氮化物半导体发光元件及制造氮化物半导体发光元件的方法

文档序号:3431757阅读:83来源:国知局
专利名称:氮化物半导体发光元件及制造氮化物半导体发光元件的方法
技术领域
本发明涉及氮化物半导体发光元件及制造氮化物半导体发光元件的方法。
背景技术
在文献1(特开平2001-237455号公报)中,记载了紫外发光元件。紫外发光元件,具有交替配置第1InAlGaN层和第2InAlGaN的量子势阱结构,此外,采用在紫外区的短波长区发光的InAlGaN。第1InAlGaN层的组成比不同于第2InAlGaN层的组成比。
在具有含有InAlGaN势阱层和InAlGaN势垒层的量子势阱结构的发光元件中,根据本发明者们所知,当在量子势阱结构和n型AlGaN半导体层之间,设置与量子势阱结构的势垒层相同组成的InAlGaN缓冲层的情况下,可提高该发光元件的发光强度。
认为该InAlGaN缓冲层,能缓和AlGaN层施加给量子势阱结构的变形。此外,认为,根据基于用于发可视区域的波长成分的光的发光区域的InGaN系半导体的类推,在发紫外线区域的波长成分的光的发光元件中,从提高发光效率的角度考虑,优选用于发光区域的InAlGaN半导体的铟组成含量大。根据本发明者们的实验,在某铟组成的范围内,随着铟组成增高,InAlGaN缓冲层的变形缓和能力也提高。
根据本发明者们的实验,在将具有铟组成小于现在的发光区域的铟组成的InAlGaN半导体,用于发光区域的发光元件中,显示出进一步提高发光元件的发光效率,此外,显示出得到发所要求波长的光的发光区域所需的InAlGaN半导体的铝组成能够减小。由于铝在低温下有小的迁移,因此如果将铝组成小的InAlGaN半导体用于发光区域,可提高发光区域的InAlGaN半导体的结晶性,从而提高发光元件的发光效率。

发明内容
本发明是鉴于以上的事实而提出的,其目的在于提供一种能够提高发光效率的氮化物半导体发光元件,此外提供一种制造该氮化物半导体发光元件的方法。
本发明之一,是发生含有紫外线区域的波长成分的光的氮化物半导体发光元件。该氮化物半导体发光元件,具有(a)设在支撑基体上的第1导电型氮化物半导体层、(b)设在支撑基体上的第2导电型氮化物半导体层、(c)发光区域,设在所述第1导电型氮化物半导体层和所述第2导电型氮化物半导体层的之间,含有InX1AlY1Ga1-X1-Y1N势阱层(1>X1>0、1>Y1>0)及InX2AlY2Ga1-X2-Y2N势垒层(1>X2>0、1>Y2>0)、(d)InX3AlY3Ga1-X3-Y3N缓冲层(1>X3>0、1>Y3>0),设在所述发光区域和所述第1导电型氮化物半导体层的之间;所述InX1AlY1Ga1-X1-Y1N势阱层的铟组成X1,小于所述InX3AlY3Ga1-X3-Y3N缓冲层的铟组成X3;所述InX2AlY2Ga1-X2-Y2N势垒层的铟组成X2,小于所述InX3AlY3Ga1-X3-Y3N缓冲层的铟组成X3。
根据该氮化物半导体发光元件,由于缓冲层的铟组成X3,小于势阱层的铟组成X1及势垒层的铟组成X2,所以缓和缓冲层造成的变形的能力强。此外,由于势阱层的铟组成X1及势垒层的铟组成X2,小于缓冲层的铟组成X3,所以发光区域的晶体质量好。
在本发明的氮化物半导体发光元件中,也可以形成,所述InX2AlY2Ga1-X2-Y2N势垒层禁带宽度,与所述InX3AlY3Ga1-X3-Y3N缓冲层的禁带宽度大致相等。
在该氮化物半导体发光元件中,由于缓冲层及势垒层由四元化合物半导体构成,因此通过与铟组成独立地变更铝组成,能够控制四元AlInGaN半导体的带隙。因而,势垒层的禁带宽度能够与缓冲层的禁带宽度大致相等。在缓冲层的组成与势垒层的组成不同的氮化物半导体发光元件中,载流子的封闭,和缓冲层的组成与势垒层的组成相同的氮化物半导体发光元件相比无实质变化。
在本发明的氮化物半导体发光元件中,优选,所述InX2AlY2Ga1-X2-Y2N势垒层和所述InX3AlY3Ga1-X3-Y3N缓冲层之间的禁带宽度差,在1.92×10-20焦耳以下。
在该氮化物半导体发光元件中,只要缓冲层的组成和势垒层的组成的差,与1.92×10-20焦耳程度的能级对应,缓冲层形成的缓冲能力和缓冲层形成的载流子的封闭,就能够同时满足。
在本发明的氮化物半导体发光元件中,优选,所述InX1AlY1Ga1-X1-Y1N势阱层的铟组成X1大于0小于0.03;所述InX3AlY3Ga1-X3-Y3N缓冲层的铟组成X3小于0.10。
根据该氮化物半导体发光元件,如果势垒层的铟组成X1满足0<X1<0.03,则能够减少在来自发光区域的光中实现所要求波长所需的铝组成。此外,如果势垒层的铟组成X3满足X1<X3<0.10,能够提高缓冲层的变形缓和能力,同时提高发光区域的晶体质量。
在本发明的氮化物半导体发光元件中,优选,所述InX1AlY1Ga1-X1-Y1N势阱层的铝组成Y1大于0.05,所述InX1AlY1Ga1-X1-Y1N势阱层的铝组成Y1小于0.15,所述发光区域,具有发340纳米以上360纳米以下的波长区域内的波长的光的量子势阱结构。
在该氮化物半导体发光元件中,该铝组成的范围,与势阱层的铟组成X1的条件(0<X1<0.03)匹配,能够形成在340纳米以上360纳米以下的波长区域内具有峰波长的发光光谱的量子势阱结构。
在本发明的氮化物半导体发光元件中,优选,所述InX3AlY3Ga1-X3-Y3N缓冲层的厚度,在10纳米以上,由此InX3AlY3Ga1-X3-Y3N半导体层发挥缓冲能力。此外,优选,所述InX3AlY3Ga1-X3-Y3N缓冲层的厚度,在100纳米以下,由此InX3AlY3Ga1-X3-Y3N半导体层的晶体质量良好。
在本发明的氮化物半导体发光元件中,也可以形成,所述第2导电型氮化物半导体层具有p导电型,所述第2导电型氮化物半导体层的带隙能,大于与所述发光区域发出的光的波长对应的能级。
在该氮化物半导体发光元件中,由于如上所述p型氮化物半导体层的带隙能大,因此能够减小该p型半导体层的光吸收。
