为如图1中L1给出(SEQ ID NO4)的CDRL1序列,如图1中L2给出(SEQ ID NO5)的CDRL2序列或如图1中L3给出(SEQ ID NO6)的CDRL3序列。
本发明第二方面中的抗体分子的轻链可变结构域包含至少一个选自L1、L2和L3(SEQ ID NO4至SEQ ID NO6)的CDR。优选地,抗体分子在轻链可变结构域包含至少两个,以及更优选地包含所有三个CDR。
本发明第一方面和第二方面中的抗体分子,分别优选地具有一条互补的轻链或者一条互补的重链。
优选地,本发明第一方面和第二方面中的抗体分子包含一条重链,重链的可变结构域包含一个CDR(如Kabat等定义(见前)),其序列为如图1中H1给出(SEQ ID NO1)的CDRH1序列,如图1中H2给出(SEQ ID NO2)的CDRH2序列,或如图1中H3给出(SEQ ID NO3)的CDRH3序列,它还包含一条轻链,轻链的可变结构域包含一个CDR(如Kabat等定义(见前)),其序列为如图1中L1给出(SEQ ID NO4)的CDRL1序列,如图1中L2给出(SEQID NO5)的CDRL2序列,或如图1中L3给出(SEQ ID NO6)的CDRL3序列。
参照上文,SEQ ID NO1至6(图1)给出的CDR来源于小鼠单克隆抗体VR165。本发明也提供了小鼠单克隆抗体VR165。抗体VR165的可变结构域的序列如图2所示(SEQ ID NO7和8)。VR165的轻链恒定区是κ,重链恒定区是IgG2a。这个小鼠抗体在下文中称为“供体抗体”。
在第二个可供选择的优选实施方案中,依照本发明第一方面或第二方面的抗体是一种嵌合的小鼠/人类抗体分子,在此称为嵌合VR165抗体分子。这种嵌合VR165抗体分子包含小鼠单克隆抗体VR165的可变结构域(SEQ ID NO7和8)和人类的恒定结构域。优选地,嵌合VR165抗体分子在轻链中包含人类Cκ结构域(Hieter等,细胞,22,197-207,1980;Genebank登记号J00241),在重链中包含人类γ4结构域(Flanagan等,自然,300,709-713,1982)。
在第三个可供选择的优选实施方案中,依照本发明第一方面或第二方面的抗体是一种CDR移植的抗体分子。此处采用的“CDR移植的抗体分子”一词是指一种抗体分子,它的重链和/或轻链包含移植到受体抗体(例如人类抗体)重链和/或轻链的可变区骨架上的一个或多个来自供体抗体(例如鼠的单克隆抗体)的CDR。
优选地,这种CDR移植的抗体有一个可变结构域,包含人类受体的骨架区以及一个或多个上述的供体CDR。
当CDR被移植时,考虑到CDR来源的供体抗体的种类/类型,可以采用任何适宜的受体可变区骨架序列,包括小鼠、灵长类和人类的骨架区。可用于本发明的人类骨架区的例子如KOL、NEWM、REI、EU、TUR、TEI、LAY和POM(Kabat等(见前))。举例来说,KOL和NEWM可用作重链,REI可用作轻链,而EU、LAY和POM可用作重链和轻链。
重链的优选骨架区是人类种系(germline)3族的骨架区,如图3所示(VH3-7 GL,SEQ ID NO9)。轻链的优选骨架区是人类种系序列1族的骨架区,如图3所示(A30 GL,SEQ ID NO10)。
本发明CDR移植的抗体中,优选用作受体抗体的是,具有与供体抗体链同源的链的抗体。受体的重链和轻链不必来自相同的抗体,如果需要的话,受体的重链和轻链还可以包含具有来自不同链的骨架区的组合链。
同样,本发明CDR移植的抗体中,骨架区的序列不必与受体抗体的序列完全相同。举例来说,在该受体链种类或类型中不常见的氨基酸残基可以改为比较经常出现的残基。做为选择,可以改变受体骨架区选定的残基,使它们与在供体抗体相同位置的残基相对应。这种改变应该控制在基本不需要恢复供体抗体亲和力的范围之内。在受体骨架区选择可能需要改变的残基的方案在WO91/09967中提出。
优选地,本发明CDR移植的抗体分子中,如果受体的重链含有人类种系3族的骨架区(如图3所示)(SEQ ID NO9),那么受体的重链骨架区除了包含一个或多个供体CDR外,还在77和93位包含供体的氨基酸残基(Kabat等(见前))。
优选地,本发明CDR移植的抗体分子中,如果受体的轻链含有人类种系1族的骨架区(如图3所示)(SEQ ID NO10),那么受体轻链的骨架区在36、44、60、66、69、70和71位包含供体的氨基酸残基(Kabat等(见前))。
供体的氨基酸残基是来自供体抗体(即CDR最初来源的抗体)的残基。
本发明的抗体分子可包含完整的抗体分子,具有全长的重链和轻链;该抗体分子的一个片段,如Fab、改造的Fab、Fab双体、改造的Fab的双体、Fab’、F(ab)’2或Fv片段;轻链或重链的单体或双体;单链抗体,如单链Fv,其中重链和轻链的可变结构域由多肽连接区相连接。相似地,重链和轻链的可变区可与其它的抗体结构域适当地结合起来。
本发明优选的抗体分子是Fab片段。优选地Fab片段具有如SEQID NO11(图4)给出的轻链,和如SEQ ID NO12(图5)给出的重链。SEQ ID NO11和SEQ ID NO12中给出的氨基酸序列分别优选地由SEQ ID NO13和SEQ ID NO14给出的核苷酸序列编码(图4和图5)。
做为选择,本发明优选的抗体分子是改造的Fab片段,其中的改造是在其重链C末端加入一个或多个氨基酸,可用来附加效应分子或报告分子。优选地,加入的氨基酸形成一个改造后的铰链区,铰链区包含一个或两个可以附加效应分子或报告分子的半胱氨酸残基。这种改造后Fab片段的优选具有如SEQ ID NO11给出的轻链,和如SEQID NO12给出的重链。SEQ ID NO11和SEQ ID NO12中给出的氨基酸序列分别优选地由SEQ ID NO13和SEQ ID NO14给出的核苷酸序列编码。
