抑制取代的环四硅氧烷聚合的稳定剂的制作方法

文档序号:3582866阅读:216来源:国知局
专利名称:抑制取代的环四硅氧烷聚合的稳定剂的制作方法
背景技术
在用于半导体元件制造的集成电路(IC)的生产中,使用二氧化硅膜已经有一段时间。在公开的现有技术和专利文献中有许多生产此类SiO2薄膜的例子。参见例如Schumacher Group,Ak Products and Chemicals,Inc.出版物,例如用户指南采用TEOS进行玻璃沉积1和ExtremaTEOS(原硅酸四乙酯)产品说明书2。同样参见,通过TEOS分解的SiO2低压沉积的模型化3,和在减压条件下二氧化硅膜的沉积4。有许多期刊文章综述了用于SiO2沉积的各种各样的CVD技术以及使用该技术沉积的薄膜的性质5-9。
早期通过硅烷(SiH4)的CVD氧化来沉积SiO2膜。由于开发了亚微米构型的电子元件,需要新原料以便保持良好的阶梯式覆盖(Step coverage)。与SiH4相比,由原硅酸四乙酯(TEOS)沉积而得的膜表现出优异的阶梯式覆盖性能7。TEOS被认为是用于SiO2的CVD生产的工业标准来源。TEOS是挥发性液体,便于有效的蒸汽配送和容易处理。其为非自燃的,因而提供了比硅烷显著的安全优势。它生产出具有优异电性能和机械性能的介电薄膜,适用于许多元件制造应用领域。
化合物1,3,5,7-四甲基环四硅氧烷(例如由加拿大的Schumacher ofCarlsbad生产的TOMCATS硅氧烷)作为SiO2玻璃的CVD生产的新原料正在发展中10-11。TOMCATS型硅氧烷是高纯度挥发性液体的前体化合物,其特别用于满足半导体元件制造工业的严格要求。类似于TEOS,TOMCATS型硅氧烷可用于玻璃和掺杂玻璃的化学汽相沉积,这些玻璃用于各种介电膜应用诸如沟槽填充,层间电介质,栅极和厚氧化层2。由于它的非自燃性和非侵蚀性质,它提供了类似的安全优势。TOMCATS型硅氧烷和TEOS的标准沸点分别是135℃和168℃。TOMCATS型硅氧烷的较高挥发性使得它能够以较低温度或者在类似温度下以较高效率被输送。在600℃时其沉积速率10倍于TEOS,沉积效率3倍于TEOS2。在所得膜的保形性和阶梯式覆盖方面,它优于硅烷且类似于TEOS11-12。
一般而言,由TOMCATS型硅氧烷沉积所得的SiO2膜表现出优异的机械性能和电性能。膜是致密的,具有与热氧化物相当的低碳含量和折射率值。TOMCATS型硅氧烷对于低压化学汽相沉积(LPCVD)是有效的,并作为增强的等离子体化学汽相沉积(PECVD)液体注射源。后面的方法是利用等离子体而不是热能来促进化学反应。TOMCATS型硅氧烷PECVD一般是在比LPCVD低的温度下进行(400℃相对于500-600℃)。
尽管具有这些优点,作为制造半导体元件的CVD源,TOMCATS型硅氧烷仍然受到有限的认可。TOMCATS型硅氧烷的一个缺点是,当暴露于某些化学物质或者加工条件时,对于聚合反应的不稳定性13。这导致较低挥发性液体和凝胶,而这些液体或凝胶产生了CVD加工处理问题。TOMCATS型硅氧烷聚合可由酸,碱或自由基催化。
在本发明中通过实验也显示出,TOMCATS型硅氧烷的延长加热(实施例1)可以促进聚合。聚合程度可以是较小的,仅仅占百分比的十分之几。在长时间暴露于高温或某些酸或碱的更加剧烈的条件下,将发生显著的聚合反应,产生含有超过10重量%低聚物或聚合物的高粘性液体或凝胶。