本发明的氮化物半导体发光元件,还具有,(e)1个或多个第1AlGaN半导体层、(f)1个或多个第2AlGaN半导体层。所述第1AlGaN半导体层及所述第2AlGaN半导体层的导电型,为以下的任何一种所述第1AlGaN半导体层的导电型表示p导电型;所述第2AlGaN半导体层的导电型表示p导电型。所述第1AlGaN半导体层及所述第2AlGaN半导体层表示p导电型。优选,所述第2AlGaN半导体层的组成与所述第1AlGaN半导体层的组成不同,所述第1AlGaN半导体层和所述第2AlGaN半导体层,以形成超点阵结构的方式配置,所述第2导电型氮化物半导体层,位于所述超点阵结构和所述发光区域之间,所述第2导电型氮化物半导体层具有p导电型。
根据该氮化物半导体发光元件,由于第1AlGaN半导体层和第2AlGaN半导体层构成超点阵结构,所以能够提高该超点阵结构的空穴浓度。
本发明的氮化物半导体发光元件,也可以形成,(g)还具备另一第2导电型氮化物半导体层,设有电极,具有出射来自所述发光区域的光的出射面,设在所述第2导电型氮化物半导体层上;所述支撑基体,是具有第1面的蓝宝石支撑基体;所述第1导电型氮化物半导体层、所述发光区域、所述第2导电型氮化物半导体层及所述另一第2导电型氮化物半导体层,依次搭载在所述蓝宝石支撑基体的所述第1面上;所述第1导电型氮化物半导体层的带隙能,大于与所述发光区域发生的所述光的波长成分对应的能级。
在该氮化物半导体发光元件中,由发光区域发生的光,从该另一第2导电型氮化物半导体层的出射面出射。由于如上所述第1导电型氮化物半导体层的带隙能大,因此能够减小发光区域发生的光被第1导电型氮化物半导体层的光吸收。
在本发明的氮化物半导体发光元件中,优选,所述支撑基体是蓝宝石支撑基体;所述第1导电型氮化物半导体层的带隙能,大于与所述发光区域发生的所述光的波长对应的能级;所述蓝宝石支撑基体,具有搭载所述第1导电型氮化物半导体层、所述第2导电型氮化物半导体层及所述发光区域的第1面、和出射来自所述发光区域的光的第2面。
在该氮化物半导体发光元件中,在发光区域和蓝宝石支撑基体的第2面之间,配置可透过来自发光区域的该光的半导体区域。因此,来自发光区域的该光从蓝宝石支撑基体的第2面出射,能够降低设在上述第2导电型氮化物半导体层上的电极的吸收。
本发明的氮化物半导体发光元件,也可以形成,(h)还具有另一第2导电型氮化物半导体层,设有电极,具有出射来自所述发光区域的光的出射面,设在所述第2导电型氮化物半导体层上;所述支撑基体,是具有第1面的GaZAl1-ZN(Z为0以上1以下)的支撑基体;所述第1导电型氮化物半导体层、所述发光区域、所述第2导电型氮化物半导体层及另一第2导电型氮化物半导体层,依次搭载在所述支撑基体的所述第1面上。
该氮化物半导体发光元件,由于GaZAl1-ZN的导热率比蓝宝石的导热率大,所以具有优异的散热特性。
在本发明的氮化物半导体发光元件中,也可以形成,所述支撑基体由GaZAl1-ZN(Z为0以上,小于1)构成;所述第1导电型氮化物半导体层的带隙能,大于与所述发光区域发生的所述光的波长成分对应的能级;所述GaZAl1-ZN支撑基体,具有搭载所述第1导电型氮化物半导体层、所述第2导电型氮化物半导体层及所述发光区域的第1面、和出射来自所述发光区域的光的第2面。
在该氮化物半导体发光元件中,在发光区域和GaZAl1-ZN支撑基体的第2面之间,设置可透过来自发光区域的该光的半导体区域。因此,来自发光区域的该光通过GaZAl1-ZN支撑基体,从该第2面出射,降低基于设在上述第2导电型氮化物半导体层上的电极的吸收。
在本发明的氮化物半导体发光元件中,优选,所述支撑基体是GaN支撑基体。由于支撑基体由低位错GaN(例如,贯通位错密度<106cm-2)构成,因此能够减小发光区域上的贯通位错密度,提高该元件的发光效率。
在本发明的氮化物半导体发光元件中,优选,所述支撑基体是AlN支撑基体。该氮化物半导体发光元件具有优良的散热特性。
在本发明的氮化物半导体发光元件中,也可以形成,所述支撑基体是金属制支撑基体;所述第2导电型氮化物半导体层、所述发光区域、所述第1导电型氮化物半导体层,搭载在所述金属制支撑基体的第1面上,所述第1导电型氮化物半导体层的带隙能,也可以大于与所述发光区域发生的光的波长对应的能级。在该氮化物半导体发光元件中,用于氮化物半导体发光元件的支撑基体,与用于生长第2导电型氮化物半导体层、发光区域、第1导电型氮化物半导体层等氮化物半导体区域的基板分别不同地设置。该支撑基体搭载第2导电型氮化物半导体层、发光区域、第1导电型氮化物半导体层及含有电极的结构物。例如,能够在低位错密度的GaN基板上形成与发光有关的半导体膜,同时能够采用散热性优良的金属制支撑基体,作为发光元件的支撑基体,也可以不采用吸收紫外线区域的GaN半导体。
本发明之二,是制造发生含有紫外线区域的波长成分的光的氮化物半导体发光元件的方法。该方法,包括(a)在基板上形成第1导电型氮化物半导体膜的工序、(b)在所述第1导电型氮化物半导体膜上形成缓冲膜的工序、(c)形成用于发光区域的势阱膜的工序、(d)形成用于所述发光区域的势垒膜的工序、(e)在所述发光区域上形成第2导电型氮化物半导体膜的工序;所述势阱膜,包含InX1AlY1Ga1-X1-Y1N(1>X1>0、1>Y1>0)半导体膜,该InX1AlY1Ga1-X1-Y1N(1>X1>0、1>Y1>0)半导体膜在第1温度形成;所述势垒膜,包含InX2AlY2Ga1-X2-Y2N(1>X2>0、1>Y2>0)半导体膜,该InX2AlY2Ga1-X2-Y2N(1>X2>0、1>Y2>0)半导体膜在第2温度形成;所述缓冲膜,包含InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)缓冲膜,该InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)缓冲膜,在形成所述发光区域之前,在第3温度形成;所述第1温度及所述第2温度高于所述第3温度。
根据该方法,势垒膜及势阱膜,由于以比缓冲膜高的温度生长,所以显示良好的晶体质量,同时具有低的铟组成。另外,缓冲膜,由于以比势垒膜及势阱膜低的温度生长,因此具有大的铟组成,因而具有优异的变形缓和能力。
根据本发明的方法,优选,还具有,(f)将所述第2导电型氮化物半导体膜及金属制基板的一方粘接在另一方上的工序、(g)在粘接后,从所述基板及所述第1导电型氮化物半导体膜的一方分离另一方的工序;所述基板是GaN基板。根据此方法,能够将吸收紫外线的GaN基板用于形成氮化物半导体发光元件所用的氮化物膜,同时能够制造具有优异的散热特性的包含金属制支撑基体的氮化物半导体发光元件。