还可以做为选择,本发明特别优选的抗体分子是改造的Fab片段的双体,其中的改造是在每一个Fab重链的C末端加入一个或多个氨基酸,以便于该链与另一个这样的链以及与效应分子或报告分子连接。优选地,加入的氨基酸形成一个改造后的铰链区,其中包含一个、两个或三个半胱氨酸残基,用于附加另一个Fab、效应分子或报告分子。
优选的效应分子基团是聚合物分子,它可以连接到改造的Fab片段或改造的Fab双体的片段上,以增加其在体内的半衰期。
一般而言,聚合物分子可以是合成的或天然存在的聚合物,例如任选取代的直链或支链聚亚烷基(polyalkylene),聚亚烯基(polyalkenylene)或聚氧亚烷基(polyoxyalkylene)聚合物分子,或分支的或不分支的多糖,例如同多糖或杂多糖。
可能出现在上述的合成聚合物中的特定的任选取代基,包括一个或多个羟基、甲基或甲氧基基团。合成聚合物的特殊例子包括任选取代的直链或支链聚乙二醇,聚丙二醇,聚乙烯醇或它们的衍生物,尤其是任选取代的聚乙二醇,如甲氧基聚乙二醇或它的衍生物。
特别的天然存在的聚合物包括乳糖、直链淀粉、葡聚糖、糖原或它们的衍生物。这里“衍生物”包括反应性衍生物,例如硫醇选择性的反应基团如顺丁烯二酰亚胺等。反应基团可以直接地或者通过一个连接体片段连接到聚合物上。应当理解,在一些情况下,这种基团的残基作为在抗体片段和聚合物之间的连接基团,也构成了产物的一部分。
聚合物的大小可以根据需要而有所不同,但是通常平均分子量的范围为500Da-50000Da,优选的为5000Da-40000Da,更加优选的为25000Da-40000Da。特别地,可以在产品预期用途的基础上选择聚合物的大小。
特别优选的聚合物包括聚亚烷基聚合物,例如聚乙二醇,或者特别是甲氧基聚乙二醇或它的衍生物,尤其是分子量在约25000Da-40000Da范围内的。
每一个附加在改造后抗体片段的聚合物分子可以共价地连接到位于抗体片段半胱氨酸残基的硫原子上。共价连接通常为二硫键,或者特别是硫碳键。
需要时,抗体片段可以有一个或多个其它的效应分子或报告分子附加在其上。效应分子或报告分子可以通过抗体片段上任何可利用的氨基酸侧链或末端氨基酸的功能基团而附加到抗体片段上,所述基团例如任何游离的氨基、亚氨基、羟基或羧基基团。
激活的聚合物可用作起始原料,制备上述聚合物-改造的抗体片段。激活的聚合物可以是任何包含硫醇反应基团的聚合物,例如α-卤代羧酸或酯如碘乙酰胺,亚胺如顺丁烯二酰亚胺,乙烯砜或二硫化物。这种起始原料可以获得商品化的(如来自Shearwater Polymers Inc.,Huntsville,AL,USA)或由商品化可获得的起始原料采用常规的化学过程制备。
至于附加的聚乙二醇(PEG)部分,参考文献见“聚乙二醇化学,生物技术和生物医学应用”,1992,J.Milton Harris编辑,Plenum Press,纽约,“聚乙二醇化学及生物学应用”,1997,J.Milton Harris和S.Zalipsky编辑,美国化学学会,华盛顿特区,以及“生物医学科学中的生物结合蛋白偶联技术”,1998,M.Aslam和A.Dent,GrovePublishers,纽约。
在需要获得连接有效应分子或报告分子的抗体片段时,可通过标准的化学或重组DNA过程来制备,其中抗体片段在与适宜的活性聚合物反应之前或者之后,直接地或者通过偶联剂连接到效应分子或报告分子上。特别地,化学过程包括,举例来说,在WO93/06231、WO92/22583、WO90/09195和WO89/01476中所描述的。做为选择,当效应分子或报告分子是蛋白质或多肽的情况下,可采用重组DNA技术进行连接,例如在WO86/01533和EP-A-0392745中描述的。
优选地,本发明中改造的Fab片段或Fab双体是聚乙二醇化的(即PEG(聚乙二醇)或mPEG(甲氧基聚乙二醇)共价连接在其上的),根据EP-A-0948544和EP-A-1090037中公开的方法。本发明优选的抗体分子是聚乙二醇化的改造后Fab片段,如图6所示,或聚乙二醇化的改造后Fab双体片段。如图6所示,改造后Fab片段具有一个共价连接到改造后铰链区的单硫醇基团上的顺丁烯二酰亚氨基团。一个赖氨酸残基共价连接在顺丁烯二酰亚氨基团上。赖氨酸残基上的每个氨基附加一个甲氧基聚乙二醇聚合物,聚合物的分子量约为20000Da。因此,整个效应分子的完全分子量约为40000Da。相似地,每个甲氧基聚乙二醇可连接一个赖氨酸残基,赖氨酸残基如EP-A-1090037所述共价连接于双-顺丁烯二酰亚胺连接子上,形成本发明的聚乙二醇化的改造后Fab双体。
优选地,在图6所示的复合物上,抗体部分的重链序列如SEQ IDNO12给出,轻链的序列如SEQ ID NO11给出。
本发明抗体分子的恒定区结构域(如果存在的话)也可根据抗体分子的可能的功能,特别是可能需要的效应功能来选择。举例来说,恒定区结构域可以是人类IgA、IgD、IgE、IgG或IgM结构域。特别是可以采用人类IgG恒定区结构域,当抗体分子用作治疗用途、且需要抗体的效应功能时,尤其可选择IgG1和IgG3同种型的恒定结构域。做为选择,当抗体分子用作治疗目的、且不需要抗体的效应功能时,比如仅仅阻断VEGF对KDR的连接时,可采用IgG2和IgG4同种型。