现有技术中有一些文献涉及到硅氧烷的稳定性。Hirabayashi等人14教导使用三嗪或硫化物“控制剂”来稳定包含脂族不饱和基团,含有有机聚硅氧烷化合物例如TOMCATS型硅氧烷和铂系催化剂的混合物。那些发明人教导使用三嗪或硫化物试剂来得到在室温稳定且耐早期胶凝、以便获得长期贮存稳定性的混合物。
Lutz等人15公开了使用二和三烃基膦作为下述组合物的固化抑制剂,该组合物包含(1)链烯基;(2)含有硅键合氢原子的化合物(例如TOMCATS型硅氧烷);和(3)铂系金属催化剂。Lutz等人要求通过与铂催化剂配合使得其对于后面的固化钝化而起抑制剂的作用。
在类似的专利中,Chalk16教导使用降低铂催化剂活性的丙烯腈型化合物,来阻止各种聚硅氧烷混合物的共聚合反应。
Berger等人17建议使用烯链式不饱和异氰脲酸酯,以类似的方式起作用钝化Pt催化剂,使得可固化有机聚硅氧烷组合物稳定,不至于早期胶凝。
Endo等人18教导了通过使用1-20重量%聚甲基聚硅氧烷诸如1,1,1,3,5,5,5-七甲基三硅氧烷,来稳定环硅氧烷诸如TOMCATS型硅氧烷。
参考文献1 用户指南采用TEOS进行玻璃沉积;Schumacher Group,Air Products andChemicals,Inc.,1992。
2 ExtremaTOMCATS(四甲基环四硅氧烷)产品说明书;SchumacherGroup,Ak Products and Chemicals,Inc.,2000。
3 通过TEOS分解的SiO2低压沉积的模型化;Schumacher Group,AirProducts and Chemicals,Inc.,1979。
4 在减压条件下二氧化硅膜的沉积;Schumacher Group,Air Products andChemicals,Inc.,6/1979。
5 G.Lucovsky,通过远等离子体-增强的化学汽相沉积(PECVD)制备装置质量的SiO2薄膜在金属氧化物半导体(MOS)装置中的应用,Advanced Materialsfor Optics and Electronics,Vol.6,55-72(1996)。
6 G.Tochitani,M.Shimozuma和H.Tagashira,通过低频等离子体化学汽相沉积从TEOS沉积硅氧化物薄膜,J.Vac.Sci.Technol.A,Vol.11,No.2 3月/4月,1993。
7 S.K.Ray,C.K.Maiti,S.K.Lahiri和N.B.Chakrabarti,在低温下通过微波等离子体增强的四乙基原硅酸酯分解沉积的二氧化硅薄膜的性能,J.Vac.Sci.Technol.B,Vol.10,No.3,5月/6月1992。
8 C.S.Pai,J.F.Miner和P.D.Foo,用于使用四乙氧基硅烷的氧化物沉积的电子回旋加速器共振微波放电,J.Electrochem.Soc.,Vol.139,No.3,1992年3月3日。
9 C.-P.Chang,C.S.Pai和J.J.Hsieh,离子和化学自由基对四乙基原硅酸酯薄膜的等离子体增强的化学汽相沉积的阶梯式覆盖的影响,J Appl.Phys.67(4),1990年2月15日。
10 C.S.Pai,J.F.Miner和P.D.Foo,用于使用四甲基环四硅氧烷的氧化物沉积的电子回旋加速器共振微波放电,J.Appl.Phys.,Vol.73,No.7,1993年4月1日。
11 A.Hochberg和B.Gelemt,用户指南使用TOMCATS原料的未掺杂玻璃、PSG和BPSG,Schumacher(Air Products and Chemicals,Inc.),1991。