本发明的方法,优选,具有(h)在基板上形成所述第1导电型氮化物半导体膜之前,在所述基板上形成牺牲膜的工序;(i)在所述发光区域上形成所述第2导电型氮化物半导体膜后,从所述第1导电型氮化物半导体膜,采用所述牺牲膜,剥离所述基板的工序。根据此方法,通过熔化牺牲膜,能从另一方剥离第1导电型氮化物半导体膜和基版中的一方。
本发明的上述目的及其它目的、特征以及优点,更容易从参照附图进行的本发明的优选实施方式的以下的详细记述中阐明。


图1是表示第1实施方式的氮化物半导体发光元件的图示。
图2(A)是表示几个氮化物半导体发光元件的光致发光·光谱A、B、C的图示。图2(B)是表示有关3个光致发光·光谱A、B、C的势垒层及缓冲层的铟组成的图示。
图3(A)是表示第2实施方式的氮化物半导体发光元件的图示。图3(B)及图3(C)是表示氮化物半导体发光元件上的能带图的图示。
图4(A)、图4(B)、图4(C)、图4(D)、图4(E)及图4(F)是表示制造氮化物半导体发光元件的工序的图示。
图5(A)及图5(B)是表示制造氮化物半导体发光元件的工序的图示。
图6是表示第3实施方式的氮化物半导体发光元件的图示。
图7(A)是表示第4实施方式的氮化物半导体发光元件的图示。图7(B)及图7(C)是表示包括氮化物半导体发光元件及支撑体的发光装置的图示。
图8(A)是表示第5实施方式的氮化物半导体发光元件的图示。图8(B)及图8(C)是表示包括氮化物半导体发光元件及支撑体的发光装置的图示。
图9是表示第6实施方式的氮化物半导体发光元件的图示。
图10(A)、图10(B)、图10(C)、图10(D)、图10(E)、及图10(F)是表示制造氮化物半导体发光元件的工序的图示。
图11(A)及图11(B)是表示制造氮化物半导体发光元件的工序的图示。
具体实施例方式
本发明的构思,通过参照作为例示所示的附图,以下的详细记述,能够容易理解。进而,参照附图,说明本发明的氮化物半导体发光元件及制造该氮化物半导体发光元件的方法的实施方式。在可能的情况下,对于同一部分,附加同一符号。
(第1实施方式)图1是表示第1实施方式的氮化物半导体发光元件的图示。该氮化物半导体发光元件11,具有第1导电型氮化物半导体层13、第2导电型氮化物半导体层15、发光区域17及缓冲层19。第1导电型氮化物半导体层13及第2导电型氮化物半导体层15,设在支撑基体21上。发光区域17,设在第1导电型氮化物半导体层13和第2导电型氮化物半导体层15之间,由InAlGaN半导体构成。在优选的实施例中,发光区域17可以具有量子势阱结构23,该量子势阱结构23,含有1个或多个InX1AlY1Ga1-X1-Y1N势阱层25(1>X1>0、1>Y1>0)及多个InX2AlY2Ga1-X2-Y2N势垒层27(1>X2>0、1>Y2>0)。势阱层25设在势垒层27之间。缓冲层19,设在第1导电型氮化物半导体层13和发光区域17之间,由InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)半导体构成。InX1AlY1Ga1-X1-Y1N势阱层25的铟组成X1小于InX3AlY3Ga1-X3-Y3N缓冲层19的铟组成X3。此外,InX2AlY2Ga1-X2-Y2N势垒层27的铟组成X2小于InX3AlY3Ga1-X3-Y3N缓冲层19的铟组成X3。
根据该氮化物半导体发光元件11,由于缓冲层19的铟组成X3,大于势阱层25的铟组成X1及势垒层27的铟组成X2,因此缓冲层19的变形缓和能力优异。此外,由于势阱层25的铟组成X1及势垒层27的铟组成X2,小于缓冲层19的铟组成X3,所以发光区域17的晶体质量高。因而,能够提供可提高发光效率的氮化物半导体发光元件。
在优选的实施例中,优选,第1导电型氮化物半导体层13具有n导电型。此外,氮化物半导体发光元件11,包含设在支撑基体21和第1氮化物半导体层13之间的氮化物层29。支撑基体21,例如能够由蓝宝石、III族氮化物等构成。此外,氮化物层29例如可以由GaN半导体构成。一实施例的氮化物半导体发光元件11,是发生含有紫外线区域的波长成分的光的发光元件,此外发光区域17的量子势阱结构23产生360纳米以下的波长的光。
图2(A)是表示几个氮化物半导体发光元件的光致发光波长的图示。横轴表示波长(纳米),纵轴表示光致发光强度(任意单位)。图2(B)是表示有关3个光致发光·光谱A、B、C的势垒层及缓冲层的铟组成的图示。
氮化物半导体发光元件A、B、C,可以替代第2导电型氮化物半导体层15,具有采用无掺杂的顶层的单一量子势阱结构,具有以下结构·第1导电型氮化物半导体层13Si掺杂n型Al0.18Ga0.82N、30纳米、在摄氏1080度成膜·顶层无掺杂型Al0.18Ga0.82N、10纳米、在摄氏1030度成膜·发光区域17InAlGaN、势阱层2.7纳米势垒层(InU1AlU2Ga1-U1-U2N)15纳米·缓冲层19InV1AlV2Ga1-V1-V2N、35纳米·支撑基体21蓝宝石、在摄氏1100度的条件下H2清洗10分钟氮化物层29GaN半导体、25纳米、在摄氏475度下成膜Si掺杂n型GaN半导体、3.5微米、在摄氏1080度下成膜。
铟组成0.05的InAlGaN半导体,例如用摄氏780度生长,铟组成0.02的InAlGaN半导体,例如用摄氏830度生长。势垒层的铟组成与势阱层的铟组成大致相等。势垒层及缓冲层的带隙,例如为3.76电子伏特(6.02×10-19焦耳,1电子伏特利用1.6×10-19焦耳换算)。氮化物半导体发光元件A、B、C上的势阱层的铝组成,调整到发光波长接近350纳米。
如图2(A)所示,氮化物半导体发光元件B(U1=0.02、V1=0.02)的峰值强度,是氮化物半导体发光元件A(U1=0.05、V1=0.05)的峰值强度的大约1.8倍。氮化物半导体发光元件C(U1=0.02、V1=0.05)是氮化物半导体发光元件B的峰值强度的大约2.3倍。光谱强度的测定结果表明,铟组成低的发光区域17和铟组成高的缓冲层19的组合,具有最好的发光特性。