另外,本发明的抗体分子可连接效应分子或报告分子。举例来说,它可通过共价的桥联结构结合一个大环,用于螯合重金属原子或毒素,如蓖麻毒素。做为选择,重组DNA技术可用来产生抗体分子,其中完整的免疫球蛋白分子的Fc片段(CH2,CH3和铰链结构域)、CH2和CH3结构域、或CH3结构域被功能性的非免疫球蛋白的蛋白(如酶类或毒素分子)置换,或者通过多肽连接物与之连接。
本发明的抗体分子优选地具0.4×10-10结合亲和力。优选地,本发明的抗体分子包含重链可变结构域gH3(SEQ ID NO15)以及轻链可变结构域gL3(SEQ ID NO16)。这些轻链和重链可变结构域的序列如图7所示。
本发明还涉及本发明中抗体分子的各种变体,它们对KDR的亲和力是改进了的。这些变体可以通过许多亲和力成熟的方法来得到,这些方法包括突变CDR(Yang等,J.Mol.Biol.,254,392-403,1995),链变换(chain shuffling)(Mark等,Bio/Technology,10,779-783,1992),采用大肠杆菌的突变株系(Low等,J.Mol.Biol.,250,359-368,1996),DNA变换(Patten等,Curr.Opin.Biotechnol.,8,724-733,1997),噬菌体显示(Thompson等,J.Mol.Biol.,256,77-88,1996)以及有性PCR(Crameri等,自然,391,288-291,1998)。Vaughan等(见前)对这些亲和力成熟的方法进行了讨论。
本发明还提供了编码本发明中抗体分子重链和/或轻链的DNA序列,如附图所描述的。
本发明的DNA序列可包含合成的DNA,例如可以通过化学方法、cDNA、基因组DNA或它们的组合来生产得到。
本发明还涉及克隆或表达载体,它们包含本发明中的一个或多个DNA序列。优选的克隆或表达载体包含两个DNA序列,分别编码本发明的抗体分子的轻链和重链。
在优选的实施方案中,本发明提供了大肠杆菌的表达载体,它包含本发明的一个DNA序列。优选的表达载体是pTTOD(CDP791),示于图8。
构建载体的常规方法,转染方法以及培养方法已为本领域的技术人员所熟知。这方面可以参见“最新分子生物学方法”,1999,F.M.Ausubel编辑,Wiley Interscience,纽约,以及冷泉港出版的ManiatisManual。
编码本发明抗体分子的DNA序列可通过本领域技术人员熟知的方法来获得。举例来说,编码部分或完整抗体重链和轻链的DNA序列可以根据需要由确定的DNA序列合成,或以相应氨基酸序列为基础合成。
对本领域的技术人员,编码受体骨架区序列的DNA可以广泛地获得,并且可以它们的已知氨基酸序列为基础容易地合成出来。
分子生物学标准的技术可用来制备编码本发明抗体分子的DNA序列。所需的DNA序列可以采用寡核苷酸合成技术来完整地或部分地合成。可适当应用定点诱变和聚合酶链式反应技术(PCR)。
任何适宜的宿主细胞/载体系统都可以用来表达编码本发明抗体分子的DNA序列。细菌例如大肠杆菌以及其它微生物系统,可用来部分地表达抗体片段,例如Fab、改造的Fab的双体以及F(ab’)2片段,尤其是Fv片段和单链抗体片段,例如单链Fvs。真核生物如哺乳动物的宿主细胞表达系统可用来生产更大的抗体分子,包括完整的抗体分子。适宜的哺乳动物宿主细胞包括CHO、骨髓瘤或杂交瘤细胞。
本发明还提供了生产本发明抗体分子的方法,包括在适宜从编码本发明抗体分子的DNA表达蛋白的条件下培养含有本发明中载体的宿主细胞,并分离抗体分子。
优选地,生产本发明抗体分子的方法包括,在适宜从DNA序列表达蛋白质的条件下培养大肠杆菌,并分离抗体分子,所述大肠杆菌包括含有本发明DNA序列的大肠杆菌表达载体。抗体分子可由细胞分泌出来,或通过适当的信号序列靶向细胞的周质。做为选择,抗体分子可以聚积在细胞质中。抗体分子优选地靶向周质。由产生的抗体分子和所采用的方法决定,使抗体分子重折叠并采取功能构象是合乎需要的。抗体分子重折叠的方法为本领域的技术人员所熟知。
抗体分子可只包含重链或轻链多肽,在这种情况下,仅仅需要用重链或轻链多肽的编码序列来转染宿主细胞。为了生产同时包含重链和轻链的产物,可采用两个载体来转染细胞株,第一个载体编码轻链多肽,第二个载体编码重链多肽。做为选择,可采用单个载体,其上包括编码轻链和重链多肽的序列。
本发明还提供了治疗或诊断组合物,它包含本发明的抗体分子,结合以药学上可接受的赋形剂、稀释剂或运送体(carrier)。
本发明还提供了制备治疗或诊断组合物的方法,包括将本发明的抗体分子与药学上可接受的赋形剂、稀释剂或运送体混合。
抗体分子可以是治疗或诊断组合物中唯一的活性成分,或者也可以伴有包括其它抗体成分在内的其它活性成分,例如抗T细胞、抗IFNγ或抗LPS的抗体,或者非抗体成分如黄嘌呤。
药剂组合物应优选地包含治疗上有效剂量的本发明的抗体。在此使用的“治疗上有效剂量”一词,指用来治疗、改善或预防目标疾病或状况所必须的治疗用药剂的剂量,或显示出可检测的治疗或预防效果所必须的剂量。对任何抗体来说,治疗上有效的剂量可以由细胞培养分析或动物模型(通常为啮齿动物、兔、狗、猪或灵长类动物)进行初步估计。动物模型还可用于确定适当的浓度范围和用药途径。然后这些信息可用来确定在人类中用药的有用剂量和途径。
以人类为对象的准确有效剂量将依赖于疾病的严重程度,目标对象的一般健康状况、年龄、体重和性别、饮食、用药时间和频率、药物组合、反应敏感度和对治疗的耐受性/反应。这个剂量可以通过常规实验来确定,并在临床医生的判断之内。通常地,有效剂量的范围为0.01mg/kg-50mg/kg,优选地为0.1mg/kg-20mg/kg,更加优选的是15mg/kg左右。
组合物可以对患者单独用药,或者与其它药剂、药物或激素结合用药。