12 A.Lagendijk,制备二氧化硅玻璃薄膜的方法,US 5,028,566,1991。
13 J.E.McGrath,J.S.Riffle,A.K.Banthia,I.Yilgor,I.和G.L Wilkes,环硅氧烷聚合综述,ACS Symp.,Ser.212(引发聚合),145-72,1983。
14 S.Hirabayashi和T.Nakamura,硅橡胶组合物,U.S.5,548,006,1996。
15 M.A.Lutz,B.T.Nguyen和R.K.King,含有减活硅氢化催化剂的单包装可固化组合物及其制备方法,U.S.5,380,812,1995。
16 A.J.Chalk,含有铂催化剂和丙烯腈型化合物的稳定的可共聚有机硅组合物的制备方法U.S.3,344,111,1967。
17 A.Berger和B.Bertolette Hardman,潜在加成可固化有机聚硅氧烷组合物,U.S.3,882,083,1975。
18 M.Endo和A.Yamamoto,低分子量甲基环硅氧烷的稳定化,JP07145179,1999。
引用的专利文献都教导了使用各种试剂,以某种方式抑制用于硅橡胶工业各种应用中的聚硅氧烷的聚合反应或共聚合反应。它们中无一说明或暗示在半导体元件制造工业中用于CVD源的阻聚剂。

发明内容
本发明是一种使取代的环四硅氧烷稳定并抑制聚合的方法,其被用于电子材料制造中硅氧化物的化学气相沉积工艺,该方法包括向具有下式的取代的环四硅氧烷中提供有效量的自由基清除剂阻聚剂 其中R1-7分别选自于氢、直链、支链或环C1-10烷基,以及C1-4烷氧基。本发明还提供了一种被稳定而抑制聚合的取代的环四硅氧烷的组合物,其作为电子材料制造中硅氧化物的前体被用于化学汽相沉积工艺,该组合物包含(a)具有下式的取代的环四硅氧烷 其中R1-7分别选自于氢、直链、支链或环C1-10烷基和C1-4烷氧基,和(b)自由基清除剂。
发明详述化合物1,3,5,7-四甲基环四硅氧烷(例如由加拿大的Schumacher ofCarlsbad生产的TOMCATS硅氧烷)被用作半导体元件制造中SiO2化学汽相沉积(CVD)的前体。目前半导体元件制造商正在评估将TOMCATS型硅氧烷用作SiO2的CVD的前体,这是因为它有能力形成具有优异电性能和机械性能的高质量膜。已知的是,当经过延长时间段的加热或暴露于某些化学物质时,TOMCATS型硅氧烷会聚合。在本发明中,我们公开了使用各种自由基清除剂以抑制TOMCATS型硅氧烷的聚合。添加剂的低浓度不会显著影响整个产品纯度,也不会预期对通过CVD制得的膜的临界性能产生不利影响。
因此,本发明的一个目的是消除或抑制在通常的CVD工艺条件下TOMCATS型硅氧烷的聚合。这些TOMCATS型硅氧烷包括下式的取代的环四硅氧烷
其中R1-7分别选自于氢、直链、支链或环状C1-10烷基和C1-4烷氧基。