(第2实施方式)图3(A)是表示第2实施方式的氮化物半导体发光元件的图示。氮化物半导体发光元件11a,具有设在第1导电型氮化物半导体层13和第2导电型氮化物半导体层15之间的发光区域17a。缓冲层19,设在第1导电型氮化物半导体层13及发光区域17a之间,由InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)半导体构成。与第1实施方式的氮化物半导体发光元件11同样,InX1AlY1Ga1-X1-Y1N势阱层25a的铟组成X1小于InX3AlY3Ga1-X3-Y3N缓冲层19的铟组成X3。此外,InX2AlY2Ga1-X2-Y2N势垒层27a的铟组成X2,小于InX3AlY3Ga1-X3-Y3N缓冲层19的铟组成X3。氮化物半导体发光元件11a,包含导电性氮化物支撑基体20和接触层33。在氮化物半导体支撑基体20的一表面20a上,搭载第1导电型氮化物半导体层13、缓冲层19、发光区域17a、第2导电型氮化物半导体层15及接触层33。在氮化物半导体支撑基体20的另一表面20b上,设置电极35,在接触层33上设置电极37。作为导电性氮化物支撑基体20,例如能够使用n型GaN制支撑基体。GaN制支撑基体,具有优异的导热性及散热性。作为支撑基体20,由于使用由低位错GaN(例如,贯通位错密度<106cm-2)构成的GaN制支撑基体,因此能够减小发光区域上的贯通位错密度。
在该氮化物半导体发光元件11a中,缓冲层19对于缓和氮化物半导体发光元件11a上的变形是有效的,此外发光区域17a的晶体质量优异。因此,能提高氮化物半导体发光元件11a的发光效率。
一实施例的氮化物半导体发光元件11a,如下·支撑基体20n型GaN半导体·氮化物层29
n型GaN半导体、2微米·第1导电型氮化物半导体层13Si掺杂n型Al0.18Ga0.82N半导体、100纳米、摄氏1080度·缓冲层19InAlGaN半导体(铟组成5%)、35纳米·发光区域17aInAlGaN量子势阱结构(铟组成2%)势阱层2.7纳米、势垒层15纳米·第2导电型氮化物半导体层15Mg掺杂p型Al0.27Ga0.73N、25纳米·接触层33Mg掺杂p型Al0.18Ga0.82N半导体、100纳米。势垒层及缓冲层的带隙,为3.76电子伏特。将该氮化物半导体发光元件作为“D”并参照。即使在氮化物半导体发光元件D上,连接施加400毫安的电流的情况下,氮化物半导体发光元件D的发光输出的劣化也小,氮化物半导体发光元件D稳定工作。此外,将势阱层及势垒层的铟组成为5%的氮化物半导体发光元件作为“E”并参照。在发光波长350纳米中,氮化物半导体发光元件D的发光功率是氮化物半导体发光元件E的发光功率的2.5倍。
在氮化物半导体发光元件11a(即使是氮化物半导体发光元件11,也同样)中,也可以形成,InX2AlY2Ga1-X2-Y2N势垒层27a的禁带宽度,与InX3AlY3Ga1-X3-Y3N缓冲层19的禁带宽度大致相等。由于缓冲层19及势垒层27a由四元化合物半导体构成,因此通过与铟组成独立地变更铝组成,能够控制四元AlInGaN半导体的带隙。因而,势垒层27a的禁带宽度能够大致与缓冲层19的禁带宽度大致相等。在缓冲层19的组成与势垒层27a的组成不同的氮化物半导体发光元件11a中,载流子的封闭,和缓冲层的组成与势垒层的组成相同的氮化物半导体发光元件相比无实质变化。
如图3(B)及图3(C)所示,在氮化物半导体发光元件11a中,优选,势垒层27a和缓冲层19之间的禁带宽度差,在0.12电子伏特(1.92×10-20焦耳)以下。只要禁带宽度差在0.12电子伏特左右,缓冲层的缓冲能力和载流子封闭就能够两立。
在氮化物半导体发光元件11a中,只要InX1AlY1Ga1-X1-Y1N势阱层25a的铟组成X1大于0小于0.03(0<X1<0.03),就能够减少在发光区域17a中实现所要求波长所需的铝组成。发光区域的表面形态更好。此外,优选,InX3AlY3Ga1-X3-Y3N缓冲层19的铟组成X3,大于InX1AlY1Ga1-X1-Y1N势阱层25a的铟组成,进而InX3AlY3Ga1-X3-Y3N缓冲层19的铟组成X3小于0.10。只要缓冲层19的铟组成X3是X1<X3<0.10,都能够提高发光区域17a的晶体质量及缓冲层19的变形缓和能力。
在氮化物半导体发光元件11a中,优选,InX1AlY1Ga1-X1-Y1N势阱层25a的铝组成Y1大于0.05,该铝组成小于0.15。通过发光区域17a的生长中减小在低温下迁移小的铝组成,能够提高发光区域17a的晶体质量。此外,该铝组成的范围,与势阱层25a的铟组成X1的条件(0<X1<0.03)大致匹配。具有该铝组成的氮化物半导体发光元件,具有峰值波长位于在340纳米以上360纳米以下的波长区域内的发光光谱。
在氮化物半导体发光元件11a中,优选,缓冲层19的厚度在10纳米以上,由此InX3AlY3Ga1-X3-Y3N半导体层显示缓冲能力。此外,缓冲层19的厚度,优选在100纳米以下,由此提高InX3AlY3Ga1-X3-Y3N半导体层的晶体质量。
在优选的实施例中,第2导电型氮化物半导体层15具有p导电型,此外接触层33也具有p导电型。发光区域17a,发生含有紫外线区域的第1波长成分的光。第1波长成分,短于与氮化镓的带隙对应的波长。优选,p型氮化物半导体层15及p型接触层33,具有大于与第1波长成分对应的能级的带隙能,由此p型氮化物半导体层15及p型接触层33吸收该光的吸收量小。
接着,说明制造氮化物半导体发光元件的方法。图4(A)、图4(B)、图4(C)、图4(D)、图4(E)及图4(F),是表示制造氮化物半导体发光元件的工序的图示。图5(A)及图5(B)是表示制造氮化物半导体发光元件的工序的图示。在本实施例中,作为氮化物半导体发光元件制作发光二极管。
如图4(A)所示,在GaN基板41上生长缓冲膜43。缓冲膜43,例如是Si掺杂n型氮化镓膜,其厚度例如为2微米。在本实施例中,氮化镓系半导体膜,例如采用有机金属气相生长法沉积。优选,在形成第1缓冲膜43之前,在摄氏1050度,在氨及氢的气氛中,将GaN基板41放置10分钟,进行GaN基板41的表面的热清洗。
如图4(B)所示,在基板41上形成第1导电型氮化物半导体膜45。第1导电型氮化物半导体膜45,例如可以是AlGaN膜。在一例中,该AlGaN膜是Si掺杂n型Al0.18Ga0.82N膜,其厚度例如可以是100纳米。
如图4(C)所示,在第1导电型氮化物半导体膜45上生长InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)缓冲膜47。缓冲膜47,用第1温度T1形成。为了确保缓冲效果所需的铟组成,优选温度T1在设是750度以上880度以下。在一实施例中,第1温度T1,例如为摄氏780度,缓冲膜47的厚度,例如为35纳米。