本发明的抗体分子的用药剂量依赖于有待治疗的状况的性质,待中和的或预期的VEGF的水平升至理想水平之上的程度,还依赖于抗体分子是用于预防还是用于治疗现存状况。该剂量还要依照患者的年龄及情况来进行选择。
因此,举例来说,在该产物用于治疗或预防慢性的引起炎症疾病(例如类风湿关节炎)的情况下,本发明的抗体分子的适当剂量为0.5mg/kg-50mg/kg,优选地为1mg/kg-20mg/kg,最优选的是15mg/kg左右。该剂量的使用频率将依赖于抗体分子的半衰期及其效果持续的时间。
如果抗体分子的半衰期较短(如2-10小时),每天给予患者一个或多个剂量是必要的。做为选择,如果抗体分子的半衰期较长(如2-15天),每天、每周仅给予患者一次该剂量可能是必要的,甚至可以每一到两个月一次。
药物组合物还包含用于施用抗体的药学上可接受的运送体。运送体自身不应该诱导对接受该组合物的个体有害的抗体产生,还应该没有毒性。适当的运送体可以是大的、缓慢代谢的大分子,例如蛋白质、多肽、脂质体、多糖、聚乳酸,聚乙醇酸,多聚的氨基酸、氨基酸共聚物以及灭活的病毒颗粒。
可采用药学上可接受的盐,例如无机酸盐如盐酸盐、氢溴酸盐、磷酸盐和硫酸盐,或有机酸盐如乙酸盐、丙酸盐、丙二酸盐和安息香酸盐。
治疗组合物中药学上可接受的运送体还可包含液体如水、生理盐水、甘油和乙醇。另外地,辅助物质如润湿或乳化药剂或pH缓冲物质,可以在这种组合物中存在。这样的运送体使药物组合物可以被制成如药片、药丸、糖衣丸、胶囊、液体、凝胶、糖浆、膏剂以及悬浮液,便于患者摄取。
优选的用药形式包括适于非肠道用药的形式如注射或输注,举例来说,通过药团注射或连续输注。在产物用于注射或输注的情况下,它可采取在油性或水性赋形剂中的悬浮液、溶液或乳状液的形式,它可以包含制剂化药剂,如悬浮、防腐、稳定和/或分散用的药剂。做为选择,抗体分子可以采用干粉形式,用前以适当的无菌液体复原。
一旦配制后,本发明的组合物可直接对受试者用药。受试者可以是动物。然而,组合物优选地适合对人类用药。
本发明的药物组合物可以通过许多途径用药,包括口服、静脉内、肌肉内、动脉内、骨髓内、鞘内、心室内、经真皮、经皮肤(例见WO98/20734)、皮下、腹膜内、鼻内、肠、局部、舌下、阴道内或直肠的途径,但不仅限于这些途径。无针注射器也可用于本发明药物组合物的用药。典型地,治疗组合物可以制备为可注射的液体溶液或悬液。也可制备适于注射前溶解在、或悬浮在液体赋形剂的固态形式。
组合物的直接输送通常通过皮下、腹膜内、静脉内或肌肉内注射而达到,或者输送到组织的间隙中。组合物还可在损伤处用药。剂量治疗可以是单剂量方案或多剂量方案。
应当理解,组合物中的活性成分是抗体分子。做为活性成分,它易于在胃肠道内降解。因此,如果组合物采用胃肠道途径用药的话,组合物需要包含一些药剂,它们可以防止抗体在胃肠道内降解,但一旦组合物被胃肠道吸收,它们就可以释放出抗体分子。
关于药学上可接受的运送体的全面讨论可以参见Remington’sPharmaceutical Sciences(Mack Publishing Company,新泽西,1991)。
本发明的抗体可以用于基因治疗。为了达成这点,在适当DNA成分的控制下,编码抗体分子重链和轻链的DNA序列被引入患者体内,从而使抗体链由DNA序列被表达并且进行原位组装。
本发明还提供了本发明的抗体分子在治疗与VEGF和/或KDR有关的疾病中的应用。
本发明进一步提供了本发明的抗体分子在制备用于治疗与VEGF和/或KDR有关的疾病的药剂中的应用。
本发明的抗体分子可用于任何需要降低人体或动物体内存在的生物活性KDR水平的治疗。VEGF可以在体内循环,或者以不需要的高浓度定位在体内的特定部位。
例如,VEGF(因而KDR)涉及许多病理学状况,包括炎症反应、牛皮癣、类风湿关节炎以及肿瘤的生长和转移。
本发明还提供了一种方法,用于治疗人类或动物受试者,它们患有与VEGF和/或KDR有关的失调或者有患有与VEGF和/或KDR有关的失调的危险,所述方法包含向受试者施用有效剂量的本发明的抗体分子。
本发明的抗体分子也可用于诊断,例如对涉及KDR水平升高的疾病状况进行体内诊断和成像。
本发明仅通过以下实施例并参考附图得到例示性的描述,其中图1显示小鼠单克隆抗体VR165基因重链和轻链V区的CDR序列(SEQ ID NO1-6)。
图2显示小鼠单克隆抗体VR165 VH和VL结构域的蛋白质序列(SEQ ID NO7和SEQ ID NO8)。
图3显示选做人类种系受体骨架的V区的蛋白质序列。VH3-7 GL是人类种系VH基因(SEQ ID NO9)。A30 GL指人类VL种系序列A30基因(SEQ ID NO10)。每个情况下,骨架4的种系序列分别由人类种系JH4和JK1给出。
图4显示CDP791 Fab轻链的氨基酸和核苷酸序列(SEQ ID NO11和SEQ ID NO13)。
图5显示CDP791 Fab重链的氨基酸和核苷酸序列(SEQ ID NO12和SEQ ID NO14)。
图6显示改造后Fab片段的结构,该片段是由抗体VR165通过一个半胱氨酸残基共价连接到赖氨酰-顺丁烯二酰亚胺连接子上而得到的,其中赖氨酰残基上的每个氨基基团都共价连接上一个甲氧基聚乙二醇残基至其上,甲氧基聚乙二醇中n约为420;图7显示优化的CDR移植的VH和VL结构域基因的蛋白质序列(SEQ ID NO15和SEQ ID NO16)。
图8显示优化的pTTOD(CDP791)质粒,它在gL3和gH3移植物之间包含IGS-2变体。