这通过在通常适于聚合的条件下,使用抑制TOMCATS型硅氧烷聚合的添加剂而实现。本发明论证了某些添加剂对于抑制聚合反应是有效的,诸如自由基清除剂。在高温条件下TOMCATS型硅氧烷对氧气,二氧化碳和三氟化氮(NF3)是敏感的。在等于或者高于60℃的温度下,TOMCATS型硅氧烷与氧气反应形成低聚物和聚合物。这是值得注意的,因为在用于由TOMCATS型硅氧烷沉积SiO2膜的等离子增强化学汽相沉积(PECVD)工艺中,氧气,二氧化碳和三氟化氮通常在半导体元件制造中用作氧化气体。这些清除剂通过阻止由自由基反应途径进行的化学反应而起作用。设想作为O2、CO2和/或NF3稳定剂的自由基清除剂是2,6-二叔丁基-4-甲基苯酚(或丁基羟基甲苯BHT)、2,2,6,6-四甲基-1-哌啶氧基(TEMPO)、2-叔丁基-4-羟基苯甲醚、3-叔丁基-4-羟基苯甲醚、3,4,5-三羟基苯甲酸丙酯、2-(1,1-二甲基乙基)-1,4-苯二醇、二苯基苦基偕腙肼、4-叔丁基儿茶酚、N-甲基苯胺、对甲氧基二苯胺、二苯胺、N,N′-二苯基对苯二胺、对羟基二苯胺、苯酚、十八烷基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯、四(亚甲基(3,5-二叔丁基)-4-羟基-氢化肉桂酸酯)甲烷、吩噻嗪、烷基酰胺基异脲(alkylamidonoisoureas)、硫二亚乙基双(3,5-二叔丁基-4-羟基-氢化肉桂酸酯)、1,2-双(3,5-二叔丁基-4-羟基氢化肉桂酰基)肼、三(2-甲基-4-羟基-5-叔丁基苯基)丁烷、环新戊烷四基双(十八烷基亚磷酸酯)、4,4′-硫代双(6-叔丁基间甲酚)、2,2′-亚甲基双(6-叔丁基对甲酚)、乙二酰双(亚苄基酰肼)和天然抗氧剂诸如粗制种子油、麦胚油、生育酚和树胶。
优选地,自由基清除剂的含量为10-1000ppm(重量);较优选地为50-500ppm(重量);更优选地为50-250ppm(重量);最适宜地为100-200ppm(重量)。
为了实现本发明的目的,消除或抑制在一般CVD工艺条件下TOMCATS型硅氧烷的聚合反应,以加速常规聚合反应过程为目的进行一个标准实验室试验。加速老化试验指的是模拟通常在更长时间段内发生的逐步聚合的正常过程。该试验由将TOMCATS型硅氧烷的密封石英管暴露于高温下24小时构成,在本文件中称为“加速老化试验”。这些条件应该理解为比TOMCATS型硅氧烷经受的一般的CVD工艺明显更加严格。在通常的加速老化试验中,将石英管装上约5.0ml的TOMCATS型硅氧烷和除“对照试验”以外加入用来抑制聚合反应的自由基清除剂。在液氮浴中冷却TOMCATS型硅氧烷/添加剂混合物。然后,经历5分钟,将TOMCATS型硅氧烷上的空气抽成真空。接着使用氢/氧焊枪将石英管的颈口密封。将密封的管放置于烘箱内并在120℃保温5天。取出石英管使之冷却到室温。通过气相色谱(GC)分析其内容物,测试聚合程度。
通过GC定量测试聚合程度。该技术根据具有比TOMCATS型硅氧烷母峰更长保留时间的更高分子量的物质的形成,非常灵敏地检测聚合反应的开始。通过肉眼观察确定为具有“高粘度”的TOMCATS型硅氧烷试样不常规地进行GC分析。低聚的或聚合的硅氧烷势必会不可逆转地污染GC柱的固定相,这是由于它们具有低溶解性和低挥发性。在本发明中定量地描述这样的试样具有大于10重量%的聚合物,与前面的观测一致。
环状聚硅氧烷的聚合已确定由自由基催化。实验室观测显示TOMCATS型硅氧烷的聚合特别敏感于暴露于氧气或三氟化氮,硅氧烷所暴露的氧气和三氟化氮用于半导体制造。本发明中所述的添加剂与TOMCATS型硅氧烷形成所测试浓度的溶液。另外,根据它们的浓度和它们的化学和物理特性,这些添加剂预料不会对整个CVD工艺产生不利影响。
室内试验证实TOMCATS型硅氧烷在高温下敏感于氧气和/或三氟化氮。在等于或者高于60℃的温度下,TOMCATS型硅氧烷与氧气和/或三氟化氮反应形成低聚物和聚合物。这是特别重要的,因为在用于由TOMCATS型硅氧烷沉积SiO2膜的PECVD工艺中,氧气和/或三氟化氮通常用作氧化气体,或者在生产过程中用作净化气体。存在氧气,二氧化碳和三氟化氮的TOMCATS型硅氧烷的稳定性的数据收集如表1所示。