如图4(D)所示,在缓冲膜47上生长InAlGaN发光区域49。在发光区域49的形成中,具有形成势垒膜51的工序和形成势阱膜53的工序。在形成势垒膜51的工序中,用第2温度T2形成InX2AlY2Ga1-X2-Y2N(1>X2>0、1>Y2>0)半导体膜。为促进迁移提高结晶性,温度T2,优选摄氏800度以上,此外,为确保提高发光特性所需的铟组成,优选摄氏930度以下。在形成势阱膜53的工序中,用第3温度T3形成InX1AlY1Ga1-X1-Y1N(X1>0、Y1>0)半导体膜。为促进迁移提高结晶性,温度T3,优选摄氏800度以上,此外,为确保提高发光特性所需的铟组成,优选摄氏930度以下。第2温度T2及第3温度T3高于第1温度T1。根据该方法,由于势垒膜51和势阱膜53用高于缓冲膜47的成膜温度T1的温度T2、T3生长,因此显示出良好的晶体质量,同时具有低的铟组成。另外,缓冲膜47,由于用比势垒膜51和势阱膜53的成膜温度T2、T3低的温度T1生长,因此具有大的铟组成,从而具有优异的变形缓和能力。
本实施例的发光区域49,具有2MQW的量子势阱结构,势阱膜53的厚度例如为2.7纳米,势垒层51的厚度例如为15纳米。在一实施例中,势垒膜51和势阱膜53在摄氏830度沉积,该温度高于缓冲膜37的成膜温度即摄氏780度。势阱膜53和势垒膜51的铟组成为2%,另外,缓冲膜47的铟组成为5%。
如图4(E)所示,在发光区域49上形成第2导电型氮化物半导体膜55。第2导电型氮化物半导体膜55,例如是AlGaN膜。在一例中,该AlGaN膜,是Mg掺杂p型Al0.27Ga0.73N膜,其厚度例如可以是25纳米。第2导电型氮化物半导体膜55,是为闭塞电子而设的。
如图4(F)所示,在第2导电型氮化物半导体膜55上形成接触膜57。接触膜57的带隙小于第2导电型氮化物半导体膜55的带隙。此外,优选,接触膜57的载流子浓度,大于第2导电型氮化物半导体膜55的载流子的浓度。接触膜57,例如是Mg掺杂p型Al0.18Ga0.82N膜,其厚度例如可以是100纳米。
如图5(A)所示,在GaN基板41的背面形成第1电极59。在一实施例中,第1电极59以阴极电极工作。如图5(B)所示,在接触膜57上形成第2电极61。第2电极61配列成阵列状,在一实施例中,以阳极电极工作。在形成第1电极59及第2电极61后,沿虚线CUT1及CUT2切断半导体基板生产物63,得到多个氮化物半导体发光元件11a。
如上所述,根据本实施方式,提供一种制造能够提高发光效率的氮化物半导体发光元件的方法。
(第3实施方式)图6是表示第3实施方式的氮化物半导体发光元件的图示。氮化物半导体发光元件11b,替代接触层33,包含接触区域65。第2导电型氮化物半导体层15设在发光区域17a和接触区域65之间。接触区域65,包含多个第1AlGaN层67和多个第2AlGaN层69。第1AlGaN层67的组成不同于第2AlGaN层69的组成。第1AlGaN层67和第2AlGaN层69,以形成超点阵结构的方式,交替配置。在优选的实施例中,第1AlGaN层67及第2AlGaN层69的至少一方的AlGaN层具有p导电性。由于该接触区域65具有超点阵结构,因此能提高该接触区域65的空穴浓度。此外,氮化物半导体发光元件11b,具有变形缓和能力优异的缓冲层19和晶体质量优异的发光区域17a。所以,能提高氮化物半导体发光元件11b的发光效率。
在一实施例中,第1AlGaN层67,例如由p型Al0.24Ga0.76N半导体构成,例如用摄氏1030度形成。此外,第2A1GaN半导体层69例如由p型Al0.17Ga0.83N半导体形成,例如用摄氏1030度形成。第1AlGaN层67及第2AlGaN层69的厚度,例如为3.8纳米,接触区域65具有8周期的第1AlGaN层67及第2AlGaN层69。
将该氮化物半导体发光元件作为“F”并参照。对氮化物半导体发光元件F施加电流,测定经由接触区域65从发光区域17a输出的光L0的功率。氮化物半导体发光元件F的发光功率,在发光波长350纳米,为氮化物半导体发光元件D的发光强度的1.4倍。
(第4实施方式)图7(A)是表示第4实施方式的氮化物半导体发光元件的图示。氮化物半导体发光元件11c,具有称为蓝宝石制支撑基体71的绝缘性支撑基体、缓冲层73、第1导电型氮化物半导体层75、缓冲层77、发光区域17b、第2导电型氮化物半导体层79、接触层81。在缓冲层73上,形成包含第1导电型氮化物半导体层75、缓冲层77、发光区域17b、第2导电型氮化物半导体层79、接触层81的氮化物半导体区域。蓝宝石制支撑基体71是绝缘性支撑基体的一例。
在优选的实施例中,在形成氮化物层之前,在摄氏1200度,在氢气气氛中,10分钟暴露成为蓝宝石制支撑基体71的基板表面,进行清洗。缓冲层73,例如是氮化铝层,其厚度例如为30纳米,氮化铝层例如用摄氏500度形成。第1导电型氮化物半导体层75,例如是AlGaN层。在一例中,该AlGaN层由Si掺杂n型Al0.18Ga0.82N半导体构成,其厚度例如为2.5微米,n型Al0.18Ga0.82N半导体层,例如用摄氏1080度形成。缓冲层77由InAlGaN半导体构成,其铟组成为5%,能够按已经说明的条件形成。发光区域17b,例如具有包含InAlGaN势阱层25b及InAlGaN势垒层27b的量子势阱结构,势阱层25b及势垒层27b的铟组成为2%,能够按已经说明的条件形成。第2导电型氮化物半导体层79,例如是AlGaN层。在一例中,AlGaN层,由Mg掺杂p型Al0.27Ga0.73N半导体构成,其厚度例如为25纳米,Mg掺杂p型Al0.27Ga0.73N半导体层,例如用摄氏1030度形成。接触层81,例如是AlGaN层。在一例中,该AlGaN层,由p型Al0.18Ga0.82N半导体构成,其厚度例如为100纳米,Mg掺杂p型Al0.18Ga0.82N半导体层,例如用摄氏1030度形成。