图9显示设计的VH和VL移植物的蛋白质序列(gH1-3和gL1-3,SEQ ID NO17-22)。移植物gH1不包含鼠的骨架区残基。移植物gH2在77位和93位(Kabat编号)包含鼠的残基。在77位,T和S都是人类种系序列中常见的,因此包括T仍与人类残基一致。93位的V很可能在VH/VL的介面上是很重要的。在60和62位包含人类的残基代表了CDR-H2 C末端部分的改变。移植物gL2在60、66、69、70和71位包含鼠的残基(Kabat编号)。移植物gL3还在36和44位包含鼠的残基。
图10显示编码移植物gH1和gL1的基因的设计(SEQ ID NO23和SEQ ID NO24)。
图11显示用于编码移植物gL1和gH1的基因的组装的寡核苷酸(SEQ ID NO25-40)。
图12显示质粒pCR2.1(gH1)和pCR2.1(gL1),它们分别包含移植物gH1和gL1。
图13显示用于移植物gH2、gH3、gL2和gL3的构建的寡核苷酸盒(cassette)(SEQ ID NO41-44)。
图14显示用于移植物gH2、gH3、gL2和gL3的构建的寡核苷酸对(SEQ ID NO45-52)。
图15显示质粒pGamma4和pMR10.1,移植物VH和VL分别亚克隆到这两个质粒中,使其可以在CHO细胞株中表达。
图16显示大肠杆菌的Fab’表达质粒pTTOD,包含IGS-3序列。
图17显示检测的三个IGS区的核苷酸序列(SEQ ID NO53-55)。
图18显示Fab’的发酵结果,与IGS的表现相比较。
图19显示CDP791的Fab’片段的编码区及其两侧的序列(SEQ IDNO56)。
图20显示放射免疫分析结果,测试抗体片段对VEGF与KDR结合的阻断。
图21显示gH3移植的来源于VDR165的单克隆抗体的完整重链的氨基酸序列(SEQ ID NO57)。
实施例单克隆抗体的生产和选择一个内部免疫接种的计划被起始来选择抗人类KDR的抗体,它可以有效地阻断KDR与其配基VEGF的相互作用。小鼠用多种免疫原来进行免疫接种,免疫原包括转染了全长人类KDR的CHO细胞、纯化的人类KDR-人类Fc融合蛋白以及编码这些融合蛋白的DNA。在来自免疫了细胞的/蛋白免疫原的动物的全部19个融合,以及来自免疫了DNA的动物的4个融合中,约23000孔以一级酶联免疫吸附法筛选可以结合人类7-结构域KDR-Fc的抗体。然后大约800个抗体进行二级筛选,即放射免疫分析检测其对125-I标记的VEGF与人类7-结构域KDR-Fc结合的阻断。三级筛选检测对人类脐静脉内皮细胞(HUVECs)释放VEGF激活组织因子的阻断。由这一级联的筛选过程,选出抗体VR165(数据未显示)。
VR165基因克隆RNA由表达VR165的杂交瘤细胞中制备并反转录为DNA。然后以此DNA作为一系列PCR反应的模板,来扩增V区的序列。简并引物的集合做为正向引物,它们被设计为在保守的重链和轻链信号序列区内退火,而编码骨架区4/C区接合处的引物作为反向引物。以这种方式,重链和轻链V区的基因都被扩增出来,然后克隆并测序。DNA序列转译后给出VR165V区的氨基酸序列,该氨基酸序列通过参考N端测序所得到的蛋白质序列来检验。然后鼠的V区基因亚克隆到表达载体pMR10.1和pGamma-4中。这些单独的载体分别表达轻链和重链,它们包含编码人类κ轻链和γ-4重链恒定区基因的基因组DNA。将它们共转染到CHO细胞中,产生嵌合的VR165抗体。
设计CDR移植序列为了降低潜在的免疫原性以及促进大肠杆菌的表达,VR165采取将CDR移植到人类的骨架区。人类种系受体骨架区从VHIII和VLI亚群中选择。重链受体骨架区是人类种系序列VH3-7,其中骨架区4来自人类JH-区种系JH4的该部分。轻链受体骨架区是人类种系序列A30,其中骨架区4来自人类JK-区种系JK1的该部分。对比显示在供体和受体重链之间有15处骨架区的区别。对这些位置中的每一个都进行了分析,分析该残基对抗原结合的潜在贡献;如果认为是重要的,就保留鼠的供体残基。轻链的对比显示在供体和受体序列之间有24处骨架区的区别。再次分析了鼠的残基对抗原结合的潜在贡献。通过这种方式,设计出三个VH移植物以及三个VL移植物(图9,SEQ ID NO17-22)。在每个情况下,移植物1代表没有鼠的骨架区残基的移植物。移植物2和3在所示的位置上包含鼠的骨架区残基。移植物gH3在CDR-H2的C末端还包含人类的残基。CDR的这一部分不位于抗原结合的表面。被设计为编码移植序列的基因,采用大肠杆菌基因中常用的密码子,而避免“罕见”的大肠杆菌密码子(Wada等,Nucl.Acids Res.,19,1981-86,1991)。在DNA序列中相隔一段距离就引入限制性酶切位点,便于进一步地基因操作。图10显示gH1和gL1基因的图样(SEQ ID NO23和SEQ ID NO24)。用于构建基因的寡核苷酸见图11(SEQ ID NO25-40)。
用于移植序列的基因的构建采用PCR组装技术来构建CDR移植的gH1和gL1 V区的基因。设定100μl的反应体积,包含10mM Tris-HCl pH8.3,1.5mM MgCl2,50mM KCl,0.001%明胶,每种脱氧核糖核苷三磷酸0.25mM,每种“内部”引物(F2、F3、F4、R2、R3、R4)1pmol,每种“外部”引物(F1、R1)10pmol,以及1个单位的Taq聚合酶(AmpliTaq,Applied BioSystems,货号N808-0171)。PCR循环的参数为94℃ 1分钟,55℃ 1分钟以及72℃ 1分钟,共30个循环。然后反应产物进行1.5%琼脂糖凝胶电泳,切割并采用QIAGEN离心柱回收(QIAquick凝胶抽提试剂盒,货号28706)。DNA洗脱于30μl的体积中。然后依照厂商的用法说明,将gH1和gL1 DNA的等分试样(1μl)克隆到InVitrogen TOPO TA克隆载体pCR2.1 TOPO中(货号K4500-01)。这个非表达载体用于克隆的中介物,便于大量克隆的测序。采用载体特异的引物所进行的DNA测序,用于鉴定包含gH1和gL1的正确克隆,产生质粒pCR2.1(gH1)和pCR2.1(gL1)(见图12)。