为了控制反应速度,将TOMCATS型硅氧烷掺入低水平的作为自由基清除剂如抗氧化剂的化合物。这些清除剂通过阻止以自由基反应途径进行的化学反应而起作用。作为O2、CO2和/或NF3稳定剂试验的自由基清除剂是2,6-二叔丁基-4-甲基苯酚(或丁基羟基甲苯BHT)。当掺入BHT时,TOMCATS型硅氧烷显著地更加抵抗O2、CO2和/或NF3。如一系列在90℃条件下进行的试验显示(表1),添加150ppm重量的BHT大大降低了TOMCATS型硅氧烷在高温时对O2、CO2和/或NE3的敏感性。另一益处是BHT不含原子氮,该原子氮据报道会导致不良基膜性质。TEMPO也预期成为有效的O2、CO2和/或NF3稳定剂。
这些试验明确地证实了使用低水平自由基清除剂有利于大大降低或消除TOMCATS型硅氧烷对O2、CO2和/或NF3的敏感性,因此,降低由促进TOMCATS型硅氧烷聚合的O2、CO2和/或NF3引起堵塞问题的可能性。设想作为该功用的清除剂/抗氧化剂包括2,6-二叔丁基-4-甲基苯酚、2,2,6,6-四甲基-1-哌啶氧基、2-叔丁基-4-羟基苯甲醚、3-叔丁基-4-羟基苯甲醚、3,4,5-三羟基苯甲酸丙酯、2-(1,1-二甲基乙基)-1,4-苯二醇、二苯基苦基偕腙肼、4-叔丁基儿茶酚、N-甲基苯胺、对甲氧基二苯胺、二苯胺、N,N′-二苯基对苯二胺、对羟基二苯胺、苯酚、十八烷基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯、四(亚甲基(3,5-二叔丁基)-4-羟基-氢化肉桂酸酯)甲烷、吩噻嗪、烷基酰胺基异脲、硫二亚乙基双(3,5-二叔丁基-4-羟基-氢化肉桂酸酯)、1,2-双(3,5-二叔丁基-4-羟基氢化肉桂酰基)肼、三(2-甲基-4-羟基-5-叔丁基苯基)丁烷、环新戊烷四基双(十八烷基亚磷酸酯)、4,4′-硫代双(6-叔丁基间甲酚)、2,2′-亚甲基双(6-叔丁基对甲酚)、乙二酰双(亚苄基酰肼)及其混合物。天然抗氧剂诸如粗制种子油、麦胚油、生育酚和树胶也可以使用。
TOMCATS型硅氧烷的聚合公知由自由基催化。本发明证实了某些自由基清除剂是用于阻止TOMCATS型硅氧烷聚合的有效添加剂,诸如2,6-二叔丁基-4-甲基苯酚,也称作丁基羟基甲苯(BHT)。
为了实现本发明的目的,消除或阻止在一般的CVD工艺条件下TOMCATS型硅氧烷的聚合反应,以模拟TOMCATS型硅氧烷处在一般的CVD工艺条件下为目的进行实验室试验。这些抑制剂的效果可通过比较净TOMCATS型硅氧烷(即不含阻聚剂)的稳定性与用自由基清除剂如BHT来稳定的TOMCATS型硅氧烷的稳定性来测定。这些稳定性试验在90℃温度不存在污染物质(在真空条件下)以及存在污染物质的条件下进行,其中TOMCATS型硅氧烷有目的地暴露于限量的选择气体如O2、CO2和NF3。所有这三种气体通常用于过程中的某一时刻,或者供料于由TOMCATS型硅氧烷前体化学汽相沉积SiO2。氧气和NF3为公知的自由基来源。TOMCATS型硅氧烷在典型PECVD工艺中通常用O2和/或CO2稀释。三氟化氮通常用于该工艺的料腔清洁步骤。
具体实施例方式