在结束氮化物层的形成后,部分刻蚀(例如反应性离子刻蚀)氮化物层(缓冲层77、发光区域17b、第2导电型氮化物半导体层79、接触层81),露出第1导电型氮化物半导体层75的一部分。在接触层81上,形成第1电极83(例如,阳极电极),同时在露出第1导电型氮化物半导体层75的区域上,形成第2电极85。将在这些工序后得到的氮化物半导体发光元件作为“G”并参照。此外,制作发光区域的铟组成为5%的氮化物半导体发光元件H。
图7(B)及图7(C)是表示包括氮化物半导体发光元件11c及支撑体87的发光装置88a、88b的图示。如果参照图7(B),氮化物半导体发光元件11c搭载在支撑体87上。支撑体87,支撑蓝宝石制支撑基体71。蓝宝石制支撑基体71的尺寸,例如400微米×400微米,实质上与氮化物结构物的尺寸相同。
在氮化物半导体发光元件11c中,接触层81,具有出射来自发光区域17b的光L1的出射面81a。第2导电型氮化物半导体层79及接触层81的带隙能,大于与发光区域17b产生的光L1的第1波长成分对应的能级。第1导电型氮化物半导体层75的带隙的能级,大于与第1波长成分对应的能级。因此,能够降低发光区域产生的光的第1导电型氮化物半导体层及第2导电型氮化物半导体层上的吸收。在图7(B)所示的发光装置88a中,氮化物半导体发光元件G的发光强度,是氮化物半导体发光元件H的发光强度的2.5倍。
如果参照图7(C),在支撑体87上搭载氮化物半导体发光元件11c。氮化物半导体发光元件G,以倒装片方式搭载在支撑体87上。
在氮化物半导体发光元件11c中,蓝宝石支撑基体71,具有第1面71a及第2面71b。在第1面71a上,搭载第1导电型氮化物半导体层75、缓冲层77、发光区域17b及第2导电型氮化物半导体层79。来自发光区域的光L2,通过第2面71b出射。在该氮化物半导体发光元件11c中,发光区域17b及蓝宝石支撑基体71的第2面71b之间,设置可透过来自发光区域17b的光L2的氮化物区域73、75、77。因此,光L2从蓝宝石支撑基体71的第2面71b出射。图7(C)所示的氮化物半导体发光元件G的发光强度,是图7(B)所示的氮化物半导体发光元件G的发光强度的2.5倍。
如上所述,根据本实施方式,能够提供提高了发光效率的氮化物半导体发光元件。
(第5实施方式)图8(A)是表示第5实施方式的氮化物半导体发光元件的图示。氮化物半导体发光元件11d,具有称为氮化铝制支撑基体91的绝缘性支撑基体、缓冲层93、第1导电型氮化物半导体层75、缓冲层77、发光区域17b、第2导电型氮化物半导体层79、接触层81。在缓冲层93上,形成包含第1导电型氮化物半导体层75、缓冲层77、发光区域17b、第2导电型氮化物半导体层79、接触层81的氮化物半导体区域。由于氮化铝支撑基体91具有优异的导热性,因此氮化物半导体发光元件11d具有优异的散热性。氮化铝支撑基体91是绝缘性支撑基体的一例,但也能够代替缘性支撑基体,采用GaZAl1-ZN(Z是0以上,小于1)制支撑基体。
在优选的实施例中,在形成氮化物层之前,在摄氏1050度,在氨气及氢气的气氛中,10分钟暴露成为支撑基体91的氮化铝制基板的表面,进行清洗。缓冲层73,例如是氮化铝层,其厚度例如为100纳米,氮化铝层例如用摄氏1150度形成。第1导电型氮化物半导体层75,例如由Si掺杂n型Al0.18Ga0.82N半导体构成,其厚度例如为2.5微米,n型Al0.18Ga0.82N半导体层,例如用摄氏1150度形成。接着的氮化物层的形成,也不局限于此,也能够与第4实施方式中的优选的实施例相同地进行。
在结束氮化物层的形成后,部分刻蚀(例如反应性离子刻蚀)设在氮化铝制的基板表面上的氮化物层(缓冲层77、发光区域17b、第2导电型氮化物半导体层79、接触层81),露出第1导电型氮化物半导体层75的一部分。在接触层81上,形成第1电极83(例如,阳极电极),同时在露出第1导电型氮化物半导体层75的区域上,形成第2电极85。将在这些工序后得到的氮化物半导体发光元件作为“I”并参照。此外,制作发光区域的铟组成为5%的氮化物半导体发光元件J。
图8(B)及图8(C)是表示包括氮化物半导体发光元件11d及支撑体87的发光装置88c、88d的图示。如照图8(B)所示,能够将氮化物半导体发光元件11d搭载在支撑体87上。来自发光区域17b的光L3,从接触层81的出射面81a出射。图8(B)所示的氮化物半导体发光元件I的发光强度,是氮化物半导体发光元件J的发光强度的2.5倍。
此外,如图8(C)所示,能够在支撑体87上搭载氮化物半导体发光元件11d。来自发光区域17b的光L4,透过设在发光区域17b和氮化铝制支撑基体91之间的氮化物区域,从氮化铝制支撑基体91的第2面91b出射。图8(C)所示的氮化物半导体发光元件I的发光强度,是图8(B)所示的氮化物半导体发光元件I的发光强度的2.5倍。
此外,由于氮化物半导体发光元件11d,GaZAl1-ZN的导热率,大于蓝宝石的导热率,因此具有优异的散热性。无论是图8(B)及图8(C)所示的何种搭载方式,当在氮化物半导体发光元件I上,连续施加400毫安的电流的情况下,氮化物半导体发光元件I的发光输出的劣化都小,氮化物半导体发光元件I稳定工作。
(第6实施方式)图9是表示第6实施方式的氮化物半导体发光元件的图示。氮化物半导体发光元件11e,含有金属制支撑基体97。在金属制支撑基体97上,依次,设置接触层33、第2导电型氮化物半导体层15、发光区域17a、缓冲层19及第1导电型氮化物半导体层13。在接触层33和金属制支撑基体97之间,设置电极99。发光区域17a,发生含有紫外线区域的波长成分的光L5、L6。光L6被电极99反射成为光L7。光L5及L7,从第1导电型氮化物半导体层13的出射面13a出射。在第1导电型氮化物半导体层13的出射面13a上,设置电极101。在氮化物半导体发光元件11e中,与用于生长第2导电型氮化物半导体层15、发光区域17a、缓冲层19及第1导电型氮化物半导体层13的基板(例如GaN基板)的材料不同,在用于氮化物半导体发光元件11e的金属制支撑基体97上,搭载由接触层33、第2导电型氮化物半导体层15、发光区域17a、缓冲层19及第1导电型氮化物半导体层13以及电极99构成的结构物。
根据该半导体发光元件,能够在低位错密度的GaN基板上形成与发光有关的半导体膜,同时作为支撑基体,能够不采用吸收紫外线区域的GaN半导体,而采用散热性优异的金属制支撑基体97。作为金属制支撑基体97的材料,例如能够采用CuW合金、FeNi合金。作为显示高反射铝的电极99的材料,能够采用Ni/Au半透明电极和Ag合金层的组合或铂(Pt)电极膜。