寡核苷酸盒置换的方法可用于产生人源化的gH2和gL2移植物。图13显示寡核苷酸盒的图样(SEQ ID NO41和SEQ ID NO43)。为了构建每个变体,载体(pCR2.1(gH1)或pCR2.1(gL1))采用限制性内切酶酶切,如图所示(图13,限制性酶切位点以下划线标出),大的载体片段由琼脂糖中凝胶纯化并用于连接寡核苷酸盒。图14显示用于盒中的寡核苷酸的序列(SEQ ID NO45-46和SEQ IDNO49-50)。成对的寡核苷酸以0.5pmol/μl的浓度混合在一起退火,在200μl的反应体积中包含12.5mM TrisHCl pH7.5,2.5mM MgCl2,25mM NaCl,0.25mM二硫赤藓糖醇,在水浴中(体积500ml)加热至95℃保持3分钟,然后让其缓慢冷却至室温。继而退火后的寡核苷酸盒以水稀释10倍,再连接入适当酶切的载体。采用DNA测序来确定正确的序列,产生质粒pCR2.1(gH2)和pCR2.1(gL2)。
变体gH3和gL3的构建采用与gH2和gL2的构建相似的模式。盒及寡核苷酸示于图13和14(SEQ ID NO42和SEQ ID NO44,SEQID NO47-48和SEQ ID NO51-52)。由于pCR2.1载体的骨架上存在PvuI位点,gL3的构建需要修改策略。用AatII和SfuI酶切pCR2.1(gL2)产生载体分子,连接到其中的是PvuI-AatII退火的盒加上一个也是由pCR2.1(gL2)制备的225bp的SfuI-PvuI片段。采用DNA测序来确定正确的序列,产生质粒pCR2.1(gH3)和pCR2.1(gL3)。
接着,三个重链移植物的每一个都做为HindIII-ApaI片段亚克隆到表达载体pGamma-4中。三个轻链移植物的每一个都做为SfuI-BsiWI片段亚克隆到轻链表达载体pMR10.1中。图15显示这些表达载体的图谱。通过共转染CHO细胞,抗体得到瞬时表达。所有移植链和嵌合链的组合都得到表达,并且与双嵌合抗体相比较。
结合的评定通过KDR结合的酶联免疫吸附、标记VEGF与KDR结合的抑制的放射免疫分析以及KDR结合的BIA核心分析来得到。所有移植的形式在酶联免疫吸附和放射免疫分析中表现良好,显示出与嵌合抗体相似的活性。由BIA核心分析的结果,移植物gL3gH3选做最佳(未显示数据),下文中称为g165。
质粒pTTOD的构建质粒pTTO-1的构建如下所述。
(a)pTTQ9多位点接头的置换质粒pTTQ9来自Amersham。等分试样(2μg)用限制性酶SalI和EcoRI消化,消化物进行1%琼脂糖凝胶电泳,纯化出大的DNA片段(4520bp)。合成两个寡核苷酸,它们在一起退火后编码OmpA的多位点接头区。该序列具粘末端,与SalI和EcoRI限制酶切pTTQ9后所产生的末端相匹配。将该寡核苷酸“盒”克隆到pTTQ9载体,SalI位点无法再生,而EcoRI位点仍保留。该盒编码大肠杆菌外膜蛋白Omp-A信号序列的前13个氨基酸,OmpA基因的核糖体SD结合位点在这13个氨基酸之前。而且,酶XbaI、MunI、StyI和SplI的限制性酶切位点仍存在。MunI和StyI位点在OmpA信号序列的编码区之内,意欲做为基因插入的5’克隆位点。组成该盒的两条寡核苷酸一起退火,即以5pmol/μl的浓度混合,在水浴中加热至95℃并保持3分钟,然后缓慢冷却至室温。接着将退火后的序列连接到SalI/EcoRI酶切的pTTQ9中。产生的质粒中介物,称为pTQOmp,通过DNA测序检验。
(b)片段的制备和连接质粒pTTO-1的构建是通过将来自质粒pACYC184的一个DNA片段与来自质粒pTQOmp的两个DNA片段相连接而得到的。质粒pACYC184来自New England Biolabs。等分试样(2μg)用限制性酶StyI消化完全,然后用绿豆核酸酶处理;这种处理通过切除5’碱基突出物而产生平末端。苯酚抽提和乙醇沉淀之后,DNA进行PvuII限制酶切,产生长度为2348、1081、412和403 bp的片段。2348bp的片段经琼脂糖凝胶电泳后纯化。该片段编码四环素抗性筛选标记和p15A的复制起点。然后该片段经小牛肠道碱性磷酸酶处理,除去5’末端的磷酸,从而防止分子的自连。
质粒pTQOmp的等分试样(2μg)用酶SspI和EcoRI消化,琼脂糖凝胶电泳后将产生的2350bp的片段从不需要的2040bp和170bp片段中纯化出来;这个片段编码转录中止区和lacIq基因。pTQOmp的另一等分试样(2μg)用EcoRI和XmnI消化,产生2289、1670、350和250bp的片段。350bp的片段编码tac启动子、OmpA信号序列和多克隆位点,可通过凝胶纯化。
然后将三个片段连接起来,每个片段采用大约相同的摩尔量,产生质粒pTTO-1。所有克隆接合处都通过DNA测序来检验。