实施例1真空条件下聚合反应含有和不含有BHT的TOMCATS型硅氧烷的稳定性六支标称体积为80-90ml的石英管用于该试验。本实施例中这些石英管称为1A,1B,1C,1D,1E和1F。将这些石英管用蒸馏水清洗两次,用试剂级丙酮清洗两次,然后将其放入175℃的烘箱中保持16-18小时。从烘箱中取出干燥的石英管并在仍然温热时使用。将约5.0ml无添加剂的TOMCATS型硅氧烷装入管1A,1B,1C和1D。将等量含有150ppm(以重量计)BHT的TOMCATS型硅氧烷装入管1E和1F。将聚四氟乙烯树脂阀安装在石英管的开口端。将石英管1A的末端浸入液氮浴中冷凝汽化的TOMCATS型硅氧烷。将其抽真空5分钟以便从石英管上部除去空气。使用氢/氧焊枪将石英管的颈口封住。其余5支石英管(1B-1F)以同样的方式密封。将密封的管1C,1D,1E和1F放置于氮吹扫烘箱中,并保持90℃恒温24小时。管1A和1B保持在室温,用作对照试样。24小时后从烘箱取出加热的石英管使之冷却至室温。
GC分析表明相对于该组材料,对照试样(1A,1B)没有有效聚合。不含添加剂的加热的试样(1C,1D)表现出0.136%的平均聚合。含有150ppmBHT的加热的试样表现出0.079%的平均聚合。结果概述于表1。
实施例2对二氧化碳的敏感性TOMCATS型硅氧烷暴露于0.50重量%二氧化碳如实施例1所述将四支石英管(2A,2B,2C和2D)清洗并干燥。将约5.0g无添加剂的TOMCATS型硅氧烷装入管2A和2B。将等量掺入150ppm重量BHT的TOMCATS型硅氧烷装入管2C和2D。四支管的每一支管装有石英侧臂延长(side-arm extension),用隔膜覆盖。管2A冷却至液氮温度,并通过抽真空排出上部的残留空气。将管与真空隔离并经由通过侧臂上隔膜盖的注射器注入19sccm气态二氧化碳。处于低于外界压力的管使用实施例1所述的焊枪密封。剩余的3支管(2B,2C和2D)准备好后以相同的方法密封。如实施例1所述,所有四支密封的管于90℃恒温24小时。不含添加剂的TOMCATS型硅氧烷表现出0.216%的平均聚合。含有150ppmBHT添加剂的相同化合物表现出0.028%的平均聚合。结果概述于表1。
实施例3对氧气的敏感性TOMCATS型硅氧烷暴露于0.50重量%氧气如实施例1所述将四支石英管(3A,3B,3C和3D)清洗并干燥。将约5.0g无添加剂的TOMCATS型硅氧烷装入管3A和3B。将等量掺入150ppm重量BHT的TOMCATS型硅氧烷装入管3C和3D。四支管的每一支管装有石英侧臂延长,用隔膜覆盖。管3A冷却至液氮温度,并抽真空排出上部的残留空气。将管与真空隔离并经由通过侧臂上隔膜盖的注射器注入19sccm氧气。处于低于外界压力的管使用实施例1所述的焊枪密封。剩余的3支管(3B,3C和3D)准备好后以相同的方法密封。如实施例1所述,所有四支密封的管于90℃恒温24小时。不含添加剂的TOMCATS型硅氧烷表现出6.462%的平均聚合。含有150ppmBHT添加剂的相同化合物表现出0.031%的平均聚合。结果概述于表1。
实施例4对三氟化氮的敏感性不含BHT的TOMCATS型硅氧烷暴露于三氟化氮为了评估自由基清除剂如BHT阻止三氟化氮促进TOMCATS型硅氧烷聚合的效果进行相容性测试。由于NF3的潜在反应和可能副产品的腐蚀性,这些相容性测试在300cc不锈钢帕尔反应器(Parr Reactor)中进行。