接着,说明制造氮化物半导体发光元件的方法。图10(A)、图10(B)、图10(C)、图10(D)、图10(E)、及图10(F)是表示制造氮化物半导体发光元件的工序的图示。图11(A)及图11(B)是表示制造工序中的氮化物半导体发光元件的剖面的图示。在本实施方式中,作为氮化物半导体发光元件,制作发光二极管。
采用类似于图4(A)、图4(B)、图4(C)、图4(D)、图4(E)、图4(F)、图5(A)及图5(B)所示的一连串工序的工序,制造用于氮化物半导体发光元件11e的外延晶片E。其结果,得到如图10(A)所示的外延晶片E。如图11(A)所示,外延晶片E,包含设在缓冲膜43和第1导电型氮化物半导体膜45之间的牺牲膜103。牺牲膜103,是带隙小于基板41及缓冲膜43的带隙的氮化物半导体层,例如,能够由InGaN半导体构成。此外,外延晶片E,包含设在接触膜57上的导电体膜105。导电体膜105,用于反射来自发光区域的光及供给载流子。作为导电体膜105的材料,能够采用Ni/Au半透明电极和Ag合金膜的组合或铂(Pt)电极膜。
如图10(B)所示,准备金属制基板107。金属制基板107的尺寸,优选在基板41的尺寸以上。金属制基板107的形状,不局限于图10(B)所示的圆板形状。在导电体膜105上粘接金属制基板107的一面107a。该粘接能够根据需要,采用导电性粘合剂。作为导电性粘合剂,能够采用,例如AuSn、PbSn等。
如图10(C)及图11(B)所示,能提供在基板107的一面107a粘接外延晶片E的基板生成物F。
如图10(D)所示,在将金属制基板107粘接在第2导电型氮化物半导体膜57上后,从第1导电型氮化物半导体膜45上分离GaN基板41。该分离,例如通过采用牺牲膜103,从第1导电型氮化物半导体膜45剥离GaN基板41实现。在优选的方法中,朝GaN基板41照射激光109,激光109,通过GaN基板41及缓冲膜43,被牺牲膜103吸收。通过吸收激光109,熔化牺牲膜103,从第1导电型氮化物半导体膜45剥离GaN基板41。其结果,基板生成物F,被分离成第1部分F1及第2部分F2。在第1部分F1的熔化面S1上,残留熔化的牺牲膜。研磨熔化面S1,露出第1导电型氮化物半导体膜45。在第2部分F2的熔化面S2上,也残留熔化的牺牲膜。研磨熔化面S2,露出缓冲膜43,根据需要再用于制造外延晶片。
如图10(E)所示,在第1导电型氮化物半导体45的露出面45a上形成导电膜111。接着,采用光刻蚀法,从导电膜111制作多个电极111a。如图10(F)所示,电极111a,在第1导电型氮化物膜45的露出面上配列成阵列状。然后,沿虚线CUT3及CUT4切断第1部分F1,得到氮化物半导体发光元件11e。
根据本方法,能够不采用吸收紫外线的GaN支撑基体,制造具有优异散热特性的包含金属制支撑基体的氮化物半导体发光元件。此外,由于势垒膜及势阱膜用比缓冲膜高的温度生长,所以显示良好的晶体质量,同时具有低的铟组成。另外,缓冲膜,由于用比势垒膜及势阱膜低的温度生长,所以具有大的铟组成,从缓和变形的能力优异。
参照几个实施方式,说明了半导体发光元件及其制造方法。为了制作InAlGaN发光元件,发光区域的InAlGaN半导体势垒层,按与InAlGaN半导体缓冲层相同的成膜条件形成。该紫外线发光元件X的发光波长,例如如果采用势垒层(In5%、Al24%)及势阱层(In6%、Al19%),可达到350纳米左右。但是,在摄氏780度左右的温度下,难生长铝组成19~24%范围的InAlGaN半导体。
如果将形成发光区域的成膜温度提高到摄氏830度左右,就能够降低势垒层及势阱层的铟组成及铝组成。例如,如果采用势垒层(In2%、Al22%)及势阱层(In2%、Al9%),可达到350纳米左右。该半导体发光元件Y的量子势阱结构的光致发光的峰值强度,大于上述的半导体发光元件X的量子势阱结构的光致发光的峰值强度。
另外,发光区域及InAlGaN缓冲层也用摄氏830度形成半导体发光元件Z。该半导体发光元件Z的量子势阱结构光致发光的峰值强度,小于半导体发光元件Y的量子势阱结构的光致发光的峰值强度。即,通过相对提高生长温度(或者,相对降低铟组成),提高发光区域的InAlGaN半导体的结晶性,从而提高发光强度。另外,通过相对降低生长温度(或者,相对提高铟组成),提高缓和发光区域的InAlGaN半导体的变形的特性。
在优选的实施方式中,图示说明了本发明的原理,但在不脱离如此的原理的情况下,本领域技术人员能够进行配置及细节的变更。本发明,不限定于本实施方式所述的特定的构成。因此,对于基于本发明所要求保护范围及其技术构思的所有修正及变更,也被本发明所保护。
权利要求
1.一种氮化物半导体发光元件,是发生含有紫外线区域的波长成分的光的氮化物半导体发光元件,其特征在于,具有设在支撑基体上的第1导电型氮化物半导体层、设在支撑基体上的第2导电型氮化物半导体层、发光区域,设在所述第1导电型氮化物半导体层和所述第2导电型氮化物半导体层之间,含有InX1AlY1Ga1-X1-Y1N势阱层(1>X1>0、1>Y1>0)及InX2AlY2Ga1-X2-Y2N势垒层(1>X2>0、1>Y2>0)、InX3AlY3Ga1-X3-Y3N缓冲层(1>X3>0、1>Y3>0),设在所述发光区域和所述第1导电型氮化物半导体层之间;所述InX1AlY1Ga1-X1-Y1N势阱层的铟组成X1,小于所述InX3AlY3Ga1-X3-Y3N缓冲层的铟组成X3;所述InX2AlY2Ga1-X2-Y2N势垒层的铟组成X2,小于所述InX3AlY3Ga1-X3-Y3N缓冲层的铟组成X3。
2.如权利要求1所述的氮化物半导体发光元件,其特征在于,所述InX2AlY2Ga1-X2-Y2N势垒层和所述InX3AlY3Ga1-X3-Y3N缓冲层之间的禁带宽度差,在1.92×10-20焦耳以下。
3.如权利要求1或2所述的氮化物半导体发光元件,其特征在于,所述InX1AlY1Ga1-X1-Y1N势阱层的铟组成X1大于0小于0.03;所述InX3AlY3Ga1-X3-Y3N缓冲层的铟组成X3小于0.10。
4.如权利要求3所述的氮化物半导体发光元件,其特征在于,所述InX1AlY1Ga1-X1-Y1N势阱层的铝组成Y1大于0.05;所述InX1AlY1Ga1-X1-Y1N势阱层的铝组成Y1小于0.15;所述发光区域,具有发生340纳米以上360纳米以下的波长区域内的波长的光的量子势阱结构。