(c)质粒pTTOD的产生质粒pTTOD来源于质粒pTTO-1,通过去除pTTO-1骨架上的下列限制酶位点PvuII(3个位点)、EcoRV(2个位点)以及ApaI(1个位点)。做这些改动是为了简化Fab’编码策略。在这些改动过程中,尽管在DNA水平上进行了“沉默”改动,但是lacIq基因的编码蛋白序列和四环素抗性基因没有改变。采用PCR策略,其中带有“沉默”改动以除去这些限制性位点的引物,被设计用来扩增亲代质粒(pTTO-1)的各部分。然后通过两侧的限制性位点(未改动)使亲代质粒上的序列被这些改造的序列置换。通过这个多阶段的方法,产生质粒pTTOD。将载体pTTO中现存的Fab’基因转移到pTTOD,通过采用位于基因两侧的特别的PstI和EcoRI位点来达到,产生pTTOD(Fab’)。
g-165V区基因插入到大肠杆菌Fab’表达质粒pTTOD中插入g-165序列的起点是3个载体,它们表达互不相关的Fab’、pTTOD(Fab’IGS-1)、pTTOD(Fab’IGS-2)以及pTTOD(Fab’IGS-3)(例见图16)。这些载体的区别仅在于称为IGS的区域中或分隔轻链基因和重链基因的基因间序列中。这些IGS区域示于图17(SEQ IDNO53-55)。克隆g-165序列到这些载体是采取两阶段的过程。首先,轻链是pCR2.1(gL3)限制性酶切的EcoRV-BsiWI片段(395 bp),将其插入到EcoRV-BsiWI消化pTTOD(Fab’IGS-1)、pTTOD(Fab’IGS-2)以及pTTOD(Fab’IGS-3)所产生的大的载体片段中。这样产生克隆中介物pTTOD(g-165L IGS-1)、pTTOD(g-165L IGS-2)以及pTTOD(g-165L IGS-3)。接着这些克隆中介物用PvuII和ApaI酶切,纯化出大的载体片段,然后将来自pCR2.1(gH3)的435bp的PvuII-ApaI片段插入到其中。这样就产生了三个Fab’表达质粒pTTOD(g-165 IGS-1)、pTTOD(g-165 IGS-2)以及pTTOD(g-165IGS-3)。
将这些质粒转化入宿主W3110株系,三个质粒表达Fab’的情况可以在摇瓶和发酵桶中得到比较。图18显示在发酵桶中比较的结果,清楚地显示出IGS-2变体的表现较好。
质粒pTTOD(g-165 IGS-2)重命名为pTTOD(CDP791)。这个构建的质粒图谱见图8。图19显示此载体中Fab’编码区的全长DNA和蛋白序列,以及5’和3’两侧的一些序列(SEQ ID NO56)。
CDR移植的、基于VR165的改造后Fab的聚乙二醇化纯化的改造后Fab位点特异性地与mPEG的分支分子相结合。这是通过以下方法来达到的激活位于改造后Fab截短的铰链区的单个半胱氨酸残基,接着与(mPEG)-赖氨酰顺丁烯二酰亚胺反应,反应过程如前所述(A.P.Chapman等,Nature Biotechnology17,780-783,1999)。聚乙二醇化的分子示于图6。做为选择,激活的Fab与(mPEG)-赖氨酰双顺丁烯二酰亚胺的反应如EP-A-1090037所述,可以产生聚乙二醇化的(改造后Fab)双体,下文称为DFM。
裸露的和聚乙二醇化的片段的BIA核心活性融合于人类Fc的7Ig结构域人类KDR在抗Fc包被的芯片上俘获,CDR移植抗体g165和鼠的亲代抗体VR165的不同片段通过芯片,进行亲和力的测定。下表概述了得到的结果。在此分析中,二价种类以其较低的解离常数(Kd)显示出二价的优势。移植的DFM的亲和力非常近似于鼠的IgG,DFM-PEG显示亲和力有微弱的降低。在此分析中,g165 DFM-PEG分子的KD约为4×10-11M。
表1裸露的和聚乙二醇化的片段的BIA核心活性
放射免疫分析各片段对VEGF结合KDR的阻断能力通过放射免疫分析来测定。在微量滴定板上,多克隆抗Fc用于俘获融合于人类Fc的7Ig结构域KDR,加入抗体或片段后再加入125-I标记的VEGF-165。该分析的结果示于图20。在此分析的设立中,DFM比Fab’更优的阻断效果也显示出二价的优势。相比裸露的DFM,DFM-PEG构建显示出活性的微弱降低,与BIA核心研究中一致。
基于细胞的分析在基于细胞的分析中,g164 DFM PEG分子也显示出活性。其阻断VEGF对KDR激发的能力通过对组织因子的释放的抑制来显示,它是由人类脐静脉内皮细胞释放的(见Clauss等,J.Biol.Chem.,271,17629-17634,1996)。活性还可以通过抑制VEGF介导的人类毛吸血管内皮细胞Ca2+的代谢来显示(见Cunningham等,Am.J.Physiol.,276,C176-181,1999)。
应当理解上面描述的实施例仅仅是例示性的,不能限制如以下权利要求所定义的本发明的范围。
权利要求
1.一种对人类KDR具有特异性的抗体分子,它包含一条重链,其中可变结构域包含一个CDR,其具有如图1中H1(SEQ ID NO1)所示的CDRH1,如图1中H2(SEQ ID NO2)所示的CDRH2或如图1中H3(SEQ ID NO3)所示的CDRH3的序列。
2.一种对人类KDR具有特异性的抗体分子,它包含一条轻链,其中可变结构域包含一个CDR,其具有如图1中L1(SEQ ID NO4)所示的CDRL1,如图1中L2(SEQ ID NO5)所示的CDRL2或如图1中L3(SEQ ID NO6)所示的CDRL3的序列。
3.权利要求1或权利要求2中的抗体分子,包含一条重链和一条轻链,重链的可变结构域包含一个CDR,其具有SEQ ID NO1所示的CDRH1,SEQ ID NO2所示的CDRH2或SEQ ID NO3所示的CDRH3的序列,轻链的可变结构域包含一个CDR,其具有SEQ ID NO4所示的CDRL1,SEQ ID NO5所示的CDRL2或SEQ ID NO6所示的CDRL3的序列。