将49.956gTOMCATS型硅氧烷装入300cc反应器。TOMCATS型硅氧烷试样不含有BHT,但含有125ppm重量2,4-戊二酮。2,4-戊二酮被研制出作为初期的添加剂来稳定TOMCATS型硅氧烷。排出反应器上部空间的气体。NF3膨胀进入上部空间,其最终浓度为以重量计636ppm(0.0636重量%)。反应器的温度升至100℃并保持24小时。在该限定时间后,NF3通过泵出反应器而移出。反应器打开。TOMCATS型硅氧烷完全胶凝。在反应器中没有残留液体。
如本实施例所述的极其粘性或胶凝的试样,表明了TOMCATS型硅氧烷的高聚合程度。由于在一般有机溶液中的不溶性,这些试样不能通过GC分析进行测定。这些试样由于本文的目的表示为“>10wt%”的聚合程度。
实施例5对三氟化氮的敏感性含有150ppmBHT的TOMCATS型硅氧烷暴露于三氟化氮将49.863gTOMCATS型硅氧烷装入300cc反应器。TOMCATS型硅氧烷试样预先掺入以重量计150ppm的BHT。排出反应器上部空间的气体。NF3膨胀进入上部空间,其最终浓度为以重量计631ppm(0.0631重量%)。反应器的温度升至100℃并保持24小时。在该限定时间后,NF3通过泵出反应器而移出。反应器打开并且回收45.631g澄清的无色液体。由于为了移出NF3在试验结束时在反应器上的抽吸,可能使得重量损失。液体转移到聚乙烯瓶中。通过GC分析试样,证实了TOMCATS型硅氧烷纯度在分析前后同样为99.95%。
没有检测到聚合。
表1存在各种自由基化学源时含有和不含有BHT抑制剂的TOMCATS型硅氧烷的稳定性

*所有掺和物气体以0.50重量百分比掺入,除了实施例#4和#5中的NF3分别为0.0636重量%和0.0631重量%之外。
试温度为100℃。
由于试样完全胶凝无法进行GC。其表示>10%聚合。
本发明已经由几种优选实施方案阐明,但是本发明的整个范围应该由下面的权利要求确定。
权利要求
1.一种使环四硅氧烷稳定并抑制聚合的方法,其被用于电子材料制造中硅氧化物的化学汽相沉积工艺,该方法包括向具有下式的环四硅氧烷中提供有效量的自由基阻聚剂 其中R1-7分别选自于氢、直链、支链或环状C1-10烷基和C1-4烷氧基。
2.如权利要求1所述的方法,其中所述自由基清除剂选自2,6-二叔丁基-4-甲基苯酚、2,2,6,6-四甲基-1-哌啶氧基、2,6-二甲基苯酚、2-叔丁基-4-羟基苯甲醚、3-叔丁基-4-羟基苯甲醚、3,4,5-三羟基苯甲酸丙酯、2-(1,1-二甲基乙基)-1,4-苯二醇、二苯基苦基偕腙肼、4-叔丁基儿茶酚、N-甲基苯胺、2,6-二甲基苯胺、对甲氧基二苯胺、二苯胺、N,N′-二苯基对苯二胺、对羟基二苯胺、苯酚、十八烷基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯、四(亚甲基(3,5-二叔丁基)-4-羟基-氢化肉桂酸酯)甲烷、吩噻嗪、烷基酰胺基异脲、硫二亚乙基双(3,5-二叔丁基-4-羟基-氢化肉桂酸酯)、1,2-双(3,5-二叔丁基-4-羟基氢化肉桂酰基)肼、三(2-甲基-4-羟基-5-叔丁基苯基)丁烷、环新戊烷四基双(十八烷基亚磷酸酯)、4,4′-硫代双(6-叔丁基间甲酚)、2,2′-亚甲基双(6-叔丁基对甲酚)、乙二酰双(亚苄基酰肼)及其混合物。
3.如权利要求2的方法,其中所述自由基清除剂为2,6-二叔丁基-4-甲基苯酚。
4.如权利要求2的方法,其中所述自由基清除剂的含量为10-1000ppm(重量)。
5.如权利要求2的方法,其中所述自由基清除剂的含量为50-500ppm(重量)。
6.如权利要求2的方法,其中所述自由基清除剂的含量为50-250ppm(重量)。