5.如权利要求1~4中任何一项所述的氮化物半导体发光元件,其特征在于,所述InX3AlY3Ga1-X3-Y3N缓冲层的厚度,在10纳米以上;所述InX3AlY3Ga1-X3-Y3N缓冲层的厚度,在100纳米以下。
6.如权利要求1~5中任何一项所述的氮化物半导体发光元件,其特征在于,所述第2导电型氮化物半导体层具有p导电型;所述发光区域,能够发生含有小于与氮化镓的带隙对应的波长的第1波长成分的光;所述第2导电型氮化物半导体层的带隙能,大于与所述第1波长成分对应的能级。
7.如权利要求6所述的氮化物半导体发光元件,其特征在于,还具有1个或多个第1AlGaN半导体层、以及1个或多个第2AlGaN半导体层;所述第1AlGaN半导体层及所述第2AlGaN半导体层的至少任一方的半导体层,显示p导电型;所述第2AlGaN半导体层的组成,与所述第1AlGaN半导体层的组成不同;所述第1AlGaN半导体层和所述第2AlGaN半导体层,以形成超点阵结构的方式配置;所述第2导电型氮化物半导体层,位于所述超点阵结构和所述发光区域之间;所述第2导电型氮化物半导体层,具有p导电型。
8.如权利要求1~7中任何一项所述的氮化物半导体发光元件,其特征在于,还具有另一第2导电型氮化物半导体层,其设有电极,具有出射来自所述发光区域的光的出射面,设在所述第2导电型氮化物半导体层上;所述支撑基体,是具有第1面的蓝宝石支撑基体;所述第1导电型氮化物半导体层、所述发光区域、所述第2导电型氮化物半导体层及另一第2导电型氮化物半导体层,依次搭载在所述蓝宝石支撑基体的所述第1面上;所述第1导电型氮化物半导体层的带隙能,大于与所述发光区域发生的所述光的波长成分对应的能级。
9.如权利要求1~7中任何一项所述的氮化物半导体发光元件,其特征在于,所述支撑基体,是蓝宝石支撑基体;所述第1导电型氮化物半导体层的带隙的能级,大于与所述发光区域发生的光的波长对应的能级;所述蓝宝石支撑基体,具有搭载了所述第1导电型氮化物半导体层、所述第2导电型氮化物半导体层及所述发光区域的第1面、和出射来自所述发光区域的光的第2面。
10.如权利要求1~7中任何一项所述的氮化物半导体发光元件,其特征在于,还具有另一第2导电型氮化物半导体层,其设有电极,具有出射来自所述发光区域的光的出射面,设在所述第2导电型氮化物半导体层上;所述支撑基体,是具有第1面的GaZAl1-ZN(Z为0以上1以下)的支撑基体;所述第1导电型氮化物半导体层、所述发光区域、所述第2导电型氮化物半导体层及另一第2导电型氮化物半导体层,依次搭载在所述支撑基体的所述第1面上。
11.如权利要求10所述的氮化物半导体发光元件,其特征在于,所述支撑基体是GaN支撑基体。
12.如权利要求1~7中任何一项所述的氮化物半导体发光元件,其特征在于,所述支撑基体由GaZAl1-ZN(Z为0以上,小于1)构成;所述第1导电型氮化物半导体层的带隙能,大于与所述发光区域发生的光的波长成分对应的能级;所述GaZAl1-ZN支撑基体,具有搭载了所述第1导电型氮化物半导体层、所述第2导电型氮化物半导体层及所述发光区域的第1面、和出射来自所述发光区域的光的第2面。
13.如权利要求10或12所述的氮化物半导体发光元件,其特征在于,所述支撑基体是AlN支撑基体。
14.如权利要求1~7中任何一项所述的氮化物半导体发光元件,其特征在于,所述支撑基体是金属制支撑基体;所述第2导电型氮化物半导体层、所述发光区域、所述第1导电型氮化物半导体层,搭载在所述金属制支撑基体的第1面上,所述第1导电型氮化物半导体层的带隙能,大于与所述发光区域发生的光的波长对应的能级。
15.如权利要求1~14中任何一项所述的氮化物半导体发光元件,其特征在于,所述InX2AlY2Ga1-X2-Y2N势垒层的禁带宽度,与所述InX3AlY3Ga1-X3-Y3N缓冲层的禁带宽度大致相等。
16.一种制造氮化物半导体发光元件的方法,所述半导体发光元件是发生含有紫外线区域的波长成分的光的氮化物半导体发光元件,其特征在于,具有在基板上形成第1导电型氮化物半导体膜的工序、在所述第1导电型氮化物半导体膜上形成缓冲膜的工序、形成用于发光区域的势阱膜的工序、形成用于所述发光区域的势垒膜的工序、在所述发光区域上形成第2导电型氮化物半导体膜的工序;所述势阱膜,包含InX1AlY1Ga1-X1-Y1N(1>X1>0、1>Y1>0)半导体膜,该InX1AlY1Ga1-X1-Y1N(1>X1>0、1>Y1>0)半导体膜用第1温度形成;所述势垒膜,包含InX2AlY2Ga1-X2-Y2N(1>X2>0、1>Y2>0)半导体膜,该InX2AlY2Ga1-X2-Y2N(1>X2>0、1>Y2>0)半导体膜用第2温度形成;所述缓冲膜,包含InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)缓冲膜,该InX3AlY3Ga1-X3-Y3N(1>X3>0、1>Y3>0)缓冲膜,在形成所述发光区域之前,用第3温度形成;所述第1温度及所述第2温度高于所述第3温度。
17.如权利要求16所述的方法,其特征在于,还具有将所述第2导电型氮化物半导体膜及金属制基板的一方粘接在另一方上的工序、在粘接后,从所述基板及所述第1导电型氮化物半导体膜的一方分离另一方的工序;所述基板是GaN基板。
18.如权利要求16所述的方法,其特征在于,具有在基板上形成所述第1导电型氮化物半导体膜之前,在所述基板上形成牺牲膜的工序;在所述发光区域上形成所述第2导电型氮化物半导体膜后,从所述第1导电型氮化物半导体膜,采用所述牺牲膜,剥离所述基板的工序。
全文摘要
本发明提供一种氮化物半导体发光元件,在支撑基体上设置第1导电型氮化物半导体层,此外在支撑基体上设置第2导电型氮化物半导体层。发光区域,设在第1导电型氮化物半导体层和第2导电型氮化物半导体层之间。发光区域,含有In
文档编号C01G15/00GK1734802SQ20051008849
公开日2006年2月15日 申请日期2005年8月2日 优先权日2004年8月3日
发明者京野孝史, 平山秀树 申请人:住友电气工业株式会社, 独立行政法人理化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1