4.权利要求3中的抗体分子,它包含SEQ ID NO1的CDRH1,SEQ ID NO2的CDRH2,SEQ ID NO3的CDRH3,SEQ ID NO4的CDRL1,SEQ ID NO5的CDRL2以及SEQ ID NO6的CDRL3。
5.权利要求1-4中任一项的抗体分子,它是一种CDR移植的抗体分子。
6.权利要求5中的抗体分子,其中可变结构域包含人类受体骨架区和非人类的供体CDR。
7.权利要求6中的抗体分子,其中重链可变结构域的人类受体骨架区基于人类种系3族的骨架区序列,还在77和93位包含非人类的供体残基。
8.权利要求6或权利要求7中的抗体分子,其中轻链可变结构域的人类受体骨架区基于人类种系1族的骨架区序列,还在36、44、60、66、69、70和71位包含非人类的供体残基。
9.权利要求1-8中任一项的抗体分子,它包含重链可变区gH3(SEQ ID NO15)和轻链可变区gL3(SEQ ID NO16)。
10.权利要求1-9中任一项的抗体分子,它是Fab片段。
11.权利要求10中的抗体分子,它是Fab片段,包含序列如SEQID NO11所示的轻链,和序列如SEQ ID NO12所示的重链。
12.权利要求1-9中任一项的抗体分子,它是改造的Fab片段,在它重链的C末端具有一个或多个可用来附加效应分子或报告分子的氨基酸。
13.权利要求12中的抗体分子,其中加入的氨基酸形成一个改造的铰链区,铰链区包含一个或两个可以附加效应分子或报告分子的半胱氨酸残基。
14.权利要求12中的抗体分子,它是改造的Fab片段或Fab双体的片段,它包含序列如SEQ ID NO11所示的轻链,和序列如SEQID NO12所示的重链。
15.一种对人类KDR具有特异性的抗体分子,它具有包含SEQID NO11所示序列的轻链。
16.一种对人类KDR具有特异性的抗体分子,它具有包含SEQID NO57所示序列的重链。
17.一种对人类KDR具有特异性的抗体分子,它具有包含SEQID NO12所示序列的轻链,和包含SEQ ID NO57所示序列的重链。
18.权利要求1-17中任一项的抗体分子的变体,它具有对KDR的改进的亲和力。
19.权利要求18中的变体,它是通过亲和力成熟方案得到的。
20.权利要求1-4中任一项的抗体分子,它是鼠抗KDR的单克隆抗体VR165。
21.权利要求1-4中任一项的抗体分子,它是嵌合的抗体分子,包含权利要求26中的单克隆抗体的轻链和重链可变结构域。
22.包含权利要求10-14中任一项的抗体分子的化合物,在它重链的C末端或接近C末端的一个氨基酸上共价连接有效应分子或报告分子。
23.权利要求22中的化合物,它包含一种效应分子。
24.权利要求23中的化合物,其中效应分子包含一种或多种聚合物。
25.权利要求24中的化合物,其中一种或多种聚合物是任选取代的直链或支链聚亚烷基、聚亚烯基或聚氧亚烷基聚合物,或是分支或不分支的多糖。
26.权利要求25中的化合物,其中一种或多种聚合物是甲氧基聚乙二醇。
27.包含权利要求12中的抗体分子的化合物,它的重链C末端的一个半胱氨酸残基上连接了赖氨酰-顺丁烯二酰亚胺或赖氨酰-双顺丁烯二酰亚胺基团,其中赖氨酰残基的每个氨基基团都共价地连接分子量约为20000Da的甲氧基聚乙二醇残基。
28.一种DNA序列,它编码权利要求1-21中任一项的抗体分子的重链和/或轻链。
29.一种克隆或表达载体,它包含权利要求27中的DNA序列。
30.一种大肠杆菌表达载体,它包含权利要求27中的DNA序列。
31.权利要求30中的大肠杆菌表达载体,它是pTTOD(CDP791)。
32.一种宿主细胞,它被权利要求29-31中任一项的载体转化。
33.权利要求1-21中任一项的抗体分子的生产方法,它包括培养权利要求32中的宿主细胞,并分离抗体分子。
34.权利要求1-21中任一项的抗体分子的生产方法,它包括培养大肠杆菌,并分离抗体分子,所述大肠杆菌包含大肠杆菌表达载体,所述表达载体包含权利要求29-31中任一项的DNA序列。
35.权利要求34中的方法,其中抗体分子靶向周质。
36.一种治疗或诊断组合物,它包含权利要求1-21中任一项的抗体分子,或者权利要求23-27中任一项的化合物。
37.权利要求1-21中任一项的抗体分子或者权利要求23-27中任一项的化合物在治疗与VEGF和/或KDR有关的病理状况中的应用,所述抗体分子对人类KDR具有特异性。
38.权利要求37中的抗体分子或化合物,在治疗炎症反应、牛皮癣、类风湿关节炎和肿瘤生长或转移中的应用。
39.权利要求1-21中任一项的抗体分子或者权利要求23-27中任一项的化合物在制备用于治疗与VEGF和/或KDR有关的病理状况的药物中的应用,所述抗体分子对人类KDR具有特异性。
40.权利要求39中的应用,其中的病理状况是炎症反应、牛皮癣、类风湿关节炎和肿瘤生长或转移。
41.如图8所示的载体pTTOD(CDP791)。
全文摘要
本发明公开了抗体分子,它包含至少一个CDR,该CDR来源于对人类KDR具有特异性的小鼠单克隆抗体。本发明还公开了CDR移植的抗体,其中至少一个CDR是杂交CDR。进一步公开的是编码抗体分子各链的DNA序列、载体、转化的宿主细胞以及抗体分子在治疗与VEGF和/或KDR有关的疾病中的应用。
文档编号C12N1/21GK1568331SQ02820210
公开日2005年1月19日 申请日期2002年10月10日 优先权日2001年10月10日
发明者A·G·波普莱维尔, S·P·蒂克勒, K·津克维克-佩奥蒂, R·K·莫里森 申请人:细胞技术研究及开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1