7.如权利要求2的方法,其中所述自由基清除剂的含量为100-200ppm(重量)。
8.一种使1,3,5,7-四甲基环四硅氧烷稳定并抑制聚合的方法,其被用于电子材料制造中硅氧化物的化学汽相沉积工艺,该方法包括向该1,3,5,7-四甲基环四硅氧烷中提供有效量的自由基清除剂阻聚剂。
9.如权利要求8所述的方法,其中所述自由基清除剂选自2,6-二叔丁基-4-甲基苯酚,2,2,6,6-四甲基-1-哌啶氧基及其混合物。
10.一种使1,3,5,7-四甲基环四硅氧烷稳定并抑制由氧气、二氧化碳和/或三氟化氮引起的聚合的方法,其被用于电子材料制造中硅氧化物的化学汽相沉积工艺,该方法包括向该1,3,5,7-四甲基环四硅氧烷中提供自由基清除剂。
11.如权利要求10所述的方法,其中所述自由基清除剂选自2,6-二叔丁基-4-甲基苯酚,2,2,6,6-四甲基-1-哌啶氧基及其混合物。
12.一种稳定并抑制聚合的环四硅氧烷的组合物,其被用于电子材料制造中硅氧化物化学汽相沉积工艺,该组合物包含(a)具有下式的环四硅氧烷 其中R1-7分别选自于氢、直链、支链或环状C1-10烷基和C1-4烷氧基,和(b)自由基清除剂阻聚剂。
13.一种被稳定并抑制聚合的1,3,5,7-四甲基环四硅氧烷的组合物,其作为电子材料制造中硅氧化物的前体被用于化学汽相沉积工艺,该组合物包含1,3,5,7-四甲基环四硅氧烷和自由基清除剂阻聚剂。
14.一种被稳定并抑制聚合的1,3,5,7-四甲基环四硅氧烷的组合物,其作为电子材料制造中硅氧化物的前体被用于化学汽相沉积工艺,该组合物包含(a)1,3,5,7-四甲基环四硅氧烷和(b)自由基清除剂,其选自2,6-二叔丁基-4-甲基苯酚、2,2,6,6-四甲基-1-哌啶氧基、2-叔丁基-4-羟基苯甲醚、3-叔丁基-4-羟基苯甲醚、3,4,5-三羟基苯甲酸丙酯、2-(1,1-二甲基乙基)-1,4-苯二醇、二苯基苦基偕腙肼、4-叔丁基儿茶酚、N-甲基苯胺、对甲氧基二苯胺、二苯胺、N,N′-二苯基对苯二胺、对羟基二苯胺、苯酚、十八烷基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯、四(亚甲基(3,5-二叔丁基)-4-羟基-氢化肉桂酸酯)甲烷、吩噻嗪、烷基酰胺基异脲、硫二亚乙基双(3,5-二叔丁基-4-羟基-氢化肉桂酸酯)、1,2-双(3,5-二叔丁基-4-羟基氢化肉桂酰基)肼、三(2-甲基-4-羟基-5-叔丁基苯基)丁烷、环新戊烷四基双(十八烷基亚磷酸酯)、4,4′-硫代双(6-叔丁基间甲酚)、2,2′-亚甲基双(6-叔丁基对甲酚)、乙二酰双(亚苄基酰肼)及其混合物。
全文摘要
本发明涉及(a)一种使环四硅氧烷如1,3,5,7-四甲基环四硅氧烷稳定并抑制聚合的方法,其被用于电子材料制造中硅氧化物的化学汽相沉积工艺,该方法包括向该环四硅氧烷中提供有效量的自由基清除剂阻聚剂;和(b)一种被稳定并抑制聚合的环四硅氧烷如1,3,5,7-四甲基环四硅氧烷的组合物,其作为电子材料制造中硅氧化物的前体被用于化学汽相沉积工艺,该组合物包含该环四硅氧烷和自由基清除剂阻聚剂。
文档编号C07F7/20GK1590390SQ20041005500
公开日2005年3月9日 申请日期2004年6月23日 优先权日2003年6月23日
发明者S·G·迈奥尔加, 萧满超, T·R·加夫尼, R·G·西夫雷特 申请人:气体产品与化